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Intercoder reliability is the most often used quantitative indicator of measurement 
quality in content studies. Researchers in psychology, sociology, education, medi-
cine, marketing, and other disciplines also use reliability to evaluate the quality of 
diagnosis, tests and other assessments. Many indices of reliability have been rec-
ommended for general use, and this article analyzes 22 of them, which are orga-
nized into 18 chance-adjusted and four nonadjusted indices. The chance-adjusted 
indices are further organized into three groups, including nine category-based 
indices, eight distribution-based indices, and one that is double based, on category 
and distribution. 

The main purpose of this work is to examine the assumptions behind each 
index. Most of the assumptions are unexamined in the literature, and yet these 
assumptions have implications for assessments of reliability that need to be under-
stood, and that result in paradoxes and abnormalities. This chapter discusses 13 
paradoxes and nine abnormalities to illustrate the 24 assumptions. To facilitate 
understanding, the analysis focuses on categorical scales with two coders, and 
further focuses on binary scales where appropriate. The discussion is situated 
mostly in analysis of communication content. The assumptions and patterns that 
we will discover will also apply to studies, evaluations, and diagnoses in other 
disciplines with more coders, raters, diagnosticians, or judges using binary or 
multicategory scales. 

We will argue that a new index is needed, but before it can be established, we 
need guidelines for using the existing indices. This chapter will recommend such 
guidelines.

Content has always been a central concern of communication research. 
Wilbur Schramm (1973), whom Tankard (1988) called “the father of 
communication studies,” authored Men, Messages, and Media: a Look 

at Human Communication, where “message” meant content. Harold Lasswell 
(1948), whom Schramm considered one of the “four founding fathers of the 
fi eld” (Glander, 2000, Ch. 3), defi ned the discipline as studying “who says 
what, through which channels, to whom, and with which effect,” where “what” 
is content. With the explosion of “netted” information from increasingly diver-
sifi ed sources, the need for content research has been rising sharply (Neuen-
dorf, 2002). 
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Modern content analysis, a term no more than 70 years old according to 
Krippendorff (2004a), focuses on “what is the content,” as opposed to what 
should be the content. With this empirical emphasis, validity and reliabil-
ity have emerged as two methodological pillars. Validity addresses whether 
an instrument measures what it purports to measure. Reliability addresses 
whether the instrument produces consistent results when it is applied repeat-
edly; that is, test-retest reliability, or by different people; that is, intercoder 
reliability. While a reliable measure is not necessarily valid, an unreliable 
measure cannot be valid. 

Validity is more diffi cult to measure numerically. Hence reliability, espe-
cially the less costly intercoder reliability, has been the most popular quan-
titative indicator of measurement quality in content studies. Researchers in 
education, psychology, sociology, medicine, marketing, and other social sci-
ence disciplines also use reliability to evaluate the quality of diagnoses, tests, 
and other assessments. 

The main purpose of this chapter is to examine assumptions behind 22 indi-
ces of intercoder reliability, most of which are unexamined in the literature. 
We will report 24 such assumptions, most of which are rarely met in typical 
research, meaning that the indices have been often used beyond the boundaries 
for their legitimate use. As a result, paradoxes and abnormalities arise. We will 
discuss 13 paradoxes and nine abnormalities to illustrate the assumptions. We 
will argue that a new index is needed and, until such a new index is forthcom-
ing, guidelines are needed for using the existing indices. 

Our analysis will focus on categorical scales with two coders and further 
focus on binary scales where appropriate. The discussion will be mostly situ-
ated in analyzing communication content. But the assumptions, patterns, and 
recommendations that we will discuss also apply to studies, evaluations, or 
diagnoses in other disciplines with more coders, raters, diagnosticians, or 
judges using two or more categories. 

The calculations and derivations presented in this chapter were done by the 
fi rst author initially by hand and then verifi ed by MS Excel programming. All 
formulae, calculations, interpretations, and proofs were then independently 
replicated or verifi ed by the third author under the supervision of the second 
author. Guangchao Charles Feng, a doctoral candidate at Hong Kong Baptist 
University, conducted a fi nal round of verifi cations using R programming (2011, 
v 2.14). Large portions of this manuscript, especially those related to π, �, and 
�, were previously presented in two conference papers (Zhao, 2011a, 2011b).

An Overview of the Intercoder Reliability Concept

Reliability and Related Concepts

Krippendorff (2004b) and Lombard, Snyder-Duch, and Bracken (2002) see 
agreement as the indicator of reliability, and consider association to be a sepa-
rate concept. Tinsley and Weiss (1975, 2000) use correlation as the indicator 
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of reliability and consider agreement as separate. Neuendorf (2002) considers 
agreement and covariation as two indicators of reliability.

We follow Krippendorff and Lombard et al. to use agreement as the indica-
tor of intercoder or test-retest reliability, and we defi ne agreement as proxim-
ity between measures. On a categorical scale, if both coders choose the same 
category for the same case, that is an agreement. If they choose different cat-
egories, that is a disagreement. On a numerical scale, the closer the scores are 
to each other, the higher the agreement. Correlation refers to the covariation 
between measures on numerical scales. For instance, on a 0–10 scale, if Coder 
2 chooses 0 whenever Coder 1 chooses 9, and chooses 1 whenever Coder 1 
chooses 10, there is a very high correlation but a very low agreement. 

Association refers to covariation between measures on categorical scales. It 
is typically used when the concept of “intervariable agreement” is not appropri-
ate, helpful, or suffi cient, while agreement is typically used when the concept 
of “intervariable association” is not appropriate, helpful, or suffi cient. Sup-
pose, of 200 respondents, all 100 Whites are urban, and all 100 non-Whites are 
rural. We say the association between ethnicity and residence is at the highest 
possible, while it does not help as much to talk about agreement. Suppose the 
data of 200 cases come from a content analysis, in which Coder 1 reports see-
ing an urban resident whenever Coder 2 does so, and reports seeing a rural 
resident whenever Coder 2 does so. This signifi es complete agreement. Here it 
is not as informative to talk about association. Suppose the opposite happens: 
all 100 Whites are rural, while all 100 non-Whites are urban. The association 
is equally high. But if the same data are from the two coders, they would indi-
cate that Coder 1 reports seeing urban residents whenever Coder 2 reports see-
ing rural residents, and reports seeing rural residents whenever Coder 2 reports 
seeing urban residents. That would be a complete disagreement. 

Association and agreement also differ when distributions are even; for 
example, when each ethnic group is half urban and half rural, or when two 
coders agree with each other half the time. Here association is at the lowest 
possible, while agreement is 50%, halfway between the lowest and the highest 
possible. Further, when there is no variation within a variable, for example, 
when all respondents are of one ethnicity, or they all live in one locale, associa-
tion is undefi ned. Association is covariation, which is impossible when there 
is no variation. If the same data come from two coders, which means one 
or both coders chooses only one category, agreement should and can still be 
calculated. If both coders agree that all respondents are urban, there is 100% 
agreement. Later we will show that three popular indices of reliability, that 
is, π, �, and �, become uncalculable, hence undefi ned, when coders agree all 
cases fall into one category. We will argue that should not have happened if the 
indices were to measure general agreement.

Table 19.1 summarizes the relationship between the key concepts. This 
chapter will focus on agreement/reliability indices for categorical scales, and 
further focus on binary scales where appropriate. We will not deal with asso-
ciation measures such as �2, or correlational measures such as Pearson’s r or r2. 
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Reliability vs. Reliabilities

Popping (1988) identifi ed no less than 39 reliability indices, although some 
of them are association measures or correlational measures, and some are the 
same indices under different names. This chapter will review 22 indices of 
intercoder reliability. Many of the 22 are mathematically equivalent, giving us 
11 unique indices. 

It is assumed that the various indices are indicators of the same concept 
of intercoder reliability. Yet the indices produce different—often drastically 
different—results for the same underlying agreements. As reliability means 
agreement (Riffe, Lacy, & Fico, 1998), these indices of reliability do not 
appear reliable themselves.

Under the premise of “various indicators for one reliability,” methodolo-
gists debate which indicator is the best, whether to use this, that, or several of 
them in a study, and how to fi x or cope when some indices, especially Cohen’s 
�, behave paradoxically (e.g., Brennan & Prediger, 1981; Krippendorff, 2004b; 
Lombard et al., 2002; Zwick, 1988). This review takes a different approach. 
As the indices produce different results, we suspect there may be multiple reli-
ability concepts, each having one indicator. No more than one index can be 
the general indicator, while others are for special conditions. Like mediation 
researchers (e.g., Hayes, 2009; Zhao, Lynch, & Chen, 2010) who examined the 
dominant approach to reveal its hidden premises, this chapter analyzes each 
index of intercoder reliability to uncover its assumptions, which defi nes the 
boundaries for its legitimate use and may explain the paradoxes and abnor-
malities that arise when it is used beyond the boundaries. 

A Typology of 22 Indices

The 22 indices we will review fall into two groups. The fi rst group, called 
nonadjusted indices, includes %-agreement (ao, pre-1901), Holsti’s CR (1969), 
Osgood’s coeffi cient (1959), and Rogot and Goldberg’s A1. The fi rst three are 
mathematically equivalent to each other. The four indices assume that all 
coding behavior is honest, observed agreements contain no random chance 

Table 19.1 Reliability and Related Concepts

Concepts of Consistency

Multimeasure reliability Intercoder & test-retest 
reliability

Scales Categorical Association /Covariation 
e.g., �2

Agreement /Proximity 
e.g., %-agreement 

Numerical Correlation/Covariation. 
e.g., Pearson r & r2 

Agreement /Proximity 
e.g., closeness measure*

* Correlation indices, such as Pearson r or r2, is at present the most often used indicator of inter-
coder or test-retest reliability for numerical scales. Closeness measure would be a more appro-
priate measure, which we will discuss in another paper. 
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coding, hence there is no need to adjust for chance. Chance-adjusted indi-
ces belong in the second group of indices. These 18 indices assume that cod-
ers deliberately maximize random chance coding, and limit honest coding to 
occasions dictated by chance, so the chance agreement that results must be 
estimated and removed.

The chance-adjusted group includes three subgroups. The fi rst subgroup of 
nine indices estimates chance agreement as a function of category in a mea-
surement scale. The second subgroup of eight indices estimates chance agree-
ment as a function of observed distribution. Here “distribution” refers to the 
pattern by which cases fall into categories. Distribution can be extremely even; 
for example, 50% of the advertisements coded have endorsers and 50% do 
not; or extremely uneven; for example, 100% have endorsers and 0% do not; 
or anywhere between the two extremes. In reliability literature, this important 

Table 19.2 A Typology of 22 Intercoder Reliability Indices

Adjusted for chance agreement?

Yes No

On what basis is 
chance agreement 
estimated?

Category �, S, (G, RE, C, kn, 
PABAK, rdf-Pi)*, Ir ao, 

(Osgood’s, 
Holsti’s CR)*

 A1

Distribution �, �r, π, (Rev-�, 
BAK)*, �, (A2), �

Category & 
Distribution 

AC1 

* Index(es) in parentheses is a mathematical equivalent(s) of the preceding index

Index 
symbol

Author, Year Other known name 
of the index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

�
A1
A2
AC1
ao
�
BAK
C
CR
G
Ir
�
kn
�r
Osgood’s
π
PABAK
Rdf-Pi
Rev-�
�
RE
S

Krippendorff (1970, 1980)
Rogot & Goldberg (1966)
Rogot & Goldberg (1966)
Gwet (2008, 2010)
unknown author, pre-1901.
Benini (1901)
Byrt et al. (1993)
Jason & Vegelius (1979)
Holsti (1969)
Guilford (1961), (Holley & Guilford, 1964)
Perreault & Leigh (1989)
Cohen (1960)
Brennan & Prediger (1981)
Goodman & Kruskal (1954)
Osgood (1959)
Scott (1955)
Byrt et al. (1993)
Potter & Levine-Donnerstein (1999)
Siegel & Castellan (1988)
Guttman (1946)
Maxwell (1977)
Bennett et al. (1954)

%-Agreement

Holsti’s

Redefi ned Pi
Revised �
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concept has also been referred to as “frequency” (Gwet, 2008), “base rate” 
(Grove, Andreasen, McDonald-Scott, Keller, & Shapiro, 1981; Kraemer, 1979; 
Spitznagel & Helzer, 1985), or “prevalence” (Gwet, 2010; Shrout, Spitzer, & 
Fleiss 1987; Spitznagel & Helzer, 1985). We will follow Cohen (1960), Per-
reault and Leigh (1989), and Gwet (2010) to call it distribution. The third sub-
group has just one index, which uses both category and distribution as the 
main factors. Table 19.2 summarizes this typology. 

Six indices, namely �, Ir, and four nonadjusted indices range from 0 to 1. 
The maximum of �r is also 1, but it can get far below -1, according to one inter-
pretation. The other 15 indices all range from -1 to 1. All 22 indices consider 1 
as indicating maximum reliability, 0 as indicating no reliability, and a below-
zero score as a random variation from 0. An important question is where the 
threshold for acceptable reliability is. This chapter will focus on estimation of 
reliability, and leave the threshold issue to future research. 

Nonadjusted Indices

Our search found four indices that are not adjusted for chance agreement, 
including %- agreement, two equivalents, and Rogot and Goldberg’s A1.

%-Agreement and Two Equivalents

The most intuitive indicator of reliability is %-agreement; that is, the number 
of cases coders agree (A) divided by the total number of targets analyzed (N). 
Krippendorff (2004b) and Neuendorf (2002) denote this as ao,: 

 =   (1)

Scott (1955, p. 322) observed that ao was “commonly used.” Perhaps because 
it was so common and intuitive, its early users or critics like Benini (1901) did 
not mention who invented it. As Osgood (1959) and Holsti (1969) advocated 
essentially the same index, many researchers referred to it as Holsti’s CR while 
a few called it Osgood’s coeffi cient (Krippendorff, 2004b). Bennett, Alpert, 
and Goldstein (1954) pointed out that ao contains chance agreements from 
random guessing, and hence infl ates reliability. Experts on reliability (e.g., 
Lombard et al., 2002; Tinsley & Weiss, 1975) often concurred, revealing an 
important assumption:

 Basic Assumption 1:  Zero chance agreement.

%-agreement (ao) assumes no chance agreement in any situation, no matter 
how diffi cult the task is, or how tired, bored, or unprepared the coders are. 
This assumption leads to an important paradox:
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  Paradox 1: Random guessing can be reliable.

Suppose two coders watch television programs to see if they contain sub-
liminal advertisements, which are fl ashed quickly to avoid conscious percep-
tion. Although the coders try to be accurate, the task is so diffi cult that their 
coding amounts to nothing but random guessing. Probability theory expects 
an ao=50%, which is the midpoint between 0% for no reliability and 100% for 
perfect reliability.

Because %-agreement fails to take into account chance agreements, it is 
often considered “the most primitive” (Cohen, 1960, p. 38) and “fl awed” (Hayes 
& Krippendorff, 2007, p. 80) indicator of reliability, leading to decades-long 
efforts to “account for” and “remove” chance agreements (Krippendorff, 1980, 
pp. 133–134; Riffe, Lacy, & Fico, 1998, pp. 129–130).

Critics of ao argued that “fl ipping a…coin” or “throwing dice” would have 
produced some “chance agreements” (Goodman & Kruskal, 1954, p. 757; 
Krippendorff, 2004a, p. 114, 226; 2004b, p. 413). A coin only has two sides and 
a die always has six. Drawing marbles may be a closer analogy, because colors 
and marbles per color can vary like categories and cases per category can vary 
in typical content studies (Zhao, 2011a, 2011b). Hereafter we will use “marble” 
to refer to any physical or virtual element of equal probability; “urn” to refer 
to a real or conceptual collection of the elements; and “drawing” to refer to a 
behavioral or mental process of randomly selecting from the elements. Defi ned 
as such, marbles, urns, and drawing turn out to be a set of useful analytical 
tools. They help to expose assumptions and explain paradoxes and abnormali-
ties that otherwise would be more diffi cult to uncover or understand.

The no-chance-agreement assumption does not necessarily make %- agreement 
a bad index, but perhaps a special-purpose index. Some authors argued that, for 
easy cases or “textbook” cases, all agreements could be from a well-developed 
protocol (Grove et al., 1981, p. 411; Riffe, Lacy, & Fico, 2005, p.151). In such 
situations, no chance agreement should be expected; hence %- agreement would 
be an accurate index. %-agreement cannot be a general-purpose index because 
all cases are not easy, and all protocols are not well developed.

Rogot & Goldberg’s A1

Rogot and Goldberg (1966) noted that, when calculating %-agreement on a 
binary scale, each positive agreement, for example, two diagnosticians agree a 
patient has an abnormality, is given an equal weight as a negative agreement, 
for example, diagnosticians agree there is no abnormality. Because abnormal-
ity is far less frequent than normality, negative agreements as a group are given 
more weights than positive agreements. To give the two groups equal weights, 
Rogot and Goldberg (1966) proposed A1:

 = + + + + + + +  ��  (2)
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Here a and d are respectively positive and negative agreements, and b and 
c are two types of disagreements, all in percentages. A1=ao when a=d and 
b=c, that is, when two types of agreements are evenly distributed and the two 
types of disagreements are also evenly distributed. When a≠d, that is, when 
agreements are unevenly distributed, A1 decreases from ao, and more uneven 
distributions bring larger decreases. When b≠c, that is, when disagreements 
are unevenly distributed, A1 increases from ao, and more uneven distributions 
bring larger increases. Because the decreases and the increases are at the equal 
rate, the average of A1 should be close to the average of ao when each is aver-
aged across many studies and data. As A1 is just a reweighted ao, they share 
the same assumption and paradox as discussed above. In general A1 is not an 
improvement over %-agreement. Especially, it still does not take into account 
chance agreement. 

An Overview of Chance-Adjusted Indices

To “account for” and “remove” chance agreement (ac) from %-agreement (ao), 
Equation 3 was introduced to calculate reliability index (ri). The equation was 
implied in Guttman (1946) and Bennett et al. (1954) and made explicit by Scott 
(1955):

 = −−   (3)

The subtraction in the numerator appears intuitive. Chance agreement (ac) 
needs to be removed from the observed agreement (ao). The subtraction defl ates 
the otherwise infl ated index. The subtraction in the denominator, however, is 
not as intuitive. Reliability index (ri) is a percentage, of which the denomina-
tor serves as the reference. The full length of the reference is 1 for 100%. The 
subtraction shrinks the reference, making ri look larger. 

There is a behavioral assumption behind the shrinking. To understand the 
assumption, we may analyze Equation 4, which was implied in Guttman’s � 
(1946), Bennett, Alpert, and Goldstein’s S (1954), Scott’s π (1955), and Cohen’s 
� (1960), and made explicit by Cohen (1968, p. 215):

 = +   (4)

With ac representing chance agreement (%) and dc representing chance dis-
agreement (%), Equation 4 says chance coding constitutes 100% of all coding. 
Some may argue that “1” here represents “all chance coding.” That is true. 
But all major reliability indices from Guttman’s � (1946) to Gwet’s AC1 (2008) 
all state or imply ao+do=1, where ao is observed agreement and do is observed 
disagreement, hence ao+do =ac+dc, which means “all coding equals all chance 
coding,” or “all coding is chance.”
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But chance coding allows and includes honest coding in a two-stage pro-
cess, according to Equations 3 and 4. In the fi rst stage, coders code all cases 
completely randomly by drawing marbles. If they draw a certain pattern, for 
example, the same color, they report fi ndings according to a predetermined 
color-category matching scheme. For example, if the marbles are white they 
would say that an advertisement has an endorser while if the marbles are black 
they would say there is no endorser, without looking at the advertisement 
under coding. If and only if the coders draw another pattern, for example, dif-
ferent colors, they would go to the second stage, during which they would code 
honestly. Hence honest coding (h) equals chance disagreement (dc): 

 =   (5)

Here honest coding (h) is defi ned as percent of cases that coders code by 
actually examining the objects and categorizing objectively following the 
instructions during training. Chance coding thus precedes, permits, confi nes, 
and constrains honest coding. Since honest coding is limited within chance 
disagreement, it is the chance disagreement, but not all coding, that should be 
the baseline for percentage calculation. This is why the denominator in Equa-
tion 3 should be shrunk from 1 to1-ac= dc=h. 

Replacing ao with1-do and replacing ac with 1-dc in Equation 3, we obtain an 
alternative expression of ri (Krippendorff, 1980, p.138; 2004a, p. 417): 

 = −   (6)

Most of the chance-adjusted indices share Equations 3 through 6 as they 
are. Benini’s � (1901) and Perreault and Leigh’s Ir (1989) modify the two equa-
tions, which we will discuss later. 

The marble drawing scenario was implicit in Guttman’s � (1946), Ben-
nett et al.’s S (1954), Scott’s π (1955), and all other chance-adjusted indices 
that followed. Goodman and Kruskal (1954) discussed fl ipping a coin, and 
Krippendorff (1980) discussed throwing dice, making the scenario explicit. 
Zhao (2011a, 2011b) rephrased it as drawing marble to allow more accurate 
analysis of various indices. This Guttman-Goodman Scenario has been widely 
accepted because it was told as hypothetical stories. Few believe that coders 
regularly maximize chance coding in actual research. Yet few realize that, 
by applying Equations 3 through 6, which are key components of S and all 
other chance-adjusted indices, we are treating maximum randomness as real 
occurrences. Riffe et al. (2005) did realize this, pointing out “that agreement 
can take place by chance does not mean it does…. All agreements could eas-
ily be the result of a well-developed protocol” (p. 151). Grove and colleagues 
(1981) had the same view: “chance agreement means the agreement would be 
observed if two raters assigned diagnoses to cases at random. Now this is not 
what diagnosticians do. They assign the easy cases, or ‘textbook’ cases, to 
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diagnoses with little or no error, they may guess or diagnose randomly on the 
others” (p. 411).

If we accept this Grove-Riffe Scenario, we may argue that Equations 3 and 
6 are inappropriate, as they are based on a behavior that should never happen 
and probably never did. Even if deliberate and systematic random coding does 
happen, the data should be thrown out and no reliability should be calculated. 
Deliberate random coding would be a type of cheating. A simpler cheating 
would be that two coders always agree with each other, without looking at any 
cases, throwing any dice, or drawing any marbles. They would have gotten 
100% agreement. The fabricated agreements cannot and need not be removed 
from the data. The data should be thrown away, not analyzed. 

So we need to lay bare the assumptions behind Equations 3~6, which are 
shared by all chance-adjusted indices reviewed in this chapter:

 Basic Assumption 2: Maximum random.

By removing chance agreement using Equation 3 or 6, these reliability indi-
ces assume that deliberate and systematic chance coding is not hypothetical, 
but real—no empirical research should “remove” or “correct for” anything 
that’s not real. 

  Basic Assumption 3: Limited honesty.

By estimating reliability using Equation 3 or 6, theses indices assume that 
honest coding is confi ned to a portion of the cases defi ned and confi ned by 
random chance. 

 Assumption 4: Specifi ed random.

There is an infi nite number of ways to be random. Coders may fl ip a fair 
coin, throw a biased die, or draw marbles of various numbers of various colors 
without replacement. Each method produces a different estimate of chance 
agreements. Because maximum randomness is hypothetical, there is no 
empirical justifi cation to pick one method over another. Each index picks one 
way, analogous to a man picking a favorite tie from a large selection. Scott’s 
π assumes drawing from a shared urn with replacement. Cohen’s � assumes 
drawing from separate urns with replacement. Krippendorff’s � assumes 
drawing from a shared urn without replacement. And so on. Each index treats 
its way as the only way of being random. 

This assumption is not as fundamental as the previous ones. We will not 
attach the word basic to such assumptions so as to draw more attention to the 
more important ones. 

These assumptions entail that the chance-adjusted indices operate under a 
Guttman-Goodman Scenario, yet each index has been recommended for typi-
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cal coding, which follows a Grove-Riffe Scenario. The mismatch between the 
assumption and the reality creates paradoxes:

  Paradox 2: Nothing but chance.

Equation 4, which says 1=ac+dc, represents a critical assumption in all 
chance-adjusted reliability indices reviewed in this chapter: chance coding, 
which includes chance agreements (ac) and chance disagreements (dc), covers 
100% of the cases coded. 

We found this paradoxical because we believed, under the Grove-Riffe Sce-
nario, coders code objectively at least sometimes, before and beyond random 
chance. Assumptions 2 and 3, under the Guttman-Goodman Scenario, stipu-
late that coders maximize random coding, and code honestly only when mar-
bles’ colors mismatch. “Nothing but chance in the fi rst stage” is an operating 
boundary for these indices, beyond which paradoxes arise. If coder behavior 
follows the Grove-Riffe rather than Guttman-Goodman Scenario, Equation 4 
is incorrect, and therefore these indices are all incorrect. 

  Paradox 3: Apples compared with oranges.

In Equation 3, the numerator represents “honest agreements,” while the 
denominator represents “chance disagreements.” The division compares the 
numerator as a part with the denominator as the whole to produce a percent-
age fi gure. But why compare honest agreements with chance disagreements? 
Are we comparing apples with oranges? Why not compare some apples with 
all apples; for example, honest agreements with all coding? We found this 
paradoxical because we did not realize chance disagreement is honest cod-
ing under Assumptions 2 and 3—coders code honestly when and only when 
marbles disagree.

Under the Grove-Riffe Scenairo, all coding can be honest, not just those 
confi ned to chance disagreement (Riffe et al., 2005). We should replace max-
imum-randomness and limited-honesty assumptions with variable-random-
ness and complete-honesty assumptions. 

 Paradox 4: Humans are a subgroup of men.

When we mathematically divide men by humans, we are asking “what per-
cent of humans are men?” assuming men are a subgroup of humans. When we 
divide do by dc (Equation 6), we are asking “what percent of chance disagree-
ments is observed disagreements?” assuming observed disagreements are a 
subgroup of chance disagreements. But should not chance disagreements and 
honest disagreements be two subgroups of observed disagreements? Shouldn’t 
we divide chance disagreements by observed disagreements, but not vice 
versa? Dividing do by dc is analogous to saying “humans are a subgroup of 
men.”



430 COMMUNICATION YEARBOOK 36

  Paradox 5: Pandas are a subgroup of men.

Equations 3~6 imply ao-ac+do=dc, which implies that honest agreements (ao-
ac) and observed disagreements (do) are two subgroups of chance disagree-
ments (dc), which is analogous to saying that “pandas and humans are two 
subgroups of men.”

This appears paradoxical because we thought, under a Grove-Riffe Sce-
nario that chance disagreement is a subgroup of observed disagreement. Nev-
ertheless, under the Guttman-Goodman Scenario and especially Assumption 
2, coders disagree (observed disagreement) when and only when marbles dis-
agree (chance disagreement). Therefore observed disagreement should be a 
subgroup of chance disagreement.

Unfortunately, the major chance-adjusted indices all share Equations 3, 
4, and 6 under the Guttman-Goodman Scenario, which we will call maxi-
mum-randomness equations. No index has been built under the Grove-Riffe 
Scenario.

Category-Based Indices

Accurately estimating chance agreement may be as important as properly 
removing it (Equations 3, 4, and 6). How to estimate chance agreement is 
where major indices differ. Guttman (1946), a pioneer in social psychology and 
social science methodology, calculated chance agreement (ac) as the inverse of 
the number of categories (K) available to the coders:

 =   (7)

Equation 7 assumes maximum randomness just as Equations 3 and 6 do. 
But this is a particular type of randomness: drawing randomly from marbles 
equally distributed among K colors, which correspond to K categories, each 
coder has 1/K probability of choosing one particular category; two coders have 
(1/K)*(1/K) probability of agreeing on the category. Multiplying this product 
by K categories, we see a probability of (1/K)* (1/K)*K=1/K that the two coders 
would agree by chance. This equation and the rationale are the foundation of 
the category-based indices discussed below.

Bennett et al.’s S and Six Equivalents

Bennett et al. (1954) recommended a reliability index, S:

 
= −   ( − ) 

 (8)

Equation 8 can be derived by inserting the right side of Equation 7 into 
Equation 3. In other words, S implies directly Equations 1, 3, and 7, and indi-
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rectly Equations 4 through 6. So, S assumes maximum randomness not only 
when chance agreement is removed (Equations 3 and 6), but also when chance 
agreement is calculated (Equations 7 and 8).

By removing chance agreement, S aims to avoid Assumption 1 and Paradox 
1. Nevertheless, by using Equations 3 and 6 to execute the removal, S adopts 
maximum-randomness and limited-honesty assumptions. Adding Equations 7 
and 8, S assumes the following Bennett Scenario for two coders:

 1. The coders place K sets of marbles into an urn, where K equals the num-
ber of coding categories. Each set has an equal number of marbles and 
has its own color. The coders agree on which color represents which 
category. Again, in this chapter “marble” refers to any physical or virtual 
element of equal probability, and “urn” refers to any real or conceptual 
collection of the elements.

 2. They take a target to be coded. Here target is anything under coding, 
such as an advertisement, a news story, or a patient.

 3. One coder draws a marble randomly from the urn, notes the marble’s 
color, and puts it back. The other coder does the same.

 4. If both draw the same color, each reports that the target belongs to the 
corresponding category according to the predetermined color-category 
pairings, without looking at the target. Only if they draw different colors 
would they code objectively, at which point they may honestly agree or 
disagree, and report accordingly. 

 5. The coders repeat Step 2 and the subsequent steps, and end the coding 
session when they have thus “coded” all targets.

Note that the Bennett Scenario is a special case of the broader Guttman-
Goodman Scenario discussed earlier. The Bennett Scenario reveals several 
additional assumptions of S:

  Basic Assumption 5: Categories equal marble colors.

There is an infi nite number of ways to be random. The coders could use 
any number of urns, any number of marbles, any number of marble colors, 
and choose any distribution pattern of the colors; they could draw with or 
without replacement; and they could decide on different color-category match-
ing. Each of these parameters may affect chance agreement. To estimate the 
chance agreement, S made several assumptions, one of which is that coders set 
the number of marble colors equal to the number of categories in the coding 
scheme. 

 Assumption 6: Equal number per color.

Coders put in the urn an equal number of marbles per color. 
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 Assumption 7: Drawing with replacement.

While maximizing random coding, coders draw marbles with replacement. 
All other chance-adjusted indices assume the same, except Krippendorff’s � 
(1970, 1980), which assumes drawing without replacement.

 Assumption 8: Color mismatch equals honesty.

Coders code honestly when marbles’ colors mismatch. Most of the chance-
adjusted indices assume the same, except Gwet’s AC1 (2008) and Goodman 
and Kruskal’s �r (1954), which we will discuss later.

 Basic Assumption 9: Categories reduce chance agreements.

Equation 7 assumes that category is the only parameter affecting chance 
agreement. Nothing else, including the distribution pattern of the cases coded, 
affects chance agreement. More categories mean less chance agreement. Two 
categories imply 50% chance agreement, while 10 categories imply 10% chance 
agreement. As categories approach infi nity, chance agreement approaches 0%. 
Accordingly, we say the indices sharing Equation 7 are category based. 

Bennett et al. (1954) compared S with ao and ac. They appeared to be aware 
that their chance agreements (Equation 7) were only hypothetical, so they used 
S only as convenient references complementing other information, including 
ao, ac, and K. Between the lines of Bennett et al. (1954), we do not sense that 
S is the only or better indicator of reliability, but instead one more piece of 
information added to the overall picture. This nuanced understanding is not 
often seen in the writings of some later authors of various indices of intercoder 
reliability. 

Since 1954, S has been independently reinvented at least six times. Some 
of the reinventions have minor variations or more restricted applications. They 
are usually based on different reasoning and always bear different labels: 
Guilford’s G (Guilford, 1961; Holley & Guilford, 1964), Maxwell’s RE (1977), 
Jason and Vegelius’s C (1979), Brennan and Prediger’s kn (1981), Byrt, Bishop, 
and Carlin’s PABAK (1993), and Potter and Levine-Donnerstein’s redefi ned Pi 
(1999).

Guttman’s �

About 8 years before Bennett et al. (1954), Guttman (1946) proposed the same 
Equation 8 and implied the same Equation 7. But Guttman calculates ao in a 
unique way:

 = +   ��  (9)
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Nl1 and Nl2 are, respectively, the mode frequency reported by each coder. 
Suppose on a binary scale Coder 1 reports 85 cases in Category 1 and 15 cases 
in Category 2, while Coder 2 reports 55 cases in Category 1 and 45 cases in 
Category 2, Nl1=85 and Nl2=55. When the right sides of Equations 7 and 9 
replace respectively ac and ao in Equation 3, Ri is Guttman’s �. By contrast, all 
other indices reviewed in this chapter use Equation 1 to calculate ao. Except for 
the calculation of ao, � is identical to S. So � shares all assumptions of S that 
have been discussed, and one paradox that will be discussed below. 

Guttman’s overriding concern appears to be keeping reliability scores 
between 0 and 1. Equation 9 achieves that objective, making Guttman’s � one 
of the few chance-adjusted indices that never fall below zero. A side effect is 
that Guttman’s ao only crudely approximates %-agreement, leading to the fol-
lowing assumption:

 Assumption 10: %-agreement needs to be approximated 
  but not calculated.

Mode is not %-agreement. But the two are correlated. When distributions 
are skewed at the same direction, for example, both coders report 90% posi-
tive, the more skewed is the distribution, the closer Guttman’s ao is toward 
%-agreement; when distributions are skewed at the opposite directions, the 
more skewed is the distribution, the farther away Guttman’s ao is from %-agree-
ment. At one extreme, if both coders report that 100% cases fall into the same 
category, %-agreement and Guttman’s ao are both 1. At the other extreme, 
when one coder reports 100% positive and another 100% negative, %-agree-
ment is 0% while Guttman’s ao is 1. If both coders report 50 & 50% distribu-
tions, Guttman’s ao is 0.5 while %-agreement can be anywhere between 0 and 
100%. As distributions are far more likely to skew at the same direction than 
opposite directions in actual coding, Guttman’s ao may be seen as a crude 
approximation of %-agreement.

But it is so crude that we hesitate to call Guttman’s ao an estimation of 
agreement. This may look more detrimental today as we now defi ne reliability 
in terms of agreement. So we are not surprised that � has rarely been used. 
Bennett et al. (1954) copied Equation 7 entirely from Guttman (1946) without 
mentioning �, and introduced S by changing only one thing, the calculation of 
ao. Scott (1955) cited S but not � while developing π. And it was π that served 
as an inspiration for Cohen’s � (1960) and Krippendorff’s � (1970). 

We also would not recommend �, as � has all the defects but not all the 
benefi ts of S.

Guttman (1946) was, however, the fi rst we know to introduce Equation 7, 
which implies Equations 3~6 that contain the basic concepts and premises for 
reliability calculation in the past six decades. Today, when researchers calcu-
late chance-adjusted reliability, few calculate �, yet almost all use Equations 
3~6, thereby adopt the assumptions behind.
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Perreault and Leigh’s Ir 

Hayes and Krippendorff (2007, p. 80) and Krippendorff (2004b, p. 417) con-
sidered Perreault and Leigh’s Ir (1989) a simple modifi cation of S. The modifi -
cation was to take the square root of S when S is zero or above, and otherwise 
defi ne reliability as zero:

 = √      ( ≥ )  (10a)

 =     ( < 0)  (10b)

The two equal each other at two key spots: Ir=1 when S=1, and Ir=0 when 
S=0. Everywhere else, Ir is larger than S, with the largest difference at S=-1 
and Ir=0, and the largest above-zero difference at S=0.5 and Ir≈0.71. So Ir is an 
elevated version of S, implying an interesting assumption:

 Assumption 11:  Reliability index needs to be elevated across  
  scale.

Perreault and Leigh’s Ir (1989) assumes that a reliability index needs to be 
elevated numerically across the scale, after adjusting for chance using Equa-
tion 3 or 6. The only other index that makes the same assumption is Benini’s �. 
Taking the square root of a 0~1 variable produces little change in the pattern 
of its behavior other than elevating it numerically. Consequently, Ir adopts all 
assumptions and paradoxes of S, one of which we discuss below. 

A Paradox Shared by Nine Category-Based Indices 

Users treat �, Ir, S and its six equivalents as general indicators for typical stud-
ies. As typical studies do not follow Assumptions 2~9, paradoxes arise. The 
shared equations (3~6) lead to shared Paradoxes 6~7, while Equation 7 leads 
to another classic paradox:

  Paradox 6: Empty Categories Increase Reliability.

Scott (1955) observed “given a two-category sex dimension and a Po (our ao) 
of 60 per cent, the S … would be 0.20. But a whimsical researcher might add 
two more categories, “hermaphrodite” and “indeterminate,” thereby increas-
ing S to 0.47, though the two additional categories are not used at all.” The 
same paradox can be replicated for Guttman’s � with identical numbers (ao=.6, 
� = .2 increased to � = .47), assuming each coder reports 60% for one gender 
and 40% for another. The same paradox also shows for Perreault and Leigh’s Ir, 
if we take the square roots of 0.2 and 0.47, which would approximate 0.45 and 
0.69 respectively. Now that we know the assumptions behind S, � and Ir, there 
are two ways to interpret Paradox 6:
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 1. The coding followed a Guttman Scenario in accordance to Assump-
tions 2~9. Assumption 5, which equates categories with marble colors, 
requires the coding in Paradox 6 be separated into two sessions. In the 
fi rst session the coders draw from two colors, while in the second they 
draw from four colors. With four colors, there are more chances of color 
mismatch, therefore more chances of honest coding, therefore higher 
reliability. There is no paradox if coders indeed coded this way.

 2. The coding followed a Grove-Riffe Scenario in accordance with the 
variable-random and complete-honesty assumptions. Coders did not 
use any urns or marbles to decide when to code honestly or randomly. 
Assumptions 2~9 have been violated; therefore S, �, or Ir should not have 
been calculated. Paradox 6 is not a real paradox. It is only the symptom 
of special-purpose indices applied beyond their boundaries.

Scott’s (1955) interpretation was: “The index (S) is based on the assumption 
that all categories in the dimension have equal probability of use 1/K by both 
coders. This is an unwarranted assumption for most behavioral and attitudinal 
research. Even though K categories may be available to the observers, the phe-
nomena being coded are likely to be distributed unevenly, and in many cases 
will cluster heavily in only two or three of them … S would appear to be an 
unsatisfactory measure of coding reliability” (pp. 321–322).

Scott was right to reject one assumption of S that “categories…have equal 
probability of use” which is implied in the categories-equal-colors and equal-
number-per-color assumptions. Scott however accepted, possibly unknow-
ingly, the more detrimental assumptions of S, namely maximum-randomness 
and limited-honesty. Consequently, while Scott’s π eliminates one symptom 
of S, it causes other symptoms that are arguably more problematic, which we 
will discuss below.

Distribution-Based Indices

The eight indices reviewed in this section all assume that distribution is the 
most important factor affecting chance agreement. They differ with each other 
in other details. 

Scott’s π and Two Equivalents, Revised � and BAK 

Of the chance-adjusted intercoder reliability indices, Scott’s π is second only to 
Cohen’s � (1960) in popularity. In Communication and Mass Media Complete 
(CMMC), citations for “Scott’s Pi” rose from 11 in 1994 to 61 in 2009, totaling 
597 for the period. It has been also recommended later under two different 
names, Siegel and Castellan’s Revised � (1988) and Byrt et al.’s BAK (1993). 
Because they are mathematically equivalent to each other, our discussions and 
fi ndings hereafter about π also apply to Revised � and BAK.

Like other major chance-adjusted indices, Scott’s π shares the same chance-
removing procedure (Equations 3, 4, and 6) while adopting its own chance-
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estimating procedure. For a binary scale, Scott (1955) estimates chance 
agreement (ac) using the average of two coders’ positive answers (Np) and the 
average of their negative answers (Nn):

 = +  � � � � �  �  �  �  (11)

 Here Np is from the two coders’ (1 and 2) positive decisions (Np1 & Np2): 

 = +
  (12)

And Nn is from the coders’ negative decisions (Nn1 & Nn2):

 = +  
  (13)

When the right side of Equation 11 is inserted into Equation 3, ri is Scott’s 
π. Like S, π assumes maximum randomness. Two coders draw with replace-
ment from the same urn of N marbles, Np black and Nn white. The probability 
of one coder getting black is Np/N, both getting black is (Np/N)* (Np/N), both 
getting white is (Nn/N)* (Nn/N). The probability of their agreeing through mar-
ble drawing is the sum of the two products, hence Equation 11.

Although Scott’s π accepts the categories-equal-colors assumption, it rejects 
the equal-number-per-color assumption, allowing the number of marbles for 
each color to vary between 0 and N. Hence it succeeds in excluding category 
(K) per se as a parameter and avoids the categories-increase-reliability para-
dox. By sharing Equations 3, 4 and, 6, however, π shares maximum-random-
ness and limited-honesty assumptions. Further, π adopts average distribution 
as a parameter (Equation 11), hence adopts more consequential assumptions:

 Basic Assumption 12: Conspired quota. 

To calculate chance agreement under the maximum randomness assump-
tion, we need to know the marble distribution. S assumes even distribution 
across all colors, making category a parameter. Scott’s π rejects this assump-
tion. So what is the distribution? No one knows, because marble drawing is 
only hypothetical. Even if marble drawing had happened, marble distribution 
can be anywhere between 0% & 100% and 100% & 0%. Scott’s π assumes 
that average of the “observed distributions” reported by the coders is also the 
marble distribution. That means that π mathematically equates marble distri-
bution with observed target distribution.

But there is no natural linkage between the two. Coders may draw from 
an urn of 40%  and 60% marbles while coding a pile of 90% and 10% com-
mercials. If the research is done reasonably well, its observed distribution 
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should be related to the targeted commercials but normally unrelated to the 
marbles. 

Under a Guttman-Goodman Scenario, marble distribution must be set 
before drawing, which has to take place before the coding that produces the 
observed distributions. There is only one way marble distributions could equal 
observed distributions regularly and precisely—if someone sets a quota that is 
accurately executed. While ordinary marble drawing contains sampling errors, 
Equation 11 leaves no room for error, implying that π assumes a strict quota—
the two coders execute the quota so faithfully that the average distribution they 
report is identical to the marble distribution in the urn. 

Equation 11 uses the average of two coders’ observed distributions, imply-
ing that the two coders set one quota, share one urn, and work together to 
deliver the quota, hence “conspired quota,” or “collectively strict quota.” 

To justify using observed distribution, it is often argued that the observed 
distribution is a reasonable estimate of the population distribution (Cohen, 
1960, p. 40; Krippendorff, 2004b, p. 418; Scott, 1955, p. 324). This reasoning 
mixed two populations, target population under study, such as news and ads, 
and marble population in the urn, from which coders hypothetically draw. 
Observed distribution can be a reasonable estimate of target distribution, but 
normally not a legitimate estimate of marble distribution.  

Equation 11 needs a marble distribution, and employs observed distribution 
as a surrogate. The equation does not need the distribution of the target popu-
lation. The sample-population linkage does not justify Equation 11 or π, while 
a conspired quota does. This also implies the following assumptions behind 
Scott’s π, which were later also adopted by �, �, and AC1:

 Assumption 13: Trinity distribution.

This is a group of three assumptions. (a) Observed sample distribution 
equals target population distribution; (b) observed sample distribution equals 
marble distribution; hence (c) target population distribution equals marble 
distribution. The fi rst assumption may fi nd support in probability theory 
assuming a probability sample. The latter two are inventions implied in π, 
which cannot be justifi ed by probability theory or empirical evidences.  

Gwet (2010) commented: “Scott’s π is…very sensitive to trait prevalence” 
(p. 40). This is because distribution (prevalence) is a main factor in π, even 
though the index is supposed to measure agreement but not prevalence. We 
will discuss later that distribution also affects Gwet’s AC1, although inversely. 

By sharing maximum-randomness equations (3, 4, and 6), π also shares 
the underlying assumptions of maximum-randomness and limited-honesty 
(2 and 3). By adopting Equation 11, π also shares replacement-drawing 
and mismatch-equals-honesty assumptions (7 & 8), and three additional 
assumptions below:
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 Assumption 14: Constrained task

A study is not to investigate how many targets are in what category, which 
has been predecided by the quotas, but to place targets into appropriate cat-
egories under the quotas.

 Assumption 15: Predetermined distribution.

Executing a quota implies that distribution is determined before coding. 
Therefore the observed distribution must remain unchanged within a study 
when the coders improve their work, as their “work” is not to assess distribu-
tion between categories.

 Assumption 16: Quota and distribution affect chance
  agreement.

Chance agreement ac is a function of marble distributions, which is pre-
determined by the quotas. This assumption is implied in the maximum-ran-
domness and conspired-quota assumptions. If all marbles in the urn are of one 
color, the coders have no chance to code honestly; they have to agree all the 
time, by chance. If the marbles are 50% black and 50% white, the coders have 
a 50% chance of agreeing randomly and 50% chance coding honestly.

As quota determines both observed distribution and chance agreement, the 
latter two also correlate with each other. Table 19.3 displays Scott’s chance 
agreement as a function of observed distributions. According to Equations 3 
and 6, chance agreement ac is a bar that %-agreement must pass to produce a 
positive index, and pass by margins to produce a good-looking index. Higher 
ac means a higher bar and lower looking reliability. So an important pattern 
emerged: a more skewed observed distribution produces a higher bar, which 
produces a lower π. 

These assumptions, as summarized in Table 19.4, portray the following 
Scott Scenario for a binary scale, which is another case of the broader Gutt-
man-Goodman Scenario:

 1. Two coders set a quota for the black and white marbles, and fi ll the urn 
accordingly. They also agree on which color represents positive and 
which negative. We will assume black-positive and white-negative pair-
ings hereafter.

 2. They take a target to be coded. 
 3. One coder draws a marble randomly from the urn, notes the marble’s 

color, and puts it back. The other coder does the same. 
 4. If both draw black, each reports positive; if both draw white, each reports 

negative; in either case they do not look at the target being coded. Only 
if one draws a black and the other draws a white would they code objec-
tively, at which point they may honestly agree or disagree, and report 
accordingly.
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 5. The two coders calculate the average of positive cases and the average of 
negative cases they have reported. If one average reaches the quota, they 
stop drawing, report the remaining targets according to the quota, then 
end the coding session. If neither average reaches the quota, they repeat 
Step 2 and the subsequent steps. 

The Scott Assumptions (2~4, 7, 8, 12~16), as illustrated in the Scott Sce-
nario, constitute the boundaries beyond which Scott’s π should normally not 
be used. Scott’s π, however, has been used as a general indicator of reliability 
for typical coding. As typical coding is closer to a Grove-Riffe Scenario than a 
Scott Scenario, paradoxes and abnormalities arise, which we will discuss after 
analyzing two closely related indices, � and �. 

Cohen’s � and an Equivalent, A2

Cohen’s � (1960) has been the most often used chance-adjusted index of reli-
ability. In Social Sciences Citation Index (SSCI), Cohen (1960) was cited 203 
times in 1994 and 306 times in 2010, totaling 3,624 during the period. Rogot 
and Goldberg (1966) proposed A2, which Fleiss (1975) pointed out is equiva-
lent to �; so all our discussion about � also applies to A2.

Cohen (1960) disagreed with Scott’s estimation of chance agreement, ac, 
arguing: “(Scott) assumes…the distribution…is…equal for the judges …
(which) may be questioned” (pp. 40–41) because  “the judges operate indepen-
dently” (p. 38). So he replaced two coders’ average positive (Np) and negative 
answers (Nn) in Equation 11 with each coder’s (1 and 2) individual positive (Np1 
& Np2) and negative (Nn1 & Nn2) answers:

 = +  � � � �� � � �  (14)

When the right side of Equation 14 is inserted into Equation 3, ri is Cohen’s 
�. Cohen (1960) agreed with Scott (1955) on one important point: “the distri-
bution of proportions over the categories for the population is known.” Here, 
like Scott (1955), Cohen (1960) conceptually mixed the target population with 
the marble population, treating the two as one. He injected into � the observed 
distribution as if it was the marble distribution, but justifi ed the injection in 
terms of the target distribution. In other words, � shares the trinity distribution 
assumption, making distribution a major parameter like π does. Consequently, 
� adopts a quota assumption similar to π’s, and �  behaves quite similarly to 
π. By adopting maximum-randomness equations (3, 4, and 6), � also shares 
maximum-randomness and limited-honesty assumptions with S and π. The 
only difference among them is how to estimate chance agreement ac, and the 
only difference between π and � is how to set and execute the quota. While 
π assumes that two coders set one quota, and work together to execute it, � 
assumes differently: 
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 Basic Assumption 17:   Individual quotas.

Cohen’s � uses observed individual distributions, implying that each coder 
sets his own quota, places marbles accordingly into his own urn, and works 
individually to assure that the distribution he reports meets his own quota, 
hence “individual quotas.” 

Cohen (1960, Table 1) adapted “agreement matrix of proportions” from the 
�2 procedure to justify and explain �. While �2 multiplies margins of an asso-
ciation matrix to calculate the probabilities expected under the no-association 
hypothesis, Cohen’s � (1960, p. 38) multiplies margins of an agreement matrix 
to calculate ac. 

There is, however, a crucial difference between the two matrices, as we 
alluded to in the Overview at the beginning of this chapter. The variables of 
an association matrix, such as race and locale, may be independent of each 
other, while the variables of an agreement matrix are coders’ observations of 
the same targets, and hence normally cannot be independent of each other. 
By multiplying the distributions of race and locale, �2 assumes that each is 
independent. Likewise, by multiplying individual distributions of the coder 
observations, � assumes that each is independent. If each is independent, they 
cannot come from objective observations of the same targets. We have to fi nd 
another source to justify the presumed independence, which we found in two 
independently predetermined quotas. This analysis does not apply to π, � or 
AC1, each of which uses average rather than individual distributions, hence 
assumes a conspired rather than individual quota.

Table 19.5 for Cohen’s ac is to be compared with Table 19.3 for Scott’s ac. 
The comparison reveals that Cohen’s ac is usually lower and never higher 
than Scott’s ac, which means that � is usually higher and never lower than 
π. The most striking difference occurs when the two observed distributions 
are skewed in the opposite directions, where Cohen’s ac approaches 0%, while 
Scott’s ac approaches 50%.

Feinstein and Cicchetti (1990) observed “The reasoning (of �) makes the 
assumption that each observer has a relatively fi xed probability of making 
positive or negative responses. The assumption does not seem appropriate, 
however for most clinical observers. If unbiased, the observers will usually 
respond to whatever is presented in each particular instance of challenge” (p. 
548). “Fixed probability” is quota. Feinstein and Cicchetti (1990) recognized 
�’s individual quota assumption more than 20 years ago without naming it so. 
As discussed earlier it is a strict quota, not “relative.”  

The Cohen Assumptions (2~4, 7, 8, 14~17), which are also summarized in 
Table 19.4, portray the following Cohen Scenario, which is another special 
case of the Guttman-Goodman Scenario: 

 1. Each coder sets a quota for the black and white marbles, and fi lls his or 
her urn accordingly. 

 2. They take a target to be coded. 
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 3. One coder draws a marble randomly from his urn, notes the marble’s 
color, and puts it back. The other coder does the same from her urn. 

 4. If both draw black, each reports positive; if both draw white, each reports 
negative; in either case they do not look at the target being coded. Only 
if one draws a black and another draws a white would they code objec-
tively, at which point they may honestly agree or disagree, and report 
accordingly.

 5. Each coder calculates the positive and negative cases that he or she has 
reported. If either reaches the quota, he or she stops drawing, reports the 
remaining targets according to the quota, then ends the coding. If neither 
reaches the quota, he or she repeats Step 2 and the subsequent steps.

If a study conforms to the Cohen Scenario and Cohen Assumptions, � 
would be an appropriate index of intercoder reliability, otherwise � would be 
inappropriate. When � is applied in violation of the Scenario and the assump-
tions, paradoxes arise, which � shares with π and Krippendorff’s �. We will 
discuss these paradoxes after analyzing �.

Krippendorff’s �

Krippendorff’s � (1970, 1980) may not be as often cited as Scott’s π or Cohen’s 
�. But it is among the most often recommended (Hayes & Krippendorff, 
2007; Krippendorff, 2004b). Like Scott (1955) and Cohen (1960), Krippen-
dorff (1980) also adopted Equations 3, 4, and 6. But Krippendorff believed 
that Cohen made a mistake by using individual distributions, and Scott made 
a mistake by assuming marble drawing with replacement, which fails to cor-
rect for sample size (cf. Krippendorff, 2004b). So Krippendorff’s estimation 
for chance agreement retains Scott’s average distributions but assumes no 
replacement: 

 = � � � −− � + � � � −− �  (15)

In Equation 11, Scott gave the fi rst and second drawing the same probabil-
ity, assuming replacement. In Equation 15, Krippendorff subtracted one for the 
second drawing, assuming no replacement. With two coders, this is the only 
mathematical difference between � and π. When the sample gets larger, the 
relative impact of subtracting one gets smaller, Krippendorff’s ac approaches 
Scott’s ac, and � approaches π. This can be seen by comparing Table 19.6 with 
Table 19.3. When the sample is smaller than 50, however, Krippendorff’s ac 
can be noticeably smaller than Scott’s. Table 19.7 shows Krippendorff’s ac as 
a function of target sample. 

When the right side of Equation 15 is inserted into Equation 3, ri is Krip-
pendorff’s �.

By adopting the maximum-randomness equations (3, 4, and 6), Krippen-
dorff’s � adopts the maximum-randomness and limited-honesty assumptions 
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(2 and 3) and other related assumptions summarized in Table 19.4. By retain-
ing average distribution (Equation 15), � also adopts Scott’s assumptions of 
conspired quota (12) and trinity distributions (13). To reject the replacement 
assumption (7), however, � adds several unique assumptions.

 Basic Assumption 18: Drawing without replacement. 

All other chance-adjusted indices assume drawing with replacement. Krip-
pendorff’s � (1970, 1980) is the only one that assumes no replacement, which 
implies other unique assumptions explained below. 

 Assumption 19: Trinity size. 

When drawing without replacement, the size of the marble population, Nm, 
becomes important. Assuming half black and half white, if two coders draw 
from an urn containing only two marbles (Nm=2), the probability of getting 
the same color is zero; if Nm rises to four, the probability rises to nearly 0.167; 
if Nm rises further, the probability rises further; if Nm approaches infi nity, the 
probability approaches 0.5. We need Nm to calculate Krippendorff’s ac and �. 
But Nm is usually not known. Under a Grove-Riffe Scenario, coders don’t draw 
marbles to determine which cases to be coded randomly or honestly. Even 
if they do, Nm could be anything above zero. Krippendorff’s � assumes each 
coder puts one marble in the urn for each target; so, with two coders, Nm is 
twice the target sample, N:

 =   (16)

Krippendorff’s � also assumes all marbles in the urn are drawn, so marble 
population equals marble sample. Therefore a trinity-size assumption: marble 
sample and marble population equal each other, and each doubles the target 
sample. 

Krippendorff (1970, 1980, 2004a) argues that the nonreplacement assump-
tion “corrects for” sample sizes. But which sample—target or marble? Krip-
pendorff’s nonreplacement argument would make sense if he means targets; 
that is, coders do not put every news story or advertisement back for recoding. 
Krippendorff’s calculation in Equation 15 would make sense if he means mar-
bles; that is, if coders indeed draw marbles without replacement, the subtrac-
tion by one would be necessary. But normally the argument does not justify the 
calculation because normally the targets and marbles are not linked. Coders 
may code targets with no replacement while drawing marbles with replace-
ment; under a Grove-Riffe Scenario, coders code targets without fi rst drawing 
marbles. To justify the calculation, � needs a special link between marble size 
and target size. Trinity-size assumption provides that link, by requiring that 
coders set the number of marbles according to the size of the target sample. 
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Also, mathematically Equation 15 needs marble population, not target 
sample that the equation actually uses, or marble (die) sample that Krippen-
dorff could be referring to. The trinity-size assumption also closes this gap, by 
making the three essentially one. 

The trinity-distribution assumption (13) also links marbles to targets. But 
the trinity-distribution assumption is shared by �, π, �, and AC1, while the 
trinity-size assumption is unique to �. AC1, π or � makes no assumption about 
the size of a population or sample, of marbles or targets, as their replacement 
assumption makes size irrelevant. 

 Assumption 20: Predetermined target size.

Krippendorff’s � assumes that the sizes of marble population, marble sam-
ple, and target sample are decided before a study and remain unchanged within 
the study. To test and improve their protocol, content researchers sometimes 
expand target samples in the middle of a study. For example, a researcher may 
test her protocol on a sample of 20 targets, calculate reliability, and then apply 
the protocol to 80 additional targets and calculate the reliability for the 100 tar-
gets combined. Krippendorff’s � assumes such adjustment of sample size can 
never happen within a study. Instead, � assumes the coders treat the 20 cases 
and the 100 cases as two separate studies, meaning (a) the coders draw from 
40 marbles to code the 20 cases, and (b) the coders draw from 200 marbles 
to code the 100 cases, including recoding the 20 cases already coded. When 
� is applied to situations where coders expand their sample without drawing 
marbles, abnormalities arise, which we will show below.

Other indices like S, π, � and AC1, all assume replacement, so they do not 
assume a fi xed Nm or N within a study. If two coders draw from an equal num-
ber of black and white marbles with replacement, the probability of getting the 
same color is 50% regardless of Nm or N. 

 Assumption 21: Larger samples increase chance agreements.

It is often said that � is superior to π and all other indices in part because 
“� … is corrected for small sample sizes” (Krippendorff, 2004a, p. 250). This 
is appealing, as we are accustomed to statistical indicators that reward larger 
samples. For example, everything else being equal, statistical signifi cance is 
more likely with a larger sample of respondents, and Cronbach’s alpha is larger 
with a larger sample of measures.

Krippendorff’s “correction,” however, does the opposite. It systematically 
rewards smaller samples. As shown in Table 19.7, everything else being equal, 
a smaller sample produces a smaller ac, hence a higher �. This is a conse-
quence of the trinity-size and nonreplacement assumptions (18, 19): a smaller 
target sample means a smaller marble population, which means lower ac and 
higher �.

In typical studies under a Grove-Riffe Scenario, such a correction is not 
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needed for marble sample or target sample, because marbles were actually not 
drawn to determine when to code randomly or honestly, and targets were not 
drawn for deliberate random coding. As the correction is not needed, � is not 
needed. When � is applied in such a study, sample-size related paradoxes arise, 
which we will discuss shortly. 

Equations 3, 4, 6, and 15 constitute Krippendorff’s � for binary scale with 
two coders. With multiple coders and multiple categories, Krippendorff’s 
� takes more complex forms (Hayes & Krippendorff, 2007; Krippendorff 
2004a, 2004b). While the above analysis uses binary scales with two coders, 
these boundaries also apply to more categories and more coders.

The 13 Krippendorff Assumptions (2~4, 8, 12~16, 18~21), again summa-
rized in Table 19.4, portray the following Krippendorff Scenario, which is 
another case of the broader Guttman-Goodman Scenario: 

 1. Two coders set a quota for the black and white marbles. They also set 
the number of marbles to be twice the target sample. They fi ll the urn 
accordingly. 

 2. They take a target to be coded.  
 3. One coder draws a marble randomly from the urn, notes the marble’s 

color, and puts it aside without placing it back into the urn. The other 
coder does the same from the same urn.

 4. If both draw black, each reports positive; if both draw white, each reports 
negative; in either case they do not look at the target being coded. Only 
if one draws a black and the other draws a white would they code the 
target objectively, at which point they may honestly agree or disagree, 
and report accordingly.

 5. The two coders calculate the average of positive cases and the average 
of negative cases they’ve reported. If one of the two averages reaches the 
predetermined quota, they report the remaining targets according to the 
quota, and end the coding session. If neither average reaches the quota, 
they repeat Step 2 and the subsequent steps. 

When � is applied beyond the boundaries defi ned by the assumptions and 
illustrated in the Scenario, it creates abnormalities and paradoxes. Here we 
discuss three that are unique for �:

 Paradox 7: Punishing larger sample and replicability.

Suppose two coders code 40 online news stories to see if they were com-
mentaries in disguise. With N=40, they generate 20 positive agreements, 10 
negative agreements, and 10 disagreements. This means a 62.5% & 37.5% dis-
tribution, ao=75%, and Krippendorff’s � = 0.4733, which may appear improv-
able given the relatively small N. Suppose the researcher expands the target 
sample 10 fold by coding 360 more stories. For the 400 targets combined, the 
coders produce 200 positive agreements, 100 negative agreements, and 100 
disagreements, replicating the 62.5% & 37.5% distribution and 75% ao. The 
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only difference is Krippendorff’s �, which is decreased to 0.4673. It’s not a 
huge decrease. But for 10 times as much work of the same quality and the same 
agreement rate, we would not have expected any decrease. 

This unexpected phenomenon will appear more dramatic if N is smaller. 
Suppose the coders take four stories out of their original 40, including two 
positive agreements, one negative agreement, and one disagreement. With the 
same distribution and the same agreement rate but a dramatically smaller N, 
one would not expect any improvement in the reliability score. Instead, Krip-
pendorff’s � improves to 0.5333, which is a 12.68% increase for one tenth of 
the work of the same quality. While calculating reliability on four items is not 
a good practice, � rewards it with a higher reliability score.  

When the decrease in � caused by an increased N is large enough, it could 
offset or even overcome an increase in ao, producing a “larger sample, higher 
agreement, but lower �.” Suppose the researcher expands N from 4 to 1,000, 
producing 501 positive agreements, 251 negative agreements, and 248 dis-
agreements. This would produce a much larger N and a slightly improved ao 
(from 75.0% to 75.2%) while the distribution remains unchanged. Yet � still 
decreases, from 0.5333 to 0.4712. This phenomenon is limited to situations 
when the increase in ao is small relative to the larger increase in sample size, 
and the resulted drop in � is usually not large. It however adds another dimen-
sion to the paradox.

Reliability is often understood as replicability. But in these cases � punishes 
replicability. The same phenomena do not exist for π, � or other major indices, 
none of which is affected by N. In the three examples of N=4, 40, or 400, the 
other indices all remain the same. They report larger reliability in the example 
of N=1,000, because ao is higher.

Two examples from Krippendorff (1980, pp. 133–135; 2007, pp. 2–3) can 
be adapted to illustrate the same phenomenon. Both have N = 10, distribution 
70% and 30%, ao = 0.6 and � = 0.09524. If N increases to 100 while distribution 
and ao remain the same, one might expect � to improve or at least remain the 
same, but instead, � drops to 0.05238.

We found this paradoxical because we assumed normal studies in which 
researchers pretest 10 cases, calculate reliability, add 90, and test reliability 
again, all in full honesty. In this Grove-Riffe Scenario, more of the same qual-
ity deserves no punishments, and more of the better quality deserves rewards. 
Krippendorff’s �, however, assumes that coders maximize random coding by 
drawing marbles without replacement. They don’t simply “add cases.” Instead 
they draw from 10 marbles each to code the 10 messages, then draw from 100 
marbles each to code the 100 messages, including redrawing to recode the 
10. More coding means more marbles, which mean more chance agreements, 
which have to be punished. 

These phenomena are not isolated. They are a part of the paradoxical pat-
tern of Krippendorff’s ac. Table 19.7 shows that Krippendorff’s ac is positively 
correlated with N: larger N leads to higher ac, at any level of distribution! 
Higher ac means lower reliability. Under a Grove-Riffe Scenario, larger N 
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means more cases coded hence higher replicability, which Krippendorff’s � 
punishes systematically. When we see a larger N, we see more honest coding, 
for which the bar should not be raised. But when � sees a larger N, it sees more 
marbles drawn, hence more chance agreements, hence a raised bar. 

 Paradox 8: Purely random guessing can be somewhat  
  reliable.

Suppose two coders coded four television stories to see if they contain sub-
liminal advertisements. The task was so diffi cult that the coders end up guess-
ing randomly. As probability theory would predict, each of them reported two 
positives, two negatives, with a 50% agreement rate (ao = .5, N = 4), as if they 
had fl ipped four coins each. As one might expect, most of the reliability indi-
cators, including Scott’s π and Cohen’s �, are exactly 0.00. Krippendorff’s �, 
however, stands out at 0.125. It’s a tiny sample and it is not a spectacular �. But 
why is it not zero?

In Krippendorff’s �, only “drawing with quota and without replacement” 
qualifi es as random (Assumptions 4, 12, and 18). Random guessing or fl ipping 
coins does not qualify, because neither allows quota and both have replace-
ment. Guessing with coins generated more agreement than drawing with quota 
without replacement. We attribute the difference to “another kind of random-
ness,” and do not believe it deserves a higher reliability score. Krippendorff’s 
� attributes the difference to honest coding, and rewards it with a higher �.

 Paradox 9: Random guessing may be more reliable than  
  honest coding.

Extending the above example, this � = 0.125, from ao = .5, N = 4, from 
totally random guessing, is better than � = 0.095 from two Krippendorff 
examples, each having ao = 0.6, N = 10, from totally honest coding (Krippen-
dorff, 1980, pp. 133–135; 2007, pp. 2-3). So, according to �, more agreement 
from an objective process can be less reliable than less agreement from a 
random process. There are two reasons for this phenomenon. First, � assumes 
some of our random guessing is honest coding. Second, Krippendorff’s exam-
ples have a larger N (10) than our coin fl ipping (4), and � assumes that larger 
N generates more chance agreements, which have to be “corrected for,” mean-
ing punished. 

Paradoxes 7~9 offer some evidences that Krippendorff’s � should not be 
used beyond the highly restrictive boundaries defi ned by the Krippendorff 
Scenario and the Krippendorff Assumptions. 

Paradoxes and Abnormalities Shared by π, �, � and Equivalents

Paradoxes are unexpected qualitative features of an index that seem to defy 
logic or intuition. There are also unexpected numerical outcomes of an index 
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when it is used in typical research, which we will call abnormalities. Paradoxes 
and abnormalities are closely linked, we will number them consecutively. The 
purpose of the discussion is to further illustrate the assumptions. 

In addition to its unique sample-size-related paradoxes, � shares paradoxes 
2~5 with all other chance-adjusted indices. Further, π, � and � also share a few 
of their own paradoxes and abnormalities, which we discuss below. 

We will fi rst discuss three abnormalities that have been better known for �. 
We will show that π and � suffer from the same abnormalities. We will then 
discuss other abnormalities and paradoxes not yet in the literature. As noted 
earlier, all fi ndings about π also apply to Siegel and Castellan’s Revised � 
(1988) and Byrt’s et al.’s BAK (1993), and fi ndings about � also apply to Rogot 
and Goldberg’s A2.

 Abnormality 10: High agreement, low reliability.

Feinstein and Cicchetti (1990) called this a paradox for Cohen’s � (1960). 
Lombard et al. (2002) and Krippendorff (2004b, p. 426) debated over the 
same phenomenon for � and π. Here is a more dramatic example. Suppose two 
coders code 1,000 magazine advertisements for cigarettes in the United States, 
to see whether the Surgeon General’s warning has been inserted. Suppose each 
coder fi nds 999 “yes” and one “no,” with 998 positive agreements and two 
disagreements, generating a 99.8% agreement rate. But π, �, and � are all below 
zero (-.001 or -.0005). Zero indicates a totally unreliable instrument. Given the 
near-perfect agreement, it’s diffi cult to understand why the instrument is that 
bad.   

Some au thors found this paradoxical because they assumed the coders 
code honestly. The three indices, however, assume that all observed agreement 
(ao=99.8%) is due to chance because each coder draws from 999 or 998 black 
marbles and one or two white marbles. The marbles show different colors only 
twice, which are the only opportunities for honest coding (Assumption 8). The 
coders disagrees both times, hence the low π, �, and �. 

 Abnormality 11: Undefi ned reliability.

When two coders agree that the distribution of one category is 100% and 
another is 0%, π, �, and � is undefi ned. 0% and 100% and 100% and 0% are 
the two ends of all possible distributions, like the two ends of a ruler that defi ne 
its length and scope. If a ruler is completely broken at both ends, it is probably 
not accurate in between. 

Many found this paradoxical because we expected perfect agreement to be 
credited with a decent reliability score, and because we believed some agree-
ments must be honest, no matter how skewed a distribution is. But π, �, and 
� assume that a 0% and 100% target distribution means that all marbles are 
of one color, hence there is no chance for color mismatch and honest coding, 
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hence  π, �, and � should not be calculated. In de fense of the undefi ned π and 
�, Krippendorff (2004b) explained: 

Such data can be obtained by broken instruments or by coders who fell 
asleep or agreed in advance of the coding effort to make their task easy.… 
appropriate indices of reliability cannot stop at measuring agreement but 
must infer the reproducibility of a population of data; one cannot talk 
about reproducibility without evidence that it could be otherwise. When 
all coders use only one category, there is no variation and hence no evi-
dence of reliability. (p. 425)

To those who assume coders intend to be honest, the explanation is still 
puzzling. Suppose 100% of the target population of magazine ads under study 
had the Surgeon General’s warning. Suppose coders agreed that 100% of the 
target sample had the warning. Suppose there was no broken instrument, no 
falling asleep or agreeing in advance, but only honest and diligent coding, 
as evidenced in the perfect agreements between the coders, and between the 
sample and the population. Why is this not an “evidence” that reliability is 
good, or at least calculable?

Now that we know π, �, and � is to be used only under assumptions of 
strict quota, maximum randomness, and trinity distribution within the Gutt-
man-Goodman Scenario, Krippendorff’s (2004b, p. 425) explanation could be 
sensible, if we think of his “population” as “marble population.” Under strict-
quota and trinity-distribution assumptions, zero variation in the observed 
targets is evidence for zero variation in the marbles. Coders are assumed to 
“agree in advance” to make the marbles all one color, and to code honestly only 
when the marbles mismatch. There is no chance for color mismatch, hence no 
chance for honest coding, hence no “evidence that it (the observation) could 
be otherwise.… [H]ence no evidence of reliability.” Krippendorff’s defense in 
effect provides support for our observation that π, �, and � assume maximum 
randomness, strict quota, and trinity distribution.

 Abnormality 12: Zero change in ao causing radical drop in  
  reliability.

These indices are supposed to measure agreement. Feinstein and Cicchetti 
(1990) argued that Cohen’s � should rise and fall with agreement rate, ao. So 
should all other reliability indices. Kraemer (1979) pointed out that, with no 
change in ao, � changes with “base rate,” which we call “distribution.” Uneven 
distribution generates lower � than even distribution. Grove et al. (1981) and 
Spitznagel and Helzer (1985) called it the “base rate problem” for �. Feinstein 
and Cicchetti (1990) called it a paradox for �. It is not as widely known that π 
and � can produce the same abnormality. 

Here is a stronger example for all three indices. Revising Abnormality 10, 
suppose two coders initially agree on 998 “yes” and one “no,” plus one dis-
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agreement, producing ao=99.9%, π=.6662, and �=.6662, �=.6663. Suppose 
both coders fl ip an erroneous negative decision, resulting in 999 agreed posi-
tives and one disagreement, and increasing the average of the positives from 
99.85% to 99.95%. While ao remains 99.9%, π, �, and � each drops from .666 
to .0000 or -.0005, which covers two thirds of the distance between “perfectly 
reliable” and “totally unreliable.”

This happens because the coders code honestly without quota, violating π, �, 
and �’s strict quota assumption. Distributions changed as the coders improved 
their work, violating the predetermined-distribution assumption. The violation 
of the same two assumptions also causes the next four abnormalities (13–16).

 Abnormality 13: Eliminating disagreements doesn’t improve  
  reliability.

Extending Abnormality 10: Suppose one coder fi nds his only negative fi nd-
ing erroneous and fl ips, reducing disagreements by half, and increasing agree-
ments to 99.9%: One might expect π, �, and � to improve half way toward 1, to 
be around 0.5. Instead, � and � barely move, to be 0, and π remains negative, at 
-.0005. Suppose the other coder also fl ips his only negative fi nding, improving 
agreement to 100%. One might expect π, �, and � jump to 1. Instead, none of 
the three can be calculated, repeating Abnormality 11. 

 Abnormality 14: Tiny rise in ao causing radical rise in reliability.

Again starting from Abnormality 10, with 998 agreements on “yes,” sup-
pose one coder fl ips his positive decision in one of the two disagreements. Now 
disagreements decrease to one and agreements increase to 999. ao improves 
slightly from 99.8% to 99.9%. Given what we have seen in Abnormality 13, 
one might expect the three indices to change little. Instead, π and � jump from 
–.001 to .6662, while � jumps from -.0005 to .6663, each covering two-thirds 
of the distance between “totally unreliable” and “perfectly reliable.”

 Abnormality 15: Rise in ao causing radical drop in reliability.

Suppose two coders initially had two disagreements and 998 agreements, 
with 997 positive and one negative, producing an ao = 99.8%, π = .499, � =. 
4993, and � = .4992. Suppose one coder fi nds all his three negative decisions 
erroneous, and fl ips each, resulted in 999 positive agreements and one 
disagreement. While ao increases to 99.9%, � and � drop drastically to 0, and 
π drops even more, to -.0005.

 Abnormality 16: Honest work as bad as coin fl ipping.

Suppose we show at normal speed 60 television segments, 50 of which con-
tain subliminal advertisements that are barely recognizable. One coder fi nds 
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the ads in all 60 segments, making 10 false alarms, while the other recognizes 
only 40, calling 10 false negatives. The 40 positive agreements and 20 dis-
agreements produce a 66.667% ao and an 83.333% average distribution, which 
matches the target distribution. While the instrument may seem adequate, 
especially considering the diffi cult task, π = –.2, � = 0, and � = –.2.

Now suppose we ask the coders to fl ip coins without looking at any televi-
sion segments. Their ao is expectedly 50%, 16.667% lower than honest cod-
ing. Their average distribution is also expected to be around 50%, 33.333% 
lower than the target distribution. This, however, produces π = 0, � =  0 and � 
=0.0083. So, honest coding that produces more accuracy and more agreement 
is no better or even worse than dishonest coding that produces less accuracy 
and agreement, according to π, �, and �.

This appeared puzzling because we assumed all of the 67% agreements 
were honest under a Grove-Riffe Scenario. But π and � presume the coders 
draw from 50 black and 10  marbles. Without a single glance at the targets, 
they should generate 72% agreement, much higher than the 67% they actually 
report, leading to a justifi able π = –.2 and � = –.2. 

Under the Cohen Scenario, � presumes one coder draws from 40 black and 
20 white while the other from 60 black and no white. Without a glance at the 
TV, they should obtain 67% agreements, implying that they have not produced 
any honest agreement. So � should be zero. 

 Paradox 17: Punishing Improved Coding.

Abnormality 15 is a case of improved coding causing a drastic drop in π, �, 
and �, from halfway reliable (0.5) to not at all reliable (0)!  Of all the symptoms 
of π, �, and �, this one may be among the most troublesome. Abnormality 12 
is another example. After the errors are corrected, π, �, and � drop even more 
drastically.  

 Paradox 18: Punishing agreement.

The three ac not only move signifi cantly, they also move to punish the good 
and reward the bad. Table 19.3 shows that, when one coder’s distribution Np2 /N 
is 100%, Scott’s ac is positively linked to the other coder’s distribution Np1/N; 
an increase in Np1/N brings it closer to Np2 /N, producing a higher agreement ao 
and a higher ac, which means a higher bar. The same pattern exists when Np1/N 
= 100%, Np2 /N = 0%, or Np1 /N = 0%. The maximum agreement at the lower 
left and upper right corners of Table 19.3 makes ac=100%, which is impossible 
to pass. As agreement rate decreases from either corner along any of the four 
sides, ac decreases at an averaged half rate, until maximum disagreement at the 
upper left or lower right corner where ac = 50%, which is the lowest possible 
bar in Scott’s π. 

Tables 19.6 and 19.7 show that when the sample is large enough Krippen-
dorff’s ac behaves almost exactly the same as Scott’s ac. Cohen’s ac behaves in 
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the same pattern, except the paradox is twice as dramatic: as ao decreases from 
either corner along any of the four sides of Table 19.5, ac decreases at the same 
(rather than half) rate, until it reaches maximum disagreement at the upper left 
or lower right corner where ac=0% (rather than 50%). Again, higher agreement 
brings a higher bar, and the lower agreement brings a lower bar. 

While the paradoxical pattern is strongest in the four sides encompassing 
Tables 19.3, 19.5, and 19.6, it also manifests itself inside although in less dra-
matic rates. The three indices are advertised as general indices of reliability, 
which is defi ned as agreement. Why do they systematically punish agreement 
and reward disagreement?

We found this paradoxical because we compared across different distribu-
tions, violating the quota and predetermined-distribution assumptions. Each of 
the three indices would reward higher agreement, but only within a predeter-
mined distribution decided by the quota(s). If the distribution changes, a dif-
ferent study including a different round of marble drawing is assumed. More 
skewed distribution in a different marble population produces higher chance 
agreement, hence less honest coding, which π, �, and � punish according to 
Assumption 16. 

 Paradox 19: Radically and erratically moving bar.

To highlight the dramatic paradoxes and abnormalities, the above examples 
used extremely uneven distributions, such as 99.8% & 0.2%. More even distri-
bution such as 60% and 40% would produce the same pattern, although less 
dramatic symptoms. Scott’s, Cohen’s, and Krippendorff’s chance agreements 
(ac) are all functions of distribution. Uneven distribution produces higher ac, 
which is the bar that ao must pass in order to produce an above-zero index. 
Both ac and ao have100% as the maximum: The closer is ac to100%, the less 
room above it, the less chance for a high index. When distribution reaches 0% 
or 100%, ac reaches 100%, leaving no chance for ao to pass ac, which is the 
technical reason why π, �, and � are all undefi ned there. 

Tables 19.3, 19.5, and 19.6 show how ac changes with two distributions. 
Chance agreement ac can reach as high as 100%, but it moves gradually with 
no gap or abrupt jump, starting from 0% (Cohen), 49.7% (Krippendorff when 
N=100), or 50% (Scott). This demonstrates that the undefi ned π, �, and � are 
not isolated incidents under extreme circumstances. They are symptoms of 
intrinsic defects of the three supposedly general indicators. The moving bars 
also explain why π, �, and � change with distribution. 

We found the phenomenon paradoxical because we didn’t think the bar, as a 
part of the general indicator for typical studies, should move with distribution. 
But π, �, and � are not general indicators. Each is to be used only when all of 
its assumptions are met. Under these assumptions, especially Assumptions 12, 
15, 16, and 17 the bar should move. 
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 Paradox 20: Circular logic.

The three indices are functions of coder’s observation of distribution, whose 
quality depends on the quality of the coding instrument. But that is the very 
instrument that the indices evaluate. The three indices depend on an instru-
ment’s reliability to assess the instrument’s reliability! We found this circular 
because we thought the reported distributions embedded in π, �, and � came 
from coders’ observations. We were wrong. The distributions came from pre-
determined quotas independent of the observations, according to Assumptions 
12, 14, 15, and 17. The logic would not be circular if coders behave under a 
Scott, Cohen, or Krippendorff Scenario.

These paradoxes and abnormalities show tha π, �, and � cannot be gen-
eral indicators of reliability. They might be useful within highly restrictive 
boundaries defi ned by various assumptions and scenarios, beyond which the 
paradoxes and abnormalities arise. 

Benini’s �

Nearly 60 years before Cohen (1960), Italian sociologist Benini (1901) designed 
a chance-estimating formula that is identical to Cohen’s Equation 14. Benini’s 
chance removing formula is also similar to Cohen’s (Equation 3), except it 
subtracts an extra npn– nnp from the denominator:

 = −− −∣ − ∣  (17)

Here npn is percent of cases Coder 1 judges as positive while Coder 2 judges 
as negative, and nnp is % of cases Coder 1 judges as negative while Coder 2 
judges as positive. They are two components of between-coder disagreements. 
If all disagreements are strictly random, npn=nnp, hence |npn-nnp|=0. So some 
may see |npn-nnp| as nonrandom disagreements.  

The denominator of Equation 3 is a reference scale. Benini’s � (Equation 
17) has a shorter reference scale than �, which means � tends to be higher 
than � across a scale when � is above zero. So Benini’s � is an elevated � in 
the important 0–1 range, like Ir is an elevated �. So � adopts all assumptions, 
paradoxes, and abnormalities of �, and adopts Assumption 8 of Ir.

Goodman and Kruskal’s �r

Goodman and Kruskal (1954) proposed an agreement index, �r, based on ac 
that behaves in some ways similarly to Cohen’s (1960): 

 = +  � �  (18)
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One may interpret Nl1 and Nl2 as, respectively, individual modal frequency 
reported by each coder. Suppose on a binary scale Coder 1 reports 85 cases 
in Category 1 and 15 cases in Category 2, while Coder 2 reports 45 cases in 
Category 1 and 55 cases in Category 2, Nl1=85, Nl2=55, and ac=(.85+.55)/2=0.7. 
Goodman and Kruskal’s �r shares Equations 1, 3, 4, and 6 with other chance-
adjusted indices. Replacing ac in Equation 3 with the right side of Equation 18, 
we have Goodman and Kruskal’s �r.

An alternative interpretation appears equally plausible, according to Fleiss 
(1975). (Nl1+Nl2)/2 may be the modal average frequency reported by two cod-
ers, which in the above example would instead produce an ac=(.85+.45)/2=.65. 
As Goodman and Kruskal did not provide a numerical example, we are 
unable to decide with certainty which interpretation they meant. The differ-
ences between the two interpretations would be analogous to the differences 
between � and π, one assuming individual behaviors while the other presum-
ing collective action. Given the limited space we will assume individual modal 
interpretation in the following discussion, and analyze the modal average 
interpretation in more details in a future study. 

As Nl1 and Nl2 are a part of two coders’ individual distributions, �r shares 
almost all assumptions and paradoxes we have discussed of Cohen’s �. Most 
notably, �r shares with � the individual quota assumption (17). Goodman and 
Kruskal (1954) were the fi rst we know to make Equation 3 explicit. Their �r 
also started the practice of sharing the chance-removing procedure while cre-
ating a unique chance-estimating formula.

Goodman and Kruskal’s �r makes a set of unique assumptions, which we 
will put under one title, “modal color assumption.” We analyze the assumption 
using � as a reference: 

 Basic Assumption 22:  Coders code randomly when they draw the
   modal color.

While � assumes that coders code randomly every time marbles’ colors 
match, �r assumes that coders code randomly some of the time when one or 
both coders draw a certain color. Specifi cally, �r assumes: (a) In addition to 
placing marbles into the urns according to individual quotas, each coder also 
notes which color has the largest number of marbles, which we call mode 
color,  in his or her urn. (b) The coders would code randomly every time both 
draw the modal color(s). (c) The coders would code randomly half the time 
when one draws his or her modal color but the other does not.

Equation 18 of �r uses addition to estimate chance agreement, while Equa-
tion 14 of � uses multiplication. Consequently, Goodman and Kruskal’s chance 
agreement is equal to or larger, often much larger, than Cohen’s, which can be 
seen by comparing Table 19.8 with Table 19.5. Further comparison of Table 
19.8 with Tables 19.3 and 19.6 and other estimates by other indices show 
that Goodman and Kruskal provide the highest estimation for chance agree-
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ment, which makes �r the most conservative estimation among the 22 indices 
reviewed in this chapter.

A Double-Based Index—Gwet’s AC1

Gwet’s (2008, 2010) theory about coder behavior differs from the stated theo-
ries behind all other indices reviewed in this chapter. Gwet separated diffi cult 
cases from easy cases, in a way that appears much closer to the Grove-Riffe 
Scenario than the Guttman-Goodman Scenario. By adopting Equations 3, 4, 
and 6, however, Gwet’s index, AC1, adopts the maximum randomness assump-
tion and the related paradoxes just like other chance-adjusted indices. Gwet’s 
chance-estimating formulas are unique. While all other chance-adjusted indi-
ces use either category or distribution to estimate chance agreement, AC1 uses 
both, hence “double-based.” For a binary scale with two coders, Gwet’s Equa-
tion 19 looks similar to Scott’s Equation 11, except it switches one positive 
distribution rate (Np/N) with a negative one (Nn/N):

 = +  � � � �� � � �  (19)

All chance-adjusted indices before Gwet assume coders code randomly 
when marbles match, and code honestly when marbles mismatch. Accord-
ingly, Scott’s Equation11 multiplies the positive rate by itself, and the negative 
rate by itself. In contrast, Gwet’s Equation 19 multiplies the positive rate by 
the negative rate, implying a unique assumption: coders code randomly when 
marbles mismatch, and code honestly when marbles match.

The multiplication is done twice because the mismatches include black-
white and white-black. A practical implication is that Gwet’s coders have 
to agree on which color of which coder represents which category when the 
marbles mismatch, in a similar fashion that Scott’s coders agree on which 
color represents which category when the marbles match. The choice of color-
category pairing does not affect probability calculation.

While Scott had extended Equation 11 to three or more categories, Gwet 
also needed to extend Equation 19. But Gwet could not do a simple extension 
like Scott had done. More categories mean more marble colors hence more 
mismatches, which mean more random coding under Gwet’s unique assump-
tion discussed above. A simple extension of Equation 19 would lead to intoler-
ably high ac and intolerably low AC1, especially when number of categories 
is large. To counter the effect, Gwet reintroduced categories (K) as a main 
parameter:

 = ( − ) ∗ −
=

 � ��  (20)
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In Equation 20, the part after the summation sign (�) is a simple extension 
of Equation 19 from two to K categories. Nq/N represents percent  of targets 
in the qth category while (N-Nq)/N represents percent of other targets. With a 
binary scale, Nq/N and (N-Nq)/N become respectively Np/N and Nn/N in Equa-
tion 19. The part before the summation sign is at least equally important. Mul-
tiplying by 1/(K-1) effectively lowers the estimated chance agreement, but it 
also implies another unique assumption:

 Basic Assumption 23: Double drawing.

While other chance-adjusted indices all assume one round of marble 
drawing in the fi rst stage of the two-stage coding (see “Overview of Chance-
Adjusted Indices” above), Gwet’s AC1 assumes two rounds of marble drawing 
from two urns during the fi rst stage. Two coders fi rst draw with replacement 
from the fi rst urn, which has K minus one colors and an equal number of 
marbles per color. If colors differ, they go to the second stage to code honestly. 
If the colors match, they draw with replacement from the second urn that has 
K colors and a distribution that equals the observed target distribution. Coders 
go to the second stage after this second drawing, and they code honestly if the 
colors match, and code by chance if the colors mismatch. This implies another 
unique assumption:

 Basic Assumption 24: Marble mismatch or double-match equals
  honesty.

Gwet’s AC1 assumes that color mismatch in the fi rst round or color matches 
in both rounds leads to honest coding, while color match in the fi rst round fol-
lowed by mismatch in the second round leads to chance coding. 

By adopting the maximum random equations and using average distribu-
tion as a parameter in Equations 19 and 20, Gwet’s AC1 adopts all of Scott’s 
assumptions except replacing Scott’s Assumption 8, which is about color mis-
match and honest coding, with Assumptions 23 and 24. 

The Gwet assumptions lead to the following Gwet Scenario, which is 
another case of the broader Guttman-Goodman Scenario, for two coders and 
K categories: 

 1. Two coders prepare two urns.
 2. They place marbles of (K-1) colors into the fi rst urn. Each color has an 

equal number of marbles. 
 3. They set a quota for the marble distribution in the second urn, and fi ll the 

second urn accordingly. They also agree on which color of which coder 
represents which category, which we will call color-category scheme.

 4. They take a target to be coded.
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 5. One coder draws a marble randomly from the fi rst urn, notes the mar-
ble’s color, and puts it back. The other coder does the same from the 
same urn. 

 6. If the two colors differ, each coder codes and reports objectively, then 
skips to Step 9. If the colors match, they go to the next step. 

 7. One coder draws a marble randomly from the second urn, notes the 
color, and puts it back. The other coder does the same from the same urn.

 8. If the two colors differ, each reports the results according to the pre-
determined color-category scheme, without looking at the target under 
coding. If the two colors match, each codes and reports objectively.

 9. The two coders calculate the averages of the positive and negative cases 
they’ve reported. If one of the two averages reaches the predetermined 
quota, they stop drawing, report the remaining targets according to the 
quota, and end all coding. If neither average reaches the quota, they 
repeat Step 4 and the subsequent steps. 

Which is right, one round or two rounds, color match or mismatch? If cod-
ers code as AC1 assumes they do, two rounds and mismatch-or-double-match 
make the right estimation for honest coding. If coders code like π, �, and � 
assume they do, one round and mismatch are right. But if coders code like the 
Grove-Riffe Scenario assumes they do, none of them is right.

With a binary scale, K-1=1, which means all marbles in the fi rst urn are 
of the same color, so the colors always match, and the coders always go to 
the second urn for the second drawing. So the mismatch-or-2-matches-equals-
honesty assumption can be simplifi ed as match-equals-honesty assumption, as 
we discovered while analyzing Equation 19 above. 

Comparing Table 19.9 with Table 19.3, we see that, with a binary scale, 
Gwet’s chance agreement is a mirror image of Scott’s, with the “mirror” posi-
tioned at the 50% and 50% distribution line. When each individual distribu-
tion is exactly 50% and 50%, Gwet’s ac is identical to Scott’s, because here 
the probabilities of color match and mismatch are equal. When average dis-
tribution deviates from 50% and 50%, Scott’s ac increases while Gwet’s ac 
decreases at the same rate. When distribution becomes more uneven, Scott’s 
ac continues to increase toward 100%, while Gwet’s ac continues to decrease 
toward 0%. As Krippendorff’s ac and Cohen’s ac behave in the same pattern 
as Scott’s, Gwet’s ac also behaves in opposite directions of Krippendorff’s or 
Cohen’s, as can be seen by comparing Table 19.9 with Table 19.6 or 19.5.

With a binary scale, Gwet’s ac assumes that color mismatch equals ran-
dom coding while Scott, Cohen and Krippendorff’s ac assume the opposite, 
and Bennett et al.’s ac is a constant at 0.5. So Gwet’s ac tends to be lower than 
the other four, hence Gwet’s AC1 tends to be higher than S, π, �, and �. One 
extreme is when distribution is 0% or 100%, where π, �, and � cannot be cal-
culated because they all assume 100% chance coding and 0% honest coding, 
while, in contrast, AC1 assumes 0% chance coding and 100% honest coding, 
producing a perfect AC1=1.
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There are a few exceptions to this general pattern. The fi rst exception is 
when individual distributions are 50% and 50% where Gwet’s ac and the other 
four all equal 0.5, assuming a large enough sample for �. With a large enough 
sample, Gwet’s ac also equals Scott’s and Krippendorff’s when average distri-
bution is 50% and 50%, even when individual distribution is not even. The sec-
ond exception is when N is very small, leading to very low ac by Krippendorff 
hence higher � than AC1. The third exception is when two coders give highly 
uneven distributions at the opposite directions, which could lead to very low ac 
by Cohen hence higher � than AC1. 

When categories increase to three, Bennett et al.’s ac is 1/3, while Gwet’s ac 
ranges from 0, when the coders report that all targets fall into one category, to 
(2/9+2/9+2/9)/2=1/3, when the targets distribute evenly into three categories. 
So Gwet’s ac is usually smaller and never larger than Bennett et al.’s ac, hence 
AC1 is usually larger and never smaller than S. As categories increase further, 
the margins of AC1 over S increase further. That means that AC1 is more liberal 
than S and the equivalents.

Comparing AC1 with Ir is more complicated.  With even distribution and 
ao=0.5, Ir may be higher than AC1. With uneven distribution and ao closer to 0 
or 1, AC1 may be higher than Ir. A simulation by Guangchao Charles Feng, a 
doctoral student at Hong Kong Baptist University School of Communication, 
shows Ir is more often higher than AC1, and the difference is statistically sig-
nifi cant (Zhao, Deng, Feng, Zhu, & Chan, 2012).

Low estimate of ac means that AC1 assumes less chance agreement and 
more honest coding. So even though AC1 still assumes maximum randomness, 
its specifi c type of randomness is closer to complete honesty under a Grove-
Riffe Scenario. Consequently, even though AC1 shares most of its assumptions 
with π, �, and � (see Table 19.4), AC1 does not generate as many or as dramatic 
paradoxes or abnormalities (see Table 19.10) when used under a Grove-Riffe 
Scenario. 

But there are still paradoxes and abnormalities. Most notably, by reintro-
ducing category as a major parameter, AC1 brought back the classic paradox 
that Scott (1955), Cohen (1960) and Krippendorff (1970) worked hard to avoid, 
which is that empty categories increase reliability. In Scott’s example (see 
Paradox 6) that originally had “male” and “female,” by adding “hermaphro-
dite” and “indeterminant,” S increases from .2 to .47, while AC1 increases from 
.2 to .52. The larger increase means an even more dramatic paradox. Gwet’s 
AC1 also shares Paradoxes 2~5 with other chance-adjusted indices, and shares 
Paradoxes 19 and 20 with π, �, and �. It also suffers a couple abnormalities of 
its own: 

 Abnormality 21: Same quality, same agreement,
  higher reliability.

Suppose, as a way of testing our instrument, we give two coders 100 news 
stories, and ask the coders to judge whether the stories contain commentary 
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opinions. We put in 80 easy cases, 40 of them having obvious commentaries, 
and other 40 obviously not. We put in 20 diffi cult cases that even experienced 
teachers can’t judge with certainty. As expected, the two coders agree on 40 
clearly positive cases, 40 clearly negative cases, and disagree on 20 diffi cult 
cases. Also as expected, of the 20 disagreements, each coder reports half posi-
tive and half negative. This generates an ao=0.8 and AC1=0.6. 

Now we delete the commentaries from the 40 clearly positive cases, so they 
become clearly negative. With no other changes, we give the 100 stories to the 
same coders to be coded again. The two coders again agree on 80 easy cases 
and disagree on 20 diffi cult cases. Of the 20, each coder again reports half 
positive and half negative. The only change is that all 80 easy cases are now 
negative. Again ao=0.8. But AC1 jumps from 0.6 to 0.7561. 

The same coders, the same procedure, the same targets, the same quality of 
work, and the same agreement rate: Why the jump? 

 Abnormality 22: Lower quality, less agreement,
  higher reliability.

Suppose, instead of switching all 40 easily positive to easily negative, we 
switch only 36, and switch the other four to be diffi cult by making the com-
mentaries ambiguous: Now we have 76 obviously positive and 24 diffi cult 
cases. As expected, the same two coders agree on 76 and disagree on 24, and 
each reports half and half for the diffi cult 24. As the task is more diffi cult, the 
quality of the coding and the agreement rate is understandably lower, ao=0.76. 
Gwet’s AC1, however, is 0.69574, higher than the original 0.6 by nearly 1/6. 
Why?

We found the results “abnormal” because, again, we assumed the coders 
code honestly under the Grove-Riffe Scenario. AC1 assumes that the coders 
conspire to set quotas, place marbles into the second urn according to the 
quotas, and draw from it. They code randomly when marbles mismatch. In 
both abnormalities, target distribution moves from even to uneven, which 
means uneven marble distribution, less chance for color mismatches, less ran-
dom agreement, lower bar, and therefore higher AC1. The results would have 
seemed “normal” had coders indeed followed the Gwet Scenario.

When to Use Which Index?

Tables 19.4, 19.10, and 19.11 summarize our fi ndings from various angles. A 
contrast emerges in Tables 19.4 and 19.10—the long list of assumptions, par-
adoxes, and abnormalities for what we believed to be the sophisticated and 
rigorous measures, such as �, and the much shorter list, just one unreason-
able assumption and one paradox, for the supposedly primitive and fl awed 
%-agreement ao. To avoid this one assumption and one paradox, we adopted 
more and stronger assumptions, which created more and stagier paradoxes and 
abnormalities. Are the medicines worse than the disease? 
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The “medicines” cause not only more symptoms, but also more severe symp-
toms. Under a Grove-Riffe Scenario, the zero-chance-agreement assumption 
underlying ao may hold sometimes, namely for “easy” and “textbook” cases 
with “well-developed protocols,” while the maximum-randomness and other 
assumptions of the chance-adjusted indices may never hold.

Methodologists talk about chance agreement (ao) as what would have hap-
pened, as a reference for comparison, but not what really happens in typical 
research. Following this thinking, each methodologist could have selected sev-
eral hypothetical scenarios, such as fl ipping coins or throwing dice, drawing 
marbles of 60% or 90% distribution, from one or multiple urns, with or with-
out replacement, in one, two, or more rounds, and code randomly with color 
match or mismatch, and so on. Each scenario can produce a unique chance 
agreement. There is an unlimited number of ways for “random coding,” so we 
could have an unlimited number of chance agreements, as reference lines for 
comparison with just one index, which is %-agreement. Had we done that, we 
would not have assumed so many whimsical coders, and we would not have 
had so many paradoxes and abnormalities.

The methodologists, instead, used maximum-randomness equations (3, 4, 
and 6) to “remove” and “correct for” chance agreement. Each of them chose 
one hypothetical scenario of randomness, yet each believed his index applied 
to all real studies. This created a gap between theoretical understanding, 
which sees maximum randomness as hypothetical, and the actual computa-
tion, which treats maximum randomness as real, leading to the paradoxes, 
abnormalities, and confusions. We need to close this gap by developing a reli-
ability index based on complete honesty and variable randomness assump-
tions under a Grove-Riffe Scenario.

Table 19.11 shows 18 cells under Column 1 titled “maximum random,” 
seven of which occupied and 11 empty. Each empty cell represents an oppor-
tunity to propose a new index, and spend years advocating it. There are even 
more opportunities for creativity outside the table – e.g. rounds of drawing or 
number of urns could increase to three or more; marble colors could be any 
positive constant or variable; and marble distribution could be any percentage. 

What we really need, however, is to fi ll the empty Column 2 titled “vari-
able random,” representing typical studies under a Grove-Riffe Scenario. We 
need reliability formulas based on empirical facts, rather than hypothetical 
imagination. 

Liberal vs. Conservative Estimates of Reliabilities 

Do some indices regularly give higher scores than others? Earlier, by compar-
ing chance agreements estimated by Scott (Table 19.3) and Cohen (Table 19.5), 
we established that Scott’s π is more conservative than Cohen’s �. By compar-
ing Goodman and Kruskal’s Table 19.8 with other counterpart estimates, we 
found that �r is more conservative than all others.

Lombard et al. (2002) used the “liberal” vs. “conservative” concepts. Krip-
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pendorff (2004b) objected, arguing that “trying to understand diverse agree-
ment coeffi cients by their numerical results alone, conceptually placing them 
on a conservative-liberal continuum, is seriously misleading”  (p. 412). We con-
tend that patterns of numerical results can be helpful if they are grounded on an 
analysis of the underlying concepts and assumptions. Suppose we know that, 
with a large sample, �r is always lower than or equal to �, which is always lower 
than or equal to Ir, which is always lower than or equal to ao, then if a researcher 
gets a very low �r, low �, high Ir, and very high ao, she may look into the possi-
bility that this is an artifact of the four indices, rather than focusing exclusively 
on possible defi ciencies in her data, calculation, or coding instrument. 

The key is that this pattern or continuum must be based on a systematic 
and comprehensive comparison, rather than anecdotal observations of isolated 
cases. Such a comparison is now feasible for three reasons.

First, of the 11 unique indices, the only difference between seven (%-agree-
ment and equivalents, S and equivalents, �r, π and two equivalents, � and an 
equivalent, �, and AC1) is in chance agreement ac. The other four are more 
complicated but still comparable, as � is an elevated �, Ir is an elevated S, � is 
an approximate of S, and A1 is a reweighted ao.  

Second, there is an inverse relation between chance agreement ac and 
agreement index ri. This can be proven by assuming ac1 ≥ ac2, replacing ao 
in Equation 3 with ac1 and ac2 to obtain ri1 = (ao–ac1)/(1–ac1) and ri2 = (ao–ac2)/
(1–ac2). Rearranging the equalities and inequalities, we have ac1 ≥ ac2 � ri1 ≤ ri2. 
So if Index A’s ac is often larger and never smaller than Index B’s ac, we may 
conclude with confi dence that A is more conservative than B.

Third, chance agreement ac for all indices have been calculated for binary 
scale with two coders. Five of them are in Tables 19.3, 19.5, 19.6, 19.8, and 
19.9. We also know ac = 0 for ao and A1, ac = 0.5 for S, Ir is an elevated S with 
the same ac, � is an elevated � with the same ac, and � is an approximate of S 
with the same ac.

So we can and should compare these ac. If a hierarchy emerges for the nine 
ac, it implies a reversed hierarchy for the nine groups of indices listed in Table 
19.4. 

The result of this comparison is in Table 19.12, which shows two hierar-
chies. The relative positions of any two indices in two different hierarchies 
are also meaningful, e.g., � is generally more liberal than � because � is in 
a higher cell in one hierarchy than � is in another hierarchy. They are in two 
different hierarchies because strict mathematical comparison between them 
does not yield stable results; that is, in less frequent or less important situa-
tions, an index in a lower cell in one hierarchy could produce a higher number 
than another index in a higher cell in another hierarchy. We assume two cod-
ers, binary scale, and reasonably large samples. When categories increase to 
three or more, category and double-based indices can be very liberal. When a 
sample reduces to 20 or below, Krippendorff’s � can be very liberal. 

To the extent that these indices have to be used, the liberal-conservative 
hierarchies in Table 19.12 may be helpful. If a researcher gets high scores from 
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the most liberal indices, she should not assume everything is fi ne. If she gets 
low scores from the most conservative indices, she should not immediately 
abandon the study. In both cases, check what other indices say.  Researchers 
might pay more attention to the more liberal indices at early stages of a study 
when the protocols are formulated and coders are trained, and pay more atten-
tion to the more conservative indices in the later stages, so as to be cautious 
before publication. We developed software to assist researchers to calculate 
the various indices. The software is available at http://reliability.hkbu.edu.hk.

Discussions and Recommendations

Reliability assesses the empirical foundation of research. Ironically, the foun-
dation of intercoder reliability calculation is more imaginative than empirical. 
Scientists and scholars tend to be skeptical that our fi ndings are sound. We 
tend to guard against Type I errors more than Type II errors. We want to be 
rigorous, which often means conservative. This usually helpful tendency may 
have contributed to the development of some intercoder reliability indices. But 
can we be too conservative? Are we overcorrecting? 

Perhaps some designers of the indices wanted to estimate and remove the 
occasional dishonesty, and used maximum randomness as a surrogate. They 
probably did not realize their formulas assume that all coders maximize ran-
domness, hence were all dishonest, in every study. We know dishonesty does 
not exist in large amounts in all data. Even if it exists, it has no consistent pat-
terns that can be modeled or estimated mathematically.

We need an index of intercoder reliability to accommodate typical research 
where coders try to be accurate but sometimes involuntarily allow some ran-
domness. The existing indices do not meet this need. They assume either no 
or maximum randomness. The maximum-randomness assumption also entails 
other whimsical behaviors, such as setting quota or matching categories with 
marble colors. The chance-adjusted indices assume category, distribution or 
both as the factors affecting chance agreement, causing various paradoxes and 
abnormalities.

While a zero-random assumption likely overestimates reliability, we do 
not know when it overestimates or by how much. While maximum-random 
assumption may underestimate reliability in many situations, it may also over-
estimate in other situations, and, again, we do not know when it errs, in which 
direction, or by how much. We do know that some indices are more liberal 
than others, and the differences can be drastic.

When agreement is 100% and distribution is not 0% or 100%, major indices 
produce the same result—ri=1. The indices start to differ when ao is lower than 
100%. This implies that researchers can help to overcome defi ciencies of the 
indices by perfecting their protocols, assuming their distributions are not too 
skewed. The diffi culty is that researchers cannot always expect perfect agree-
ment or even distribution. 
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Researchers want the appearance of high reliability. The various indices 
and easy software allow shopping around until hitting the highest number. 
The two newer indices, Ir and AC1, are more liberal than other chance-adjusted 
indices and are gaining in popularity. It should worry those striving to main-
tain high standards in academic publications. On the other hand, we should not 
equate low estimates with rigor, or complex calculations with sophistication. 
We should not require π or �r just for their low estimates. Given its unusual 
assumptions, we also should not require universal application of �, especially 
when the distribution is highly uneven or the sample is very small. We should 
not condemn research just because the observed distribution is uneven, pre-
suming that the coders have fallen asleep, agreed in advance, or had a broken 
instrument. We also should not reward small sample sizes.

The frequent use of π, �, and � may have had an undesired effect. All three 
favor more even distributions. Since the three have been applied by so many 
for so long, it may have reduced the publication of more uneven distributions of 
communication content and other things coded, rated, assessed, or diagnosed, 
making the world appear a bit more even than it actually is.  

Our century-old concern over the zero-randomness assumption is legiti-
mate. Our century-long search for a remedy assuming maximum-randomness 
and dishonest coders needs to stop. We need an index based on assumptions 
of variable-randomness and honest coders that uses degree of diffi culty, rather 
than category or distribution, as the main factor.

Before such an index is established, researchers have to choose from the 
existing indices. We hope the practical recommendations in Table 19.13 can 
be of some help. As the table recommends various indices for various situ-
ations, we developed software (available at http://reliability.hkbu.edu.hk) to 
help researchers to calculate the indices. It is not a long-term solution. If and 
when the better index(es) is established, we should stop using Table 19.13 and 
the existing indices.

A major difference between indices is in their assumptions about coder 
behavior: %-agreement indices assume coders never do any random coding, 
while chance-adjusted indices assume coders maximize random coding. Cat-
egory-based indices assume coders draw from marbles of equal distribution, 
while distribution-based indices assume quotas. This chapter derived these 
assumptions through mathematical analysis. Social scientists may be more 
receptive of empirical evidences. Future research may test these assumptions 
as empirical hypotheses, through simulations and controlled experiments. 
For instance, a researcher may assign some participants to code according 
to a Bennett Scenario, and others to follow a Scott Scenario, yet others fol-
low other scenarios. We may consider derived assumptions supported if the 
observed “wrong” agreements produced by a scenario (e.g., Cohen Scenario), 
are closest to or best correlated with the predictions of the corresponding 
index; e.g., �.
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Table 19.13 When to Use or Not Use Which Index of Reliability

Down: 
Observed 
Condition

Indices that Tend to 
Produce Unfairly 
Low Reliability 

Scores

Indices that Tend to 
Produce Unfairly 
High Reliability 

Scores

Indices Not 
Obviously Unfair 

due to the Observed 
Condition at the 

Left, Hence may be 
Considered for 

Temporary Use until 
a More Reasonable 

Index isa
Available iv, v ,vi

Low 
agreement

&-Agreement ao, 
Osgood’s, Holsti’s 

CR,
Rogot and 

Goldberg’s A1

Gwet’s AC1, 
Perreault &
Leigh’s Ir, 

Bennett et al.’s S, 
Cohen’s �, Scott’s π, 

Krippendorff’s �
Highly uneven 
individual 
distribution

Benini’s � i, 
Goodman & 
Kruskal’s �r, 

Scott’s π, 
Cohen’s �i, Rogot & 

Goldberg’s A2, 
Krippendorff’s �, 
Byrt et al.’s BAK, 

Siegel and 
Castellan’s Rev-� 

(1988) 

Benini’s � i, 
Cohen’s � i, 

Rogot & Goldberg’s 
A2, Gwet’s AC1 

%-Agreement ao, 
Perreault & 
Leigh’s Ir, 

Bennett et al.’s S

Highly uneven 
average 
distribution

Benini’s �, 
Goodman & 
Kruskal’s �r, 

Scott’s π, 
Byrt et al.’s BAK,  

Siegel and 
Castellan’s Rev-� 
(1988), Cohen’s �, 

Rogot & Goldberg’s 
A2,  Krippendorff’s 

�

Gwet’s AC1 %-Agreement ao, 
Perreault & 
Leigh’s Ir, 

Bennett et al.’s S

� ≈ 0.5 Perreault &
Leigh’s Ir

%-Agreement ao, 
Gwet’s AC1, 

Bennett et al.’s S, 
Cohen’s �, Scott’s π,  

Krippendorff’s �
N < 20 ii Krippendorff’s � %-Agreement ao, 

Gwet’s AC1, 
Perreault & Leigh’s 
Ir, Bennett et al.’s S, 
Cohen’s �, Scott’s π
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Down: 
Observed 
Condition

Indices that Tend to 
Produce Unfairly 
Low Reliability 

Scores

Indices that Tend to 
Produce Unfairly 
High Reliability 

Scores

Indices Not 
Obviously Unfair 

due to the Observed 
Condition at the 

Left, Hence may be 
Considered for 

Temporary Use until 
a More Reasonable 

Index isa
Available iv, v ,vi

K ≥ 3 iii Guttman’s �, 
Perreault & Leigh’s 
Ir, Bennett et al.’s S, 

Guilford’s G,  
Maxwell’s RE, Jason 

& Vegelius’ C, 
Brennan & 

Prediger’s kn, , Byrt 
et al.’s PABAK, 

Potter & Levine-
Donnerstein’s 

redefi ned Pi, Gwet’s 
AC1

%-Agreement ao, 
Cohen’s �,
Scott’s π

Krippendorff’s �

i When individual distributions are highly uneven, Benini’s � and Cohen’s � can be unfairly high 
when the two distributions are highly skewed at the opposite directions, e.g., one coder reports 
95% positive while the other 95% negative; the two can be unfairly low when the two distribu-
tions are skewed at the same direction, e.g., both coders report 95% positive.

ii N is number of target cases analyzed.
iii K is number of categories in the nominal coding scale.
iv Use with caution!  While the indices in the extreme right cells are not necessarily unfair due to 

the observed condition in the extreme left cells of the same row, they may be unfair due to other 
condition(s) present in a study.  For example, when a study uses three or more categories (last 
row), it does not make Scott’s π unfair.  But the same study may also have highly uneven distri-
bution (second and third rows), which makes π unfairly low, so the researcher may have to use 
%-Agreement. Combination of conditions could make all available indices unfair for a given 
study, which is one of the reasons that a better index is needed.

v In each cell of this column, the indices are listed according to their positions in the liberal-con-
servative hierarchies shown in Table 19.12.  The information may be useful for meta analysts 
and other content analysts who wish to better evaluate their reliability level.  

vi We excluded all “equivalents” from this “not obviously unfair” column, as credits should go to 
the fi rst designer(s).
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