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Graphical Abstract

∙ Multi-omics characteristics of Macao elderly susceptible to neurocognitive
disorders (NCDs) were investigated.

∙ Gutmicrobiota, faecal metabolites and urine exosomes were detected utilizing
metagenomics, metabolomic and proteomic.

∙ Disturbed glyoxylate and dicarboxylate metabolism (bacteria), vitamin diges-
tion and absorption and tricarboxylic acid cycle can serve as predictors of
NCDs risk.
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Abstract
Background: Due to the increasing ageing population, neurocognitive disor-
ders (NCDs) have been a global public health issue, and its prevention and early
diagnosis are crucial. Our previous study demonstrated that there is a significant
correlation between specific populations andNCDs, but the biological character-
istics of the vulnerable group predispose toNCDs are unclear. The purpose of this
study is to investigate the predictors for the vulnerable group by a multi-omics
analysis.
Methods:Multi-omics approaches, including metagenomics, metabolomic and
proteomic, were used to detect gut microbiota, faecal metabolites and urine exo-
some of 8 normal controls and 13 vulnerable elders after a rigorous screening
of 400 elders in Macao. The multi-omics data were analysed using R and Bio-
conductor. The two-sided Wilcoxon’s rank-sum test, Kruskal–Wallis rank sum
test and the linear discriminant analysis effective size were applied to investigate
characterized features. Moreover, a 2-year follow-up was conducted to evaluate
cognitive function change of the elderly.
Results: Compared with the control elders, the metagenomics of gut micro-
biota showed that Ruminococcus gnavus, Lachnospira eligens, Escherichia coli
and Desulfovibrio piger were increased significantly in the vulnerable group.
Carboxylates, like alpha-ketoglutaric acid and d-saccharic acid, and levels of
vitamins had obvious differences in the faecal metabolites. There was a distinct
decrease in the expression of eukaryotic translation initiation factor 2 subunit 1
(eIF2α) and amine oxidase A (MAO-A) according to the proteomic results of the
urine exosomes. Moreover, the compound annual growth rate of neurocognitive
scores was notably decreased in vulnerable elders.
Conclusions: The multi-omics characteristics of disturbed glyoxylate and
dicarboxylate metabolism (bacteria), vitamin digestion and absorption and tri-
carboxylic acid cycle in vulnerable elders can serve as predictors of NCDs risk
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among the elderly ofMacao. Interventionwith themmay be effective therapeutic
approaches forNCDs, and the underlyingmechanismsmerit further exploration.

KEYWORDS
exosomes, gut microbiota, multi-omics, neurocognitive disorders

1 BACKGROUND

Cognitive function is one of the most basic activities of
consciousness in humans and consists of several domains
such as memory, attention and concentration, executive
function and language/verbal skills.1 Neurocognitive dis-
orders (NCDs) are characterized by a cognitive decline
in one or more domains, including delirium and mild
and major NCD following the latest Diagnostic and Sta-
tistical Manual of Mental Disorders-V of the American
Psychiatric Association.2,3 NCDs affect nearly 50 million
individuals worldwide, with more than 10 million new
cases increasing each year.4 Alzheimer’s disease (AD) is
the most common NCDs, whose impairment will become
increasingly evident as the population ages, with its preva-
lence likewise rising with age, from less than 1% of people
under 60 to over 40% of people over 85.5 Due to the rapid
global population ageing, NCDs have become a major
public health challenge.
The intestinal microbiota has been proved to play a key

role in influencing central nervous functions, including
emotional responses and behaviour, and its metabolites
may also cause neurodegenerative diseases through the
gut–brain axis.6 Alterations in the composition of gut
microbiota are associated with the development of NCDs.
Studies showed that the distribution of intestinal micro-
biota gradually shifts from non-pathogenic to pathogenic
facultative anaerobic bacteria with increasing age.7 In
addition, many studies have also shown that urine com-
positions can serve as potential biomarkers in the early
diagnosis of NCDs. Disturbances in phospholipid and
amino acid metabolism, alterations in the l-glutamine
and 5-l-glutamylglycine, palmitic amide and lysophos-
phatidylcholine metabolites all occurred in the urine
of patients with early AD.8 Urine Alzheimer-associated
neuronal thread protein (AD7c-NTP) can accurately pre-
dict amyloid-beta protein deposition in the brain of AD
patients, and increased AD7c-NTP in cerebrospinal fluid
and urine is correlated with AD severity positively.9,10
Urine exosomes are protein-containing vesicle, which can
facilitate the transfer of proteins, lipids and nucleic acid to
mediate intercellular communication. The role of proteins
in exosomes determined to be involved in pathological
process of many diseases, including AD.11 Gut microbiota
had influence on host urine proteins expression and host-

secreted proteins influenced gut microbiota composition
likewise.12
In our previous study on the investigation of sus-

ceptibility to NCDs in Macao elderly individuals, we
recruited 400 older adults from elderly healthcare centres
randomly and found that there was a vulnerable pop-
ulation which belonged to Yin-deficient constitution of
Chinese medicine contributed to the decline of neurocog-
nitive function, especially visual space dimension.13 To
discover the biochemical basis of the vulnerable popula-
tion predisposed to NCDs for an early prediction of NCDs
occurrence, multi-omics approaches, including metage-
nomics, metabolomic and proteomic were employed to
investigate gut microbiota, faecal metabolites and urine
exosomes from the elderly. In addition, follow-ups after
2 years of the vulnerable elders were conducted to assess
their alteration of cognitive function level.

2 METHODS

2.1 Study design and subjects

Recruitment for the trial was conducted in Macao from
September to December 2019, and the follow-up period
of the trial was 24 months. Three elderly health centres
were randomly selected from three administrative regions
of Macao (Peninsula, Taipa and Coloane), and 400 partic-
ipants were randomly selected from elders aged 65 years
and above in these elderly health centres, and 57 partici-
pants were excluded because of incomplete information.
A total of 21 elderly individuals were finally included
in the study, who met the inclusion criteria (Figure 1).
The inclusion criteria for the study were (1) Chinese res-
idents who have lived in Macao for more than 10 years,
(2) no intellectual and language communication barriers,
able to understand and answer the questions in Can-
tonese, and (3) no suffering from major diseases of heart
and/or lung in the past year. Exclusion criteria were (1)
elders with cognitive impairment, (2) age >80 years old,
(3) illiteracy, (4) irregular exercise, (5) irregular diet, (6)
sleep duration <7 h and (7) antibiotics administration
within 2 weeks. Participants who suffered from tumour,
heart failure, mental illness and other serious systemic
diseases and could not complete the questionnaire even
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F IGURE 1 Flow chart of study inclusion/exclusion criteria

with assistance were excluded. The elders were grouped in
accordance with the number of chronic diseases suscepti-
ble to the occurrence of NCDs: “normal control (n = 8)”
with none or only one chronic disease, whereas “vulner-
able group (n = 13)” for those with two or more chronic
diseases susceptible to the occurrence of NCDs, such as
diabetes, hypertension and hyperlipidaemia. The Hong
Kong version of Montreal Cognitive Assessment was used
to evaluate neurocognitive scores of subjects from vari-
ous domains.14 Power and sample size calculations were
performed in Power and Sample Size (HyLown Consult-
ing LLC; http://powerandsamplesize.com/). A two-group
time-to-event analysis involved comparing the time it took
for NCDs to occur between two groups (Cox PH, 2-Sided
Equality).15 The elders were followed up after 2 years
to reassess their neurocognitive scores and compare the
compound annual growth rate (CAGR) from 2019 to 2021
between the two groups.

2.2 Samples collection

Fresh faecal and first morning urine from the elderly
within two groups were collected at the healthcare centres.
A protease inhibitor cocktail (P1005, Beyotime, Nanjing,

China) and antibiotics (Pen-Strep, Gibco, Invitrogen, San
Diego, CA, USA) were added to avoid proteolysis and
bacterial growth in the urine samples. The faecal and
urine samples were processed within 4 h after collection
in the laboratory and stored at minus 80◦C until anal-
ysis. Total DNA was extracted from frozen stools using
the QIAamp PowerFecal Pro DNA Kit (QIAGEN, 51804).
The DNA quantity and purity were assessed using Thermo
Scientific’s NanoDrop One. Urine exosomes isolation was
performed through differential ultracentrifugation as pre-
viously described.16 In brief, 30-ml urine samples were
centrifuged at 500×g (15 min) and 17 000×g (45 min)
to remove the cellular debris and large membrane vesi-
cles. The supernatants were then pelleted at 200 000×g
for 65 min at 4◦C (70 Ti Rotor, Beckman Coulter). The
exosome pellets were resuspended in 30 ml of phosphate-
buffered saline.

2.3 Metagenomic sequencing of
intestinal microbiota

The DNA metagenomic shotgun sequencing of the stool
samples was performed as previously described.17 In brief,
the VAHTS Universal DNA library Prep Kit for Illumina
(Vazyme, Nanjing, China) was used to prepare sequenc-
ing libraries and the KAPA SYBR FAST qPCR Kit (Kapa
Biosystems, Wilmington, MA, USA) was used to assess
quantity by qPCR. Paired-end 2×150-bp sequencing was
performed on a NovaSeq 6000 instrument (Illumina,
San Diego, CA, USA). After FastQC quality control, the
sequence reads were pre-processed with the removal of
human reads by HiSAT2 and DeconSeq to obtain clean
non-human sequences. The relative abundance was rep-
resented by the ratio of the total mapped reads of each
species, normalized by the total mapped microbial reads
and the genome size within each sample. The HMP Uni-
fied Metabolic Analysis Network (HUMAnN2) was used
to analyse the abundance of microbial BioCyc pathways.
The diversity and the difference of bacterial commu-
nities between the control and vulnerable groups were
assessed using α- and β-diversity, respectively. α-Diversity
was assessed by Chao1, Simpson and Shannon index, and
β-diversity was assessed by principal coordinate analysis
(PCoA). To identify the significant different species, the
linear discriminant analysis (LDA) effective size (LEfSe)
was conducted.

2.4 Non-targeted metabolomics of
faecal sample

Faecal metabolites were extracted with methanol
and analysed by the ultra-high-performance liquid

http://powerandsamplesize.com/
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chromatography–tandem mass spectrometry (UHPLC–
MS/MS) for non-targeted metabolomics analysis. The
Compound Discoverer 3.1 was used to perform peak align-
ment, peak picking and quantitation for each metabolite.
The accurate qualitative and relative quantitative results
were obtained according to matched peaks with the
mzCloud, mzVault and Mass List database. Data were
collected in both positive and negative electrospraymodes.
The scan rate was one scan per second with a capillary
voltage of 3500 V. The molecular features of the samples
were obtained using theMass Hunter Qualitative Analysis
Software (Agilent Technologies).18 The Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database, Human
MetabolomeDatabase (HMDB) and LipidMetabolites and
Pathways Strategy (LIPIDMAPS) database were employed
to annotate metabolites. The metabolites with variable
importance in the projection (VIP)> 1 and p< .05 and fold
change ≥2 or FC ≤ .5 were considered to be differential
metabolites according to principal components analysis
(PCA) and partial least squares discriminant analysis
(PLS-DA) performed at metaX.19 Volcano plots were
used to filter metabolites of interest based on log2 (fold
change) and −log10 (p value) of metabolites by ggplot2 in
R language.

2.5 Proteomic analysis of urine
exosomes

Proteomic analyses were performed as previously
described using the label-free proteomics method.20 In
brief, 100-μg protein for each sample was digested and
then the peptide was desalted by a Phenomenex Strata-X
C18 SPE column. Then, the sample was fractionated by
high pH reverse-phase HPLC with an Agilent 300Extend-
C18 column. Peptides were subjected to an NSI source
followed by tandem mass spectrometry (MS/MS) in Q
Exactive coupled online to the UPLC. The electrospray
voltage applied was 2300 V. Intact peptides were detected
in the orbitrap at a resolution of 60 000. Peptides were
selected for MS/MS using an normalized collision energy
(NCE) setting of 28, and ion fragments were detected in
the orbitrap at a resolution of 15 000. For MS scans, the
m/z scan range was 400–1200. The fixed first mass was
set as 100 m/z. Differentially expressed proteins were
identified with a cut-off of absolute fold change ≥1.5.
Tandem mass spectra were searched against the Swiss-
Prot Human database. Gene Ontology (GO) analysis
was performed to classify all identified proteins into cell
components, molecular function and biological process
using the UniPort-GOA database, InterProScan and GO
annotation.

2.6 Statistical analysis

TheGraphPadPrism 8 andR software 3.6were used for sta-
tistical analyses. Two-sided Wilcoxon’s rank-sum test was
used for comparisons of α- and β-diversity of gut micro-
biota between the control and vulnerable groups. The box
edges denoted the first and third quartiles and the hori-
zontal line denoted the median for all boxplots, with the
whiskers extending up to 1.5-fold interquartile ranges. The
LEfSe method and the Kruskal–Wallis rank sum test were
performed to identify features characterizing significant
differences.A value of LDA> 2 and p< .05were considered
statistically significant. Analysis of differential metabolites
expression was performed using p values and VIP val-
ues. Metabolites with values of p < .05 and VIP > 1 were
regarded as potential biomarkers. The receiver-operating
characteristic curve analysis was used to evaluate the
efficiency of different metabolites predictors of vulner-
able group. Correlation analysis among metagenomic,
metabolomic and proteomics data was undertaken using
protein and metabolites identified as significantly differ-
ent. Spearman multi-omics correlations were calculated
using R and the Benjamini–Hochberg method was used to
control the false discovery rate. Formetabolomics and pro-
teomics data analysis, multiple hypothesis correction with
the Benjamini–Hochberg method was applied as well. The
ggplot2 packagewas used to perform visual presentation of
multi-omics correlations. A value of p< .05was considered
significant difference.

3 RESULTS

3.1 Sociodemographic features and
neurocognitive scores of subjects

The study samples consisted of 21 elders 65 years of age or
above screened by living habits, clinical history, no major
diseases of heart and/or lung, no intellectual and com-
munication barriers. Matched samples included 8 subjects
(females) in the normal control group and 13 subjects in
vulnerable group (3 males and 10 females). The ratio of
gender, age, education and neurocognitive scores of the
two groups are shown inTable 1. No differenceswere found
among the parameters within the two groups.

3.2 Differential gut microbiota
compositions and pathways prediction

At the phylum level, the gut microbiota composition
of the two groups was dominated by Bacteroidetes,
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TABLE 1 Sociodemographic features and neurocognitive
scores of the study subjects

Variable
Normal
control

Vulnerable
group p-Value*

Gender
Men 0 3 .505
Women 8 10

Age 71.25 ± 3.11 73.46 ± 3.80 .183
Education
Primary schools
and below

8 11 .243

Middle school
and above

0 2

Neurocognitive
scores

22.13 ± 3.91 24.69 ± 3.23 .118

Notes: Data are expressed as mean± SD except where frequencies are used for
categorical data.
*Fisher’s exact test chi-squared test for categorical variables; t-test for contin-
uous variables.

Firmicutes, Actinobacteria and Proteobacteria, which on
average accounted for up to 98% of the relative abundance.
Compared with the control group, Firmicutes, Actinobac-
teria and Proteobacteria were increased whereas Bac-
teroidetes was decreased at the phylum level in the vulner-
able group (Figure 2A). The top 20 genera heatmap with
the highest abundance for in-depth analysis showed that
Escherichia was increased and Lachnospira was decreased
significantly in the vulnerable group compared with the
control group (Figure 2B). α-Diversity analysis was esti-
mated based on the Chao1, Shannon and Simpson index,
which reflected the richness and diversity of microbiota.
As shown in Figure 2C, the diversity indices at the phylum,
genus and species levels were decreased in the vulnera-
ble group, but this difference did not achieve statistical
significance. β-Diversity analysis was used to evaluate the
variance of diversity between two groups and was assessed
with Bray–Curtis dissimilarities. The Bray–Curtis dissim-
ilarities within the vulnerable group were significantly
higher than the control groups (Figure 2D). Although the
Firmicutes/Bacteroidetes (F/B) ratio was increased in the
vulnerable group compared with the control group, the
change was not statistically significant (Figure 2E). The
PCA (Figure 2F) and the PCoA (Figure 2G) of species com-
position showed a clear delineation between the control
and vulnerable groups, suggesting that the dysbiosis of gut
microbiome was associated with vulnerable group.
In addition, the Venn diagram showed unique and com-

mon species of gut microbiota to better understand their
shared richness. This analysis showed that 765 opera-
tional taxonomic units (OTUs) accounting for the total
richness were common to all the samples, whereas 178
OTUs and 311 OTUs accounted for control and vulnera-

ble groups, respectively (Figure 3A). The Chord diagram
showed the ten most enriched gut microbiota species
and the linkage between species and the two groups.
The arcs indicated connections, represented proportion-
ally by the size of each arc. Node segments along a circle
represented species and the node size indicated the abun-
dance of contributing species (Figure 3B). The differential
microbiota of the control and vulnerable groups were pre-
sented based on LEfSe analysis (Figure 3C). There were 20
bacterial taxa enriched in the normal control, which con-
sisted of Bacteroides vulgatus, Escherichia marmotae, Tre-
ponema sp. OMZ 804, Bifidobacterium pseudolongum, Lac-
tobacillus parabuchneri, Neisseria gonorrhoeae, Neisseria
sp. oral taxon 014, Leptotrichia hofstadii, Clostridium sac-
charobutylicum, Streptococcus ratti, Bifidobacterium den-
tium, Clostridium baratii, Butyrivibrio hungatei, Weissella
hellenica, Cardiobacterium hominis, Streptococcus sangui-
nis, Selenomonas sp. oral taxon 478 at the species level,
and Lachnospira, Cardiobacterium, Dolosigranulum at the
genus level. Moreover, a total of nine bacterial taxa
were enriched in the vulnerable group, which included
Lachnospira eligens, Desulfovibrio piger, Escherichia coli,
Ruminococcus gnavus at the species level, andDesulfovibrio
(genus), Escherichia (genus), Desulfovibrionaceae (fam-
ily), Desulfovibrionales (order) and Deltaproteobacteria
(class). Cladogram was obtained from the LEfSe analy-
sis, indicating the phylogenetic distribution of microbiota
(Figure 3D).
PICRUSt was used to predict the metagenome func-

tional content based on metagenomic shotgun sequencing
and BioCyc pathways analysis. BioCyc pathways were
a variety of biological processes regulated as a unit,
which were constructed based on information provided
in the BioCyc database. STAMP analysis revealed 18 path-
ways with significant differences between the 2 groups,
including 5 pathways of generation of precursor metabo-
lites and energy, 4 pathways of vitamins biosynthesis, 3
pathways of fatty acid biosynthesis, 2 pathways of Coen-
zyme A (CoA) biosynthesis, 1 pathway each of nucleic
acid processing, nucleoside and nucleotide biosynthesis,
secondary metabolite biosynthesis and amino acid biosyn-
thesis. Comparedwith the control group, the abundance of
glycolysis and CoA biosynthesis was significantly reduced
in the vulnerable group. Moreover, the superpathway of
thiamine diphosphate biosynthesis was enriched in the
control group. Thiamine diphosphate, also known as vita-
min B1, plays an important role in the energy metabolism.

3.3 Differential faecal metabolites

To evaluate the metabolic changes in gut microbiome,
the faecal samples were analysed by UHPLC–MS/MS. The
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F IGURE 2 Gut microbiota analysis in the vulnerable group: (A) the relative abundance of gut microbiota at the phylum level between
the control and vulnerable groups. (B) Heatmap analyses of gut microbiota at the genus level in top 20. (C) Chao1 index, Shannon index and
Simpson index in α-diversity analysis at the phylum, genus and species levels. (D) β-Diversity measured with Bray–Curtis dissimilarity. p
Values of α- and β-diversity were computed using a two-sided Wilcoxon test. (E) Firmicutes/Bacteroidetes (F/B) ratio between the control and
vulnerable groups. (F) PCA of the gut microbiota at the species level. (G) PCoA of gut microbiota based on species-level Bray–Curtis distance.
PCA, principal component analysis; PCoA, principal coordinate analysis

PLS-DA analysis was used to explore the metabolic differ-
ences between the two groups, and the cross-validation of
PLS-DA models of all multi-omics data had done to avoid
data overfitting (Figure S4). The results suggested that the
metabolite distribution in the vulnerable group was differ-
ent from that in the control group both in negative ion
(Figure 4A) and positive ion models (Figure 4B). Com-

pared with the control group, 14 and 13 metabolites were
significantly upregulated and downregulated in the neg-
ative ion model, respectively (Figure 4C), and 58 and 24
metabolites were significantly upregulated and downregu-
lated, respectively, in the positive ion model (Figure 4D).
All upregulated and downregulated differential metabo-
lites had been screened, and the hierarchical clustering
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F IGURE 3 Significant shifts in gut microbial compositions at species levels and bacterial functional profiles: (A) Venn diagram of gut
microbiota. (B) The Chord diagram of gut microbiota at the species level. (C) Distinctive gut microbiota composition associated with the
vulnerable group revealed by LDA effect size (LEfSe) analyses, with LDA score >2. (D) Cladogram of the LEfSe analysis of gut microbiota. (E)
The comparative analysis for relative abundances of BioCyc pathways between the control and vulnerable groups. STAMP analysis was
applied to identify significant differential abundant BioCyc pathways. LDA, linear discriminant analysis
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F IGURE 4 Untargeted analysis of the faecal metabolome: (A) PLS-DA score plot of primary metabolites in negative ion mode. (B)
PLS-DA score plot in positive ion mode. (C) Volcano map of differential metabolites in negative–positive ion mode between the control and
vulnerable groups, green: downregulated metabolites; red: upregulated metabolites. (D) Volcano map of differential metabolites in positive
ion mode. (E) Heat maps of significant differential metabolites. (F) z-Score plot of the top 30 differentially expressed metabolites in negative
and positive ion mode, each circle represents a sample. (G) Comparing the bubble plot of the top 20 significantly enriched KEGG pathways
between the control and vulnerable groups in negative and positive ion mode. PLS-DA, partial least squares discriminant analysis

analysis clearly classified the metabolites with the same
and different characteristics between the control and vul-
nerable groups. The results were visualized in a heatmap,
as shown in Figure 4E. To delineate changes inmetabolites
further, the top 30metaboliteswere listed based on p-value,
and z-score plots were constructed. As shown in Figure 4F,
carboxylates were more downregulated in the vulnerable
group, including alpha-ketoglutaric acid, d-saccharic acid,
eicosenoic acid, 6-phosphogluconic acid, tetradecanedioic
acid and anandamide. The utilization of carboxylates was
an important source of nutrients and energy. The vitamins
levels were increased in faecal samples of the vulnerable

group, including folic acid, thiamine and 4-pyridoxic acid,
whereas pantothenic acid was decreased.
KEGG annotation analysis was used to find all pathways

of differential metabolites. Further metabolic pathway
analysis, including enrichment analysis and topological
analysis, 39 key pathways that were the most relevant to
metabolite difference had been screened, the first 6 lines
of which are shown in Table 2, and which were shown as a
bubble plot in Figure 4G. The area under curve (AUC) val-
ues for alpha-ketoglutaric acid, d-saccharic acid and citric
acid predicting vulnerable group were .875, .856 and .873,
respectively. Likewise, the AUC values for pantothenic
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TABLE 2 Metabolic pathways analysis (top 6)

Metabolic pathways p-Value Enriched differential metabolites
Ascorbate and aldarate metabolism .011 Alpha- ketoglutaric acid, d-saccharic acid
Glyoxylate and dicarboxylate metabolism .018 Alpha-ketoglutaric acid, citric acid
Vitamin digestion and absorption .025 Pantothenic acid, thiamine, folic acid
TCA cycle .027 Alpha-ketoglutaric acid, citric acid
Alanine, aspartate and glutamate metabolism .027 Alpha-ketoglutaric acid, citric acid
d-Glutamine and d-glutamate metabolism .047 Alpha-ketoglutaric acid

F IGURE 5 ROC curve of differential metabolites predicting vulnerable group susceptible to NCDs: (A) ROC curve of alpha-ketoglutaric
acid, (B) ROC curve of d-saccharic acid, (C) ROC curve of citric acid, (D) ROC curve of pantothenic acid, (E) ROC curve of thiamine, (F) ROC
curve of folic acid. NCD, neurocognitive disorder; ROC, receiver operating characteristic

acid, thiamine and folic acid were .731, .788 and .856,
respectively (Figure 5A–F). Alpha-ketoglutaric acid was
found to be the most significant predictor for vulnerable
elders. Table 2 shows that alpha-ketoglutaric acid was the
common differential metabolite in the top six metabolic
pathways enriched in differential metabolites, and it might
be the most critical differential metabolite. The results
showed that ascorbate and aldarate metabolism, glyoxy-
late and dicarboxylate metabolism, vitamin digestion and
absorption, tricarboxylic acid (TCA) cycle, alanine, aspar-

tate and glutamate metabolism and d-glutamine and
d-glutamate metabolism pathway were high correlation
with differential metabolites.

3.4 Differential urine exosomes
proteins

To define if there were differences in urine exosomes
proteins content in the control and vulnerable groups,
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the purified exosomes from samples were subsequently
analysed. A total of 2448 944 secondary spectrograms
were obtained by mass spectrometry, and 388 572 spectro-
grams were available for analysis. A total of 23 147 peptide
segments were identified, among which 22 165 were spe-
cific segments. Most of the peptides were distributed in
7–20 amino acids and met the quality control require-
ments (Figure 6A). In total, 3306 proteins were identified,
of which 2712 were quantifiable. The screening criteria
for differential abundance of proteins were fold-change
>1.5 (upregulated) or <1.5 (downregulated) and p < .05.
As shown in the volcano map, red was used to indi-
cate prominent upregulated differential proteins, and blue
represented apparent downregulated differential proteins.
Compared with the control group, 24 and 34 proteins were
significantly upregulated and downregulated, respectively
(Figure 6B). STAMP analysis revealed 13 proteins with sig-
nificant differences between the 2 groups. Compared with
the control group, the eukaryotic translation initiation fac-
tor 2 subunit 1 (eIF2α, P05198) was the most significantly
decreased protein in the vulnerable group. Amine oxidase
flavin-containing A (MAO-A, P21397) was downregulated
in the vulnerable group as well, which had important
functions in the metabolism of vasoactive and neuroac-
tive amines in the central nervous system and peripheral
tissues. In addition, HLA class II histocompatibility anti-
gen (P01911), integrin alpha-3 (P26006) and complement
receptor type 1 (P17927) were significantly upregulated in
the vulnerable group (Figure 6C).
For all annotated proteins involved eukaryotic homol-

ogous protein clusters assignment, the EuKaryotic
Orthologous Groups (KOGs) classification was shown
in Figure 6D. KOG annotation sorted all the proteins
into four major categories. For the cellular processes and
signalling category, the largest number of proteins was
classified into the “Intracellular trafficking, secretion, and
vesicular transport” term (eight proteins). Twelve proteins
belonged to the information storage and processing cate-
gory. For the metabolism category, the main terms were
“inorganic ion transport and metabolism” (four proteins),
“lipid transport and metabolism” (four proteins) and
“energy production and conversion” (three proteins).
Function annotation of KEGG pathways was performed
to understand the function and bioprocess of the differen-
tially expressed proteins based on the KEGG database. In
the heatmap of differentially abundant KEGG pathways,
enriched disease-related pathways were upregulated in the
vulnerable group, involving hypertrophic cardiomyopathy
(hsa05410), arrhythmogenic right ventricular cardiomy-
opathy (hsa05412), small cell lung cancer (hsa05222) and
dilated cardiomyopathy (hsa05414). The most upregu-
lated pathways in the control group were the following:
glycine, serine and threonine metabolism (hsa00260),

tyrosine metabolism (hsa00350), tryptophan metabolism
(hsa00380), phenylalanine metabolism (hsa00360),
serotonergic synapse (hsa04726), histidine metabolism
(hsa00340), dopaminergic synapse (hsa04728) and
arginine and proline metabolism (hsa00330) (Figure 6E).

3.5 Correlations among differential gut
microbiota, faecal metabolites and urine
exosomes proteins

The Spearman correlation analysis was used to investigate
the relevance between the differential bacterial species and
the faecal metabolites (Figure 7A). The amount of B. vulga-
tus was significantly correlated with several metabolites,
such as alpha-ketoglutaric acid, d-saccharic acid and N-
α-l-acetyl-arginine. The correlation of R. gnavus and folic
acid, L. eligens and Υ-l-glutamyl–l-glutamic acid, D. piger
and anandamide (AEA) were significant as well (|r| > .5,
p < .05, .01). We further correlated the bacterial species
and urine exosomes proteins using the Spearman correla-
tion analysis, and the result showed that the eIF2α (P05198)
was significantly positively with R. gnavus, E. coli and D.
piger; in addition, MAO-A, P21397 showed significant pos-
itive correlations with D. piger as well (|r| > .5, p < .05,
.01) (Figure 7B). To explore potential reciprocal interac-
tions among altered gut microbiota, faecal metabolites
and urine exosomes proteins, a co-occurrence network
was constructed based on the Spearman correlation anal-
ysis. We found that R. gnavus, L. eligens, E. coli and D.
piger formed strong co-occurring relationships with faecal
metabolites and urine exosomes proteins involved within
glyoxylate and dicarboxylate metabolism, vitamin diges-
tion and absorption and TCA cycle. These correlations
suggested that changes in gut microbiota composition and
related metabolites were tightly related to hosting proteins
and metabolism.

3.6 Two-year follow-up assessments for
NCDs occurrence

To identify high susceptibility to NCDs in the vulner-
able group, follow-up was performed 2 years after the
initial assessment of neurocognitive scores. In the control
group, the cognitive function of all the elderly was normal,
whereas 3 of 13 elders had transferred into mild NCD in
the vulnerable group. Moreover, we calculated the CAGR
of neurocognitive scores to assess the relative growth of
vulnerable-related neurocognitive scores. The CAGR for-
mula is equal to [(Y/X)(1/3) − 1] × 100%. Compared with
the control group, the CAGR in the vulnerable group was
significantly decreased, even presented negative growth
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F IGURE 6 Label-free quantitative proteomics analysis of urine exosomes: (A) length distribution of all identified peptides. (B) Volcano
map of differential proteins between the control and vulnerable groups, green: downregulated metabolites; red: upregulated metabolites. (C)
The comparative analysis for the relative abundances of proteins between the control and vulnerable groups by STAMP. (D) KOG function
classification of significant differential proteins. (E) Heatmap of differential abundant KEGG pathways identified in the control and
vulnerable groups. KOG, euKaryotic Orthologous Groups
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F IGURE 7 Associations of gut microbial changes with metabolome and proteome: (A) Spearman’s rank correlation between differential
gut microbiota species and faecal metabolites. (B) Spearman’s rank correlation between differential gut microbiota species and urine
exosomes proteins. (C) Co-occurrence network of the microbiome, metabolome and proteome. The r-value is represented by the gradient
colour; red indicates positive correlation, and blue colour indicates negative correlation. *p < .05, **p < .01

as shown in Table 3, suggesting that their cognitive func-
tion would continue to deteriorate over time. Additionally,
there existed the differences of gut microbiota species and
faecal metabolites between the three subjects before they
progressing to mild NCD and others in the vulnerable
group (Figure S1).

4 DISCUSSION

Our previous study found the association of vulnera-
ble population (Yin-deficient constitution) with NCDs in
Macao elderly individuals.13 To further investigate how the
vulnerable elders interactedwithNCDs, we considered the
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TABLE 3 The CAGR of the control group and vulnerable group

Group
Initial
scores (X)

Neurocognitive
function

Follow-up
scores (Y)

Neurocognitive
function CAGR

The average
CAGR

Normal control 16 Normal 20 Normal 7.72 .35 ± 5.50
28 Normal 23 Normal −6.35
22 Normal 21 Normal −1.53
19 Normal 22 Normal 5.01
19 Normal 23 Normal 6.58
24 Normal 20 Normal −5.90
24 Normal 24 Normal 0
25 Normal 23 Normal −2.74

Vulnerable group 27 Normal 22 Normal −6.60 −3.77 ± 3.03*
26 Normal 24 Normal −2.63
28 Normal 20 Mild NCD −10.61
23 Normal 23 Normal 0
22 Normal 18 Normal −6.47
17 Normal 15 Mild NCD −4.08
23 Normal 22 Normal −1.47
26 Normal 22 Mild NCD −5.42
28 Normal 24 Normal −5.01
28 Normal 27 Normal −1.20
27 Normal 25 Normal −2.53
23 Normal 21 Normal −2.99
23 Normal 23 Normal 0

Notes: Data are expressed as mean ± SD.
Abbreviations: CAGR, compound annual growth rate; NCD, neurocognitive disorder.
* p < .05 (unpaired t-test).

microbiome first. The term microbiome is suggested to
describe the collective genome of human bodymicrobiota,
and it can be divided into three types depending on dom-
inant genera, named enterotypes, including enterotype
1 (Bacteroides), enterotype 2 (Prevotella) and enterotype
3 (Ruminococcus).21 The classification of enterotypes has
potential clinical implications, and it is useful in identify-
ing the disease state of an individual to guide treatment
and help in understanding different therapeutic mea-
surements. Moreover, enterotype can be employed as an
indicator of risk or susceptibility to a specific state of
the body.22 To some extent, vulnerable population can be
analogized to a specific enterotype.
The Bacteroidetes is a very diverse bacterial phylum,

and its members mainly colonize in the colon. Bac-
teroidetes plays an important role in the development of
the gastrointestinal tract and maintaining a healthy gut.
In addition, Bacteroidetes can interact with the immune
system for the activation of T-cell-mediated responses
and produce butyrate, which is thought to have anti-
tumour properties.23,24 Higher dietary fibre would favour
the development of the Bacteroidetes, which can degrade
complex plant polysaccharides and produce succinic acid,

acetic acid and propionic acid.25 Previous studies have
reported that the increased Firmicutes/Bacteroidetes (F/B)
ratio would reduce polysaccharide metabolism and SCFA
production.26 Our study found that Bacteroidetes was
decreased, and the F/B ratio tended to increase in the vul-
nerable group, suggesting they might be linked to micro-
biota metabolic capacity reduction. At the genus level, the
decrease of Lachnospira in vulnerable group was consis-
tent with clinical research about gut microbiome features
of Chinese patients newly diagnosed with AD or mild cog-
nitive impairment.27 The link between altered gut micro-
biota composition and cognition has been investigated
in various animal models, including germ-free animals,
antibiotics-induced pseudo-germ-free animals and faecal
microbiota transplants (FMT).28 The results of our study
showed that the α-diversity of gut microbiota leaned to
decrease, and the β-diversity was increased significantly in
vulnerable elders compared with normal elders, the same
as the changes in gut microbiota composition may cause
cognitive decline.
Based on the LEfSe analysis, we identified four species,

including E. coli, L. eligens, D. piger and R. gnavus as the
potential gut microbiota markers for the vulnerable group.
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When it comes to the correlation between the four specific
species and NCDs, the transplantations of E. coli isolated
from the elderly can cause colitis and cognitive decline
in mice, and E. coli might be associated with ageing-
dependent cognitive disorders.29 The increase of Desul-
fovibrio abundance coincided with abundant microglial
accumulation at sites of amyloid deposition in the brain of
ADmousemodels, which was viewed as an inflammation-
related bacterial profile.30 R. gnavus was also found to be
enriched in post-operative cognitive dysfunction.31 These
results suggested that the four specific species negatively
influenced the cognitive function, and these enrichments
accounted for the susceptibility of vulnerable group to
NCDs partly.
The PICRUSt predicted metagenome function showed

that glycolysis, CoA biosynthesis and the superpathway
of thiamine diphosphate biosynthesis were significantly
reduced in the vulnerable group compared with the con-
trol group. Glycolysis is the first studied pathway for the
utilization of glucose, which is one of the major pathways
of central metabolism. It is essential under all conditions
of growth.32 CoA is a cofactor in a great number of enzy-
matic reactions and is crucial to intermediary metabolism,
including oxidation of fatty acids, carbohydrates, and
amino acids, and its derivatives are vital intermediates
in energy metabolism. The biosynthesis of CoA is asso-
ciated with the human neurodegenerative disorder with
mutations in pantothenate kinase.33,34 Thiamine diphos-
phate, a thiamine (vitamin B1) derivative, is also known
to play a fundamental role in energy metabolism. It is an
essential cofactor for a variety of enzymes such as pyru-
vate dehydrogenase, transketolase, pyruvate decarboxylase
and α-ketoglutarate dehydrogenase. A case–control study
demonstrated that high thiamine diphosphate level is a
protective factor for AD.35 The reduced function of these
three pathways in the vulnerable groupmay result inNCDs
someday.
The metabolomics results of the faecal sample showed

that alpha-ketoglutaric acid was the most significantly dif-
ferential faecalmetabolites in the vulnerable group. Alpha-
ketoglutaric acid, also referred to as alpha-ketoglutarate
(AKG), is one of two ketone derivatives of glutaric acid.
It is a crucial intermediate in the TCA cycle.36 AKG can
reverse dysfunctional mitochondria induced by oxidative
stress. The oxidative stress impairs the ability of astrocytes
to generate ATP, which is a common cerebral charac-
teristic in AD patients.37 It has also been demonstrated
that AKG also had significant neuroprotective effects
by modulating the levels of reactive oxygen species in
HT22 hippocampal neuronal cells.38 The AUC value in
our study indicated that the predictive ability of alpha-
ketoglutaric acid for NCDs was reasonable in Macao
elders.

The change in vitamins content is significant as well.
A randomized controlled trial demonstrated that folic
acid was beneficial to patients with AD by reducing
inflammation.39 Moreover, a cross-sectional study in the
older hospitalized patients revealed that patients with
dementia and delirium had lower whole blood thiamine
compared to those without.40 4-Pyridoxic acid is the
product of vitamin B6, and it was increased in serum
of MCI (mild cognitive impairment) and AD patients.41
The main function of pantothenic acid, also called vita-
min B5, is the synthesis of CoA and acyl carrier protein.
A study had found that dietary intake of pantothenic
acid was associated with cerebral amyloid burden in
patients with cognitive impairment.42 Increase in folic
acid, thiamine and 4-pyridoxic acid, but decrease in
pantothenic acid in the vulnerable group, may be due
to vitamin digestion and absorption pathway difference.
Besides the TCA cycle, both glyoxylate and dicarboxylate
metabolism and ascorbate and aldaratemetabolism belong
to carbohydrate metabolism. Glyoxylate and dicarboxylate
metabolism was associated with the TCA cycle via a con-
nection with oxaloacetate. The lipid peroxidation caused
by the accumulation of oxygen-free radicals can impair
synaptic interactions and cognitive function. Ascorbate
and aldarate involved antioxidant defence mechanisms.43
Alanine, aspartate and glutamate metabolism, and d-
glutamine and d-glutamate metabolism were both related
to mitochondrial functions.44 Glutamate can be pro-
duced by several representing environmental bacteria
or strains used in food fermentation and also be syn-
thesized by lactic acid bacteria strains such as Lacto-
coccus lactis, Lactobacillus plantarum and Lactobacillus
paracasei.45,46 Gut microbiota, including Campylobac-
ter jejuni and B. vulgatus, affect glutamate metabolism.
Moreover, l-glutamate can be converted to d-glutamate
with glutamate racemase and gut bacteria, including Bre-
vibacterium avium, Brevibacterium lactofermentum and
Corynebacterium glutamicum.47
eIF2α and MAO-A were both reduced in urinary exo-

somes protein in the vulnerable group according to the
proteomics. It has been reported that eIF2α phosphory-
lation is significantly increased in the brains of different
lines of APP/PS1 transgenic mice as well as AD patients.48
The environmental and genetic risks for AD may be
associated with modulation of the eIF2α phosphoryla-
tion pathway because the accumulation of amyloid-beta
(Aβ) could induce eIF2α phosphorylation.49 It suggested
that decreased eIF2α in the vulnerable group could be
attributed to its phosphorylation. MAO-A-induced neu-
rotransmitter alteration was related to AD directly and
the activated MAO-A involved the aggregation of Aβ and
neurofibrillary tangles. It also impaired cognitive func-
tion through the damage of cholinergic neurons and the
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cholinergic system.50 Compared with the control group,
a possible explanation for the decrease of MAO-A in the
urinary exosomes in vulnerable group was that with more
activated MAO-A in the brain, less would be metabolized
in the urine.
The KEGG pathway analysis of enriched urinary

exosomes proteins showed glycine, serine and thre-
onine metabolism, tyrosine metabolism, tryptophan
metabolism, phenylalanine metabolism, serotonergic
synapse, histidine metabolism, dopaminergic synapse and
arginine and proline metabolism were decreased in the
vulnerable group. These results are following recent stud-
ies indicating that phenylalaninemetabolism and arginine
and proline metabolism presented downregulation in
patients with AD and amnestic MCI.51 Besides, tyrosine
metabolism can produce succinic acid involved the TCA
cycle.52 AD patients showed a significant decreased
activity of polyamine and tryptophan–kynurenine
metabolisms.53 In addition, the AD mouse model sug-
gested that the degeneration of ventral tegmental area
dopaminergic neurons at pre-plaque stages contributed
to cognitive impairment and dysfunction of reward
processing.54 Additionally, we expect further study can
combine transcriptomics with proteomics approaches to
test exosomes and discover more precise mechanisms of
susceptible to NCDs elders.
Correlation analysis of multi-omics is a good method

to explore the predictors in the vulnerable group. In
this study, we used the two-by-two correlation strat-
egy to identify microbiome–metabolites and microbiome–
proteins correlation pairs, respectively. Eventually, we
obtainedR. gnavus -folic acid-eIF2α,E. coli-eIF2α,D. piger -
anandamide-eIF2α and MAO-A, L. eligens –Υ-l-glutamyl–
l-glutamic acid correlation pairs, which involved glyoxy-
late and dicarboxylate metabolism, vitamin digestion and
absorption and TCA cycle. Compared with previous stud-
ies in other regions and countries, we find that there
exists some similarity results in gut microbiota analysis
for early prediction of NCDs. For example, the stud-
ies conducted in Singapore and the Netherlands also
suggested that Ruminococcus was correlated with cogni-
tive functions, which was regarded as risk indicators of
MCI.55,56 Moreover,most of the subjects in the studieswere
female, suggesting that Ruminococcus should exert a more
predominant role for woman cognitive functions. Addi-
tionally, some research evidenced unique compositions in
blood, for example, plasma Aβ42/40 and phosphorylated-
tau217 (Swedish longitudinal study), serum amyloid P,
endothelin-1 and interleukin-2 (US study), C-reactive
protein (Finland study) and adiponectin (Spain study)
contributed to a varying extent prediction of cognitive
function evolution.57–60 It is different from our findings
from faecal metabolomic and urine exosomes proteomic
analysis.

Interestingly, these multi-omics characteristics in the
vulnerable group are closely associated with the patho-
genesis of NCDs, which is consistent with our previous
cross-sectional study. Hence, it is conceivably hypothe-
sized that the vulnerable population is susceptibility to
NCDs. Meanwhile, the 2-year follow-up outcomes sup-
ported the assumption, because the neurocognitive scores
CAGR in vulnerable elders were significantly decreased.
Although the small sample size is regarded as the limi-
tations in the present study, the representability has still
certain significance. Due to the complicated factors, for
example, age, education level, habits of exercise and diet,
and sleep duration, affecting the neurocognitive function
in the elderly population, it caused only 21 samples were
accordance with the research requirements after screen-
ing 400 elder individuals. In further studies, we will
continue to expand the sample size, and conduct longi-
tudinal studies to test the time course of alterations and
their relationship with NCDs by the detection of relevant
metabolites in plasma, specific phosphorylated proteins,
and imaging technologies, such as functional MRI, which
contributes to more comprehensive prediction for the vul-
nerable populations’ susceptibility to NCDs. Moreover,
we compared the difference of gut microbiota abundance
between enrolled elders already suffering from mild NCD
and vulnerable subjects, and the results suggested that
the abundances of four species of differential microbiota
in mild NCD group had similar change trend to those
in vulnerable group, which further validates the convic-
tion of our differential microbiota findings (Figure S2).
In addition, our initial experimental results also demon-
strated that pseudo germ-free aged C57 mice administered
by the transplantation of faecal microbiota from NCDs
donor suggested the decrease of escape latency in the 5-day
navigation test, indicating cognitive deficits (Figure S3).
The concise mechanisms need to be defined by FMT in
further study.
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