
NeuroImage 256 (2022) 119253 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Resting-state functional connectivity of social brain regions predicts 

motivated dishonesty 

Luoyao Pang 

a , b , c , Huidi Li d , Quanying Liu 

e , Yue-Jia Luo 

b , f , g , ∗∗ , Dean Mobbs h , Haiyan Wu 

a , ∗ 

a Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macao 
b Center for Brain Disorders and Cognitive Sciences, Shenzhen University, China 
c College of Psychology and Sociology, Shenzhen University, China 
d Department of psychology, McGill University, Canada 
e Shenzhen Key Laboratory of Smart Healthcare Engineering, Southern University of Science and Technology, China 
f The Research Center of Brain Science and Visual Cognition, Kunming University of Science and Technology, China 
g College of Teacher Education, Qilu Normal University, China 
h Division of the Humanities and Social Sciences, California Institute of Technology, USA 

a r t i c l e i n f o 

Keywords: 

Functional connectivity 

Resting-state fMRI 

Dishonesty 

Machine learning 

Predictive modeling 

reproducibility 

a b s t r a c t 

Motivated dishonesty is a typical social behavior varying from person to person. Resting-state fMRI (rsfMRI) is 

capable of identifying unique patterns from functional connectivity (FC) between brain regions. Recent work 

has built a link between brain networks in resting state to dishonesty in Western participants. To determine and 

reproduce the relevant neural patterns and build an interpretable model to predict dishonesty, we analyzed two 

conceptually similar datasets containing rsfMRI data with different dishonesty tasks. Both tasks implemented 

the information-passing paradigm, in which monetary rewards were employed to induce dishonesty. We ap- 

plied connectome-based predictive modeling (CPM) to build a model among FC within and between four social 

brain networks (reward, self-referential, moral, and cognitive control). The CPM analysis indicated that FCs of 

social brain networks are predictive of dishonesty rate, especially FCs within reward network, and between self- 

referential and cognitive control networks. Our study offers an conceptual replication with integrated model to 

predict dishonesty with rsfMRI, and the results suggest that frequent motivated dishonest decisions may require 

the higher engagement of social brain regions. 
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. Introduction 

Dishonesty is defined as the act of deliberately concealing the truth

r conveying false information, with the purpose of gaining benefits

r avoiding loss ( Abe, 2011 ; DePaulo et al., 2003 ). Although dishon-

sty is regarded as a violation of the moral code, it is essential for sur-

ival and adaptation ( Buss, 2019 ). In the in-lab experiments, accord-

ng to the experimental manipulation, dishonesty can be divided into

wo types, instructed dishonesty and motivated (or spontaneous) dis-

onesty ( Wu et al., 2009 ; Sai et al., 2018 ). For the former, participants

ake honest or dishonest responses according to the given instructions

 Wu et al., 2009 ); for the latter, participants usually lie spontaneously

nder material or monetary incentives ( Sai et al., 2018 ). In developmen-

al psychology, motivated lies have appeared in early childhood ( Fu and

ee, 2007 ). Various motivations drive this kind of dishonesty. For exam-

le, people may commit self-serving dishonesty for their own benefit or

rosocial dishonesty for the benefit of others. In this study, we focus on
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otivated dishonesty driven by self-interest to investigate the individual

ifferences and the neural associations underlying it. 

Existing task-based fMRI studies have been investigating the neural

echanisms of dishonest behavior (either the instructed dishonesty or

he motivated dishonesty) and found that dishonesty is associated with

any brain areas, including motivation system, cognitive control sys-

em, reward system, moral system and so on. For example, dishonesty

ith selfish motivations leads to increased striatum activity and stronger

C between valuation and cognitive control networks ( Cui et al., 2018 ;

ornpattananangkul et al., 2018 ). In contrast, altruistic dishonesty is

onsidered more acceptable and results in decreased anterior insula (AI)

ctivity ( Lewis et al., 2012 ; Yin et al., 2017 ). Since being dishonest has

o inhibit automatic honest responses or resist reward temptation, cog-

itive control is involved in dishonesty ( Bargh and Chartrand, 1999 ;

reene and Paxton, 2009 ; Haidt, 2001 ). Evidence from fMRI studies con-

istently shows that dishonest responses activate brain regions related

o cognitive control, such as the dorsolateral prefrontal cortex (DLPFC),
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he ventrolateral prefrontal cortex (VLPFC), the medial frontal cortex

MFC), and the anterior cingulate cortex (ACC) ( Christ et al., 2009 ;

arah et al., 2014 ). Moreover, as the reward is usually employed to mo-

ivate individuals to lie, outcomes of successful dishonest choices elicit

tronger activation in the reward system, such as the ventral striatum

nd posterior cingulate cortex (PCC) ( Sun et al., 2015 ). Interestingly,

he neural response to anticipated reward in the nucleus accumbens

NAcc) can significantly predict dishonest behavior in an incentivized

rediction task ( Abe and Greene, 2014 ), indicating that the expecta-

ion of reward is critical in motivated dishonesty. In addition to the

bove processes, morality and self-reference may act as modulators in

he middle. For example, participants who paid lower costs for harm-

ng others have stronger dorsal striatal responses to the profits gained

rom doing so ( Crockett et al., 2017 ). Compared with the undetected

ishonesty paradigm, the sender-receiver paradigm can arouse stronger

elf-reference due to the presence of the recipient, leading to increased

elf-evaluation and neural responses in the orbitofrontal cortex (OFC)

nd prefrontal cortex (PFC) ( Cui et al., 2018 ; Hughes and Beer, 2013 ;

in et al., 2017 ). 

Although task-based fMRI can directly locate the brain regions un-

er a specific task, rsfMRI embodies spontaneous neural activity, and

he resting-state brain networks obtained by rsfMRI can predict individ-

al differences ( Biswal et al., 1995 ; Raichle, 2011 ). It has been demon-

trated that there is a sizable overlap between one’s rsfMRI and task-

MRI(i.e., 80%, see ( Biswal et al., 1995 )). A recent theory proposed

hat spontaneous fluctuations of correlated activity within and across

rain regions at rest may reflect the most common perceptual, motor,

ognitive, and interoceptive states, which are proactive and predictive

 Pezzulo et al., 2021 ). Apart from fundamental cognitive functions (e.g.,

erception and attention), rsfMRI can also be used to predict compli-

ated social behaviors ( Bellucci et al., 2019 ; Christov-Moore et al., 2020 ;

i et al., 2013 ; Shi et al., 2018 ; Tian et al., 2017 ). One hot topic is

hether the pre-task rsfMRI can be used to predict individual dishon-

sty. Compared with the task-fMRI, rsfMRI is more convenient in data

ollection, and the protocol is easier if we are interested in predicting

ies in daily life ( Bettus et al., 2010 ; Lin et al., 2018 ). To this end, we

ill explore whether brain activity during rsfMRI can predict incentive

ishonesty. 

The functional connectivity analysis using rsfMRI has been applied

o explore individual differences in dishonesty, providing neural insights

nto the cognitive framework. The cognitive processes (including reward

aluation, self-reference, moral regulation, and cognitive control) and

heir interactions are proved to be the main predictors of the frequency

f someone’s dishonest behavior ( Speer et al., 2020 , 2022 ; Yin et al.,

021 ). Specifically, for brain regions involved in reward processing such

s caudate and NAcc, it has been found that their FC with medial PFC

a key region in self-referential processing) is positively correlated with

onesty, which suggests the potential of promoting honesty by incorpo-

ating internal value into reward evaluation ( Yin et al., 2021 ). This is

onsistent with the evidence from another taskbased fMRI study, which

uggests that the self-processing network, mainly consisting of mPFC,

CC, and temporoparietal junction (TPJ), may maintain a positive self-

mage and thereby increase honesty ( Speer et al., 2020 ). Moreover,

trengthened FC between self-referential network and cognitive control

etwork may prompt honesty ( Speer et al., 2020 ). In addition, stronger

C between cognitive control network and reward network may be asso-

iated with a higher tendency to be dishonest, no direct evidence from

sfMRI studies though ( Pornpattananangkul et al., 2018 ). Although stud-

es have confirmed the contribution of social brain networks (reward,

elf-referential, moral, and cognitive control) in predicting dishonesty,

t is still unclear whether the results could be generalized to different

aradigms and different cultures. 

One rsfMRI-based approach commonly used for predicting dishon-

sty is the connectome-based prediction modeling (CPM) ( Ren et al.,

021 ; Shen et al., 2017 ), which aims to build a brain-behavior rela-

ionship through the cross-validated predictive model. To ensure the
2 
eneralization of the model, two or more independent datasets are

sually employed. In this study, we used two datasets with conceptu-

lly similar paradigms, one for internal validation, the other for exter-

al validation. Recently, a big concern of brain-behavior association

s the reproducibility and replicability of these studies ( Marek et al.,

022 ; Klapwijk et al., 2021 ; Valk et al., 2020 ). Researchers call for a

ather big sample or more replication studies to reveal similar corre-

ations between brain connectivity and human behavior. For example,

arek et al. (2022) argue that reproducible brain-wide association stud-

es require thousands of samples. Therefore, we are also interested in the

eproducibility of the link between dishonesty and the related networks

roved in Speer et al. (2022) . To test our hypothesis with replicable pre-

ictive effect on social brain regions, we further explore whether such

redictive effect of resting-state FC (rsFC) features in dishonesty predic-

ion would be replicated in two samples in eastern culture, with small

ample size and different tasks. 

In this study, we used the incentive dishonesty paradigm

information-passing task) and performed comprehensive rsfMRI analy-

es to explore the relationship between individual variations in dishon-

st behavior and its neural patterns, especially FCs between social brain

egions and networks. In the dishonesty task, we asked participants to

end information (food preference or answer of a trivia question) to an-

ther player with an assigned reward to motivate participants to pass

he true information (honest condition) or to pass the wrong informa-

ion (dishonest condition). Eight-minute rsfMRI was scanned just before

he task. This study mainly focused on: (i) bridging FCs within and be-

ween social brain networks (reward, self-referential, moral, and cogni-

ive control) with dishonesty through the CPM analysis ( Section 2.4 );

ii) forming an integrative view of the rsfMRI predictive model for dis-

onesty based on the findings (See Fig. S1 for the pipeline of the study);

iii) replicating the recent work ( Speer et al., 2022 ) on FCs of networks

redicting dishonesty. 

. Methods 

.1. Internal validation dataset 

.1.1. Participants 

Thirty-one participants (16 females) participated in the fMRI experi-

ent (age: mean ± SD = 23.74 ± 4.08). Two participants were excluded

ue to excessive head movements ( > 2 mm or > 2°). The remaining

9 participants (15 females) ranged from 18 to 39 years old (mean ±
D = 23.86 ± 4.16). We recruited participants from the student com-

unity at the university. All participants were right-handed and had no

istory of neurological or psychiatric disorders. Participants gave writ-

en informed consent after being provided with a complete description

f the study. Participants received full debriefing after the completion

f the experiment. All procedures involved were in accordance with the

eclaration of Helsinki and were approved by the Institutional Review

oard (IRB) of the Institute of Psychology, Chinese Academy of Sciences.

.1.2. The procedure of the task 

The task used in the current dataset was taken from a series of ex-

eriments which include seven sessions (see supplementary materials

or description of the whole experiment). From the participants’ per-

pective, the whole experiment was about information receiving and

assing. For this study, we only focused on session 3 of the experiments

an information-passing task). In this task, the participants played the

ole of information sender, passing the food preference information to

nother player (receiver) with consideration of the amount of reward.

lthough we told participants that the receiver might get more reward

nits if he or she chooses more correct answers based on the received

nformation, there was no real ”receiver ” to receive the information,

nd there was no further interaction between participants and the re-

eiver. In total, we selected 24 pairs of food and randomly chose the
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Fig. 1. The information-passing task. (a) A single trial example of the task used in the internal validation dataset. The participant played as an information sender 

to pass food preference information to another player with consideration of reward units. (b) Possible responses of participants. Honest decision refers to participants 

passing the true information based on their memory; Dishonest decision refers to participants passing the false information for more rewards. (c) The histogram of 

dishonesty rate across participants for the internal validation dataset ( N = 29). (d) The histogram of dishonesty rate across participants for the external validation 

dataset ( N = 25). 
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referred food in each pair. The food images were selected from Food-

ics Extended ( http://food-pics.sbg.ac.at ) . Each participant had a learn-

ng session to memorize the list of the preferred food. The dishonesty

ask would not start unless the accuracy of all 24 pairs of food reached

bove 90%. Thus participants knew the correct answer for all questions.

n each trial ( Fig. 1 a), the question and two answers were presented for

 s, and then the reward corresponding to each food was presented on

he left and right sides. Participants had to choose an answer within 4 s.

he chosen answer and the resulting reward would be highlighted for

 s. The jitters between trials were 2–8 s (mean = 4 s). 

Trials with a higher reward for the true answer were defined as

he honest condition . In contrast, trials with a higher reward for the

rong answer to motivate dishonesty were defined as the dishonest

ondition . The reward units were drawn from a uniform distribution

2 , 4 , 6 , 8], using pseudo-random sampling with replacement. Both the

onest and dishonest conditions consisted of 96 trials separated into four

uns. Each pair of food items were repeated eight times, with two times

n each run. Possible responses of participants were shown in Fig. 1 b.

he dishonesty rate was defined as the proportion of false information

elivered in the dishonest condition, calculated to measure self-serving

ying behavior. 

.1.3. MRI acquisition 

MRI data was collected with a General Electric 3T scanner (GE Dis-

overy MR750). The rsfMRI data was collected by an echo-planar imag-

ng (EPI) sequence utilizing gradient echo. Slices were acquired in inter-

eaved order and the data consisted of 200 whole-brain volumes (repe-

ition time (TR) = 2000 ms, echo time (TE) = 21 ms, flip angle = 90°,

lice number = 42, slice thickness = 3.5 mm, matrix size = 64 × 64, field

f view (FOV) = 200 mm, and voxel size = 3.1 × 3.1 × 3.5 mm 

3 ). T1-

eighted structural image data was collected for anatomical reference

sing a 3D magnetization-prepared rapid gradient-echo (MPRAGE) se-

uence (TR = 2530 ms, TE = 2.34 ms, flip angle = 7°, FOV = 256 mm,
3 
lice number = 176, slice thickness = 1 mm, in-plane matrix resolu-

ion = 256 × 256, FOV = 256 mm, and voxel size = 1 × 1 × 1 mm 

3 ). 

.2. External validation dataset 

.2.1. Participants 

Twenty-nine healthy participants (14 female; age: mean ±
D = 19.86 ± 3.69) from the University of Macau were recruited by

nline advertisement. One participant was excluded due to excessive

ead movements ( > 2 mm or > 2°). Three participants were excluded

ecause they remained honest throughout the whole experiment. All

articipants were right-handed with normal or corrected-to-normal vi-

ion and had not participated in any similar studies. All participants

igned the informed consent before the formal experiment, and the ex-

erimental protocol was approved by the Institutional Review Board of

he University of Macau (BSERE21-APP005-ICI). At the end of the study,

articipants were paid with a 130 - 150 mop supermarket coupon. 

.2.2. The procedure of the task 

The experiment was a self-paced information-passing task with nine

locks, conceptually similar to the internal validation task. Each block

onsisted of the same set of 20 trivia questions (e.g., What is the main

omponent of the Martian atmosphere?) in a randomized order. We in-

tructed the participants to pass an answer to another player consid-

ring the reward units and his or her past performance. In each trial,

orrect and incorrect answers were shown separately on the corner of

he screen. The correct answer was marked by a black circle. Apart from

he correct answer, the monetary reward of each choice and how many

imes participants had chosen this choice in the former blocks were also

rovided. To induce participants to make a trade-off between money

nd honesty, a higher reward was set for the incorrect answer in over

0% of trials. Participants had 4 s to make a response, feedback was

hown after the choice and lasted for 1 s. At the end of each finished

lock, the cumulative monetary reward of the block would be displayed

http://food-pics.sbg.ac.at
http://food-pics.sbg.ac.at/
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Fig. 2. Workflow for Connectome-based Predictive Modeling. (a) FC matrix construction. The time series of every brain region in the Power atlas was extracted 

and averaged ( Power et al., 2011 ). Brain regions that overlap with one or more social brain networks were preserved to construct the FC matrix. FC between each pair 

of ROIs was obtained by Pearson correlation of the averaged time series. A 112-by-112 FC matrix was constructed for each participant in the internal and external 

validation dataset. (b) Internal validation with LOOCV. Specifically, feature selection was applied to filter out FCs that might contribute to the prediction. Note that 

the feature selection was only used to training sets of the internal validation dataset. Then, linear regression was used to train the summed strength of FC from N − 1 
participants; the trained linear regression model was tested on the left-out one participant and output a predicted dishonesty rate. (c) External validation. Features 

that appeared every time of the internal cross-validation were treated as robust features to build a true model. This true model was trained on all samples of the 

internal validation dataset and tested on the external validation dataset. Abbrev.: CV, cross-validation; F, feature.(d) Permutation test for statistics. The significance 

of prediction was evaluated with 1000 permutations. 
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n the screen. Same as the internal validation task, trials with a higher

eward for the wrong answer to motivate dishonesty were defined as the

ishonest condition. The dishonesty rate was defined as the proportion

f false answers delivered in all trials. 

.2.3. MRI acquisition 

All MRI data were acquired using a 3.0 T Siemens MAGNETOM

risma MRI scanner with a 64channel head coil at the Center for Cog-

itive and Brain Sciences at the University of Macau. Highresolution

1-weighted images were acquired for each participant at first (3D

PRAGE sequence; voxel size = 1 × 1 × 1 mm 

3 ; FOV = 256 mm; 176

lices, slice thickness: 1 mm; TR = 2300 ms, TE = 2.26 ms, flip an-

le = 8°). Eight-minute rsfMRI data was collected by an echo-planar

maging (EPI) sequence before the task (voxel size = 2 × 2 × 2 mm 

3 ;

OV = 256 mm; 63 slices, slice thickness: 2 mm; TR = 1000 ms,

E = 30 ms, flip angle = 90°). 

.3. fMRI preprocessing 

The rsfMRI preprocessing was performed using the advanced

PARSF module V5.1 ( Yan et al., 2016 ). The first ten volumes were

iscarded due to the instability of the MRI signal. Then, all volume

lices were corrected for different signal acquisition times, following

ach participant’s time series of images. Individual structural images

T1-weighted MPRAGE) were co-registered to the mean functional im-

ge after realignment. The transformed structural images were seg-

ented into the gray matter (GM), the white matter (WM), and cere-

rospinal fluid (CSF) ( Ashburner and Friston, 2005 ). To remove the

uisance signals, the Friston 24-parameter model ( Friston et al., 1996 )

as utilized to regress out head motion, as well as the mean WM

nd CSF signals. The functional data from individual native space

as transformed to the standard Montreal Neurological Institute (MNI)

pace ( http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage ). Spa-

ial smoothing (FWMH kernel: 6 mm) was applied to the functional

mages for the connectivity analysis. Further, temporal filtering (0.01–

.1 Hz) was performed on the time series. The preprocessing of the

sfMRI data remained the same for both the internal and external val-

dation datasets. The only difference was that we skipped slice timing

or the external validation dataset as the TR is less than 2000 ms. 
4 
.4. CPM: support vector regression 

The workflow of CPM analysis was presented in Fig. 2 . The FC matrix

onstruction was conducted in the DPARSF toolbox. First, we extracted

he BOLD time series of 264 regions in the whole brain according to

he Power’s atlas ( Power et al., 2011 ). The 264 brain regions in the

ower’s atlas were divided into 14 brain networks. Since some of the

etworks were assumed to be irrelevant with dishonesty, such as au-

itory, visual, and sensory-somatomotor networks, we limited the CPM

nalysis to regions that overlap with brain networks crucial to social cog-

ition. Then, we obtained four association test masks from Neurosynth

 https://neurosynth.org/ ) using the following keywords, respectively:

eward, selfreferential, moral, and cognitive control. Due to the overlap

etween these networks, the same brain region in the atlas may be-

ong to multiple brain networks. To solve this problem, we calculated

he averaged Z-score (from a two-way ANOVA of Neurosynth) of each

ask within one brain region as supplementary evidence for ROI clas-

ification. For example, if an ROI had a higher Z-score for the reward

etwork than the self-referential network, we would attribute it to the

eward network. After the reduction, 48 ROIs were preserved due to

he overlap with the reward network, 29 ROIs were preserved due to

he overlap with the self-referential network, 18 ROIs were preserved

ue to the overlap with the moral network, and 17 ROIs were preserved

ue to the overlap with the cognitive control network. Finally, 112 ROIs

ere used to construct the FC matrix. A 112-by-112 FC matrix was ob-

ained by Pearson’s correlation between the averaged BOLD time series

f each pair of ROIs. Fisher’s Z transform was performed on Pearson’s

orrelation coefficient ( r ). The static FC matrix was calculated partici-

ant by participant, resulting in 29 FC matrices of the internal validation

ataset and 25 FC matrices of the external validation dataset. 

Then, we implemented a linear regression model to the internal vali-

ation dataset to predict individuals’ dishonesty rate using leave-one-out

ross-validation (LOOCV) ( Beaty et al., 2018 ; Dosenbach et al., 2010 ;

inn et al., 2015 ; Marek et al., 2022 ; Tipping, 1999 ). For each iteration

f LOOCV, participants were divided into training sets with 28 samples

 N - 1) and test sets with the left one sample. Following previous studies

 Beaty et al., 2018 ; Shen et al., 2017 ), only features that had a signifi-

ant association with behavioral indicators would be preserved for the

rediction. We conducted Pearson correlation between every FC in the

12-by-112 matrix and the dishonesty rate for each training set. The cri-

http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage
https://neurosynth.org/
https://neurosynth.org/
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Fig. 3. Performance of CPM on dishonesty prediction. (a) The Spearman correlation between the observed dishonesty rates and the predicted dishonesty rates 

of the internal validation. (b) The Spearman correlation between the observed dishonesty rates and the predicted dishonesty rates of the external validation. (c) The 

null distribution of the external validation Spearman’s 𝜌 values after 1000 permutations of the internal validation dataset. The dashed blue line indicates Spearman’s 

𝜌 of the true model. The permutation test resulting p value is 0.012. 
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erion for feature selection was that the FC should be significantly corre-

ated to the dishonesty rate with a threshold p < 0.01 ( Rosenberg et al.,

016 ; Takagi et al., 2018 ). Note that feature selection was applied to

nly the training sets to obtain relatively sparse features. Strengths of

elected FCs were summed by significant positive or negative associ-

tions (i.e., Pearson correlation’s r > 0 or r < 0) with the dishonesty

ate into two variables, which were then used as predictors in the lin-

ar regression model. LOOCV was performed 29 times ( N ), with each

articipant being the test sample once and resulting in 29 predicted dis-

onesty rates. Finally, the Spearman correlation’s 𝜌 and p value between

bserved dishonesty rates and predicted dishonesty rates were used to

valuate model performance, along with the mean squared error (MSE).

To test if the model of the internal validation dataset could be gen-

ralized to new samples, we performed an external validation. Due to

he LOOCV procedure described above, the selected features of each

teration were slightly different. Therefore, we kept features that ap-

eared in all 29 times of cross-validation to build a robust true model

 Bellucci et al., 2019 ; Shen et al., 2017 ). For example, as in Fig. 2 c, we

ould exclude feature number 3 and number 4 for further analysis since

hey were not selected in cross validation number 1, 3, 5. We trained a

odel using these robust features on all samples of the internal valida-

ion dataset and obtained coefficients for the two predictors (summed

ositive FC strength and summed negative FC strength). The same model

ith fixed features and coefficients were applied to each participant

f the external validation dataset. Similarly, the Spearman correlation

nd MSE were used to verify the true model ( Fig. 2 , Fong et al., 2019 ;

go et al., 2022 ; Rosenberg et al., 2016 ; Takagi et al., 2018 ). 

Permutation tests were used to evaluate the statistical significance

f the predictive model. Specifically, the observed dishonesty rates from

ll participants in the internal validation dataset were randomly shuf-

ed 1000 times. For each time of permutation, the entire process of

he internal validation was repeated with shuffled data. The predictive

odel derived from shuffled data would be tested on each participant of

he external validation dataset and output a predicted dishonesty rate.

hen we calculated the Spearman correlation coefficient ( 𝜌) between

he predicted and observed dishonesty rates. Finally, we counted the

umber of 𝜌 values from the 1000 permutations greater than the real

nes from the true model and divided it by the times of permutation

1000), obtaining the p value of the permutation test ( Poldrack et al.,

020 ; Scheinost et al., 2019 ; Speer et al., 2022 ; Zuo et al., 2019 ). 

To figure out which network or network pair contributes most to

ishonesty, we counted the number of preserved edges in the pre-

ictive model for each network pair. Inspired by previous studies

 Dosenbach et al., 2010 ; Speer et al., 2022 ), we also performed an it-
5 
rative analysis to assess the importance of features. For each time of

teration, we excluded one column of FC from the feature space and

etrained the model using the rest of FCs. Then we calculated the differ-

nce between the performance (correlation between predicted and ob-

erved values) of the true model and the incomplete model. Finally, dif-

erences with the same number of preserved FCs were ranked as feature

mportance. The original feature importance ranged from -0.04 to 0.07

true model performance - incomplete model performance), the higher

he more important. For the convenience of visualization, we enlarged

he original feature importance by standardizing them. The results were

isualized in a 4-by-4 matrix, with each entry denoting a network pair.

xcept for the concentrated four social brain networks, the 112 ROIs

lso belong to one of the 14 basic networks of the pre-defined Power’s

tlas. For the need of comparison, we also visualized the feature impor-

ance in a 11-by-11 matrix using Power’s atlas. Note that three of the 14

rain networks were excluded as these networks did not overlap with

he selected ROIs completely. 

. Results 

.1. Behavioral results 

The motivated dishonesty rate of 29 participants in the internal val-

dation dataset ranged from 0.004 to 0.51 (mean ± SD = 0.30 ± 0.16).

he motivated dishonesty rate of 25 participants in the external vali-

ation dataset ranged from 0.056 to 0.47 (mean ± SD = 0.32 ± 0.14).

he distributions of the dishonesty rate in each dataset were shown in

ig. 1 c and d, and both samples manifested pronounced individual dif-

erences. For debrief questions in both datasets, all participants declared

hey did not doubt the cover story and did not know the true purpose

f the experiment. 

.2. CPM results 

We used CPM to examine the degree to which the rsFC of certain so-

ial cognitive brain regions could predict dishonesty. Correlation matri-

es for static FC were built, respectively, and a linear regression model

as selected for training. For the internal validation, the model was

rained on N - 1 participants and tested on the left-out participant of the

nternal validation dataset. For the external validation, the model was

rained on all participants of the internal validation dataset and tested

n samples of the external validation dataset. The internal validation

emonstrated that summed strength of selected FCs can significantly

redict the dishonesty rate of participants ( Fig. 3 a; 𝜌 = 0.448, p = 0.015,
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Fig. 4. Visualization of CPM results. (a) All selected features in the predictive model were presented from three views. Nodes from different social networks 

were marked with different colors: dark cyan, green, pink, and purple represent cognitive control network, moral network, reward network, and self-referential 

network, respectively. Color bar represents the strength of association between features and the dishonesty rate. (b) According to the four social brain networks, the 

standardized feature importance within and between the same pair of networks were summed and visualized in a 4-by-4 coefficient matrix. Abbrev. : control, cognitive 

control network; self, self-referential network. (c) According to the network partition of Power’s atlas, the standardized feature importance within and between the 

same pair of networks were summed and visualized in a 11-by-11 coefficient matrix. Abbrev. : SOMH, somatomotor hand network; COTCN, cingulo-opercular task 

control network; AUD, auditory network; DMN, default mode network; MRN, memory retrieval network; FPTCN, fronto-parietal task control network; SN, salience 

network; SUB, subcortical network; VAN, ventral attention network; DAN, dorsal attention network; UN, uncertain. 
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SE = 0.028). The fixed model from the internal validation dataset was

hen tested on the external validation dataset. Similarly, the Spearman

orrelation between observed and predicted dishonesty rate resulted in

= 0.420 with significant level p = 0.037, MSE = 0.016 ( Fig. 3 c). We

oticed that all preserved features in the true model were positively cor-

elated with the dishonesty rate, thus there was only one coefficient for

he summed positive FC strength in the true model. To keep in line with

revious research schema ( Beaty et al., 2018 ; Shen et al., 2017 ), we re-

ained the negative association part of the model in our CPM workflow

 Fig. 2 c). The permutation test was conducted to examine the signifi-

ance of the true model. It demonstrated that the predictive power of

he true model is significantly greater than the chance level ( p = 0.012,

ig. 3 b), which means in the 1000 times of permutation only 12 times

he model worked out better on the shuffled data than the observed

ata. To summarize, the model built on the internal validation dataset

ould be generalized to the external validation dataset, indicating that

he summed strength of preserved FCs in the true model is highly pre-

ictive of the dishonesty rate. 
6 
All selected FCs in the true model were presented in Fig. 4 a through

ilearn ( Abraham et al., 2014 ). To better understand the predictive

odel of the CPM analysis, we visualized the number of selected edges

ithin and between networks according to the two attributions of each

OI (the four social networks and the Power’s networks, see Fig. S3).

he result demonstrated that all social brain networks contribute to the

rediction of dishonesty rate, especially FCs between reward and self-

eferential networks (12 edges). Moreover, an iterative analysis was

onducted to compare the importance of different features. Standard-

zed feature importance for edges connecting the same pair of networks

ere summed. According to the four social networks, the summed im-

ortance was higher for edges within the reward network and edges

onnecting reward and self-referential networks ( Fig. 4 b). Similarly,

he Power’s matrix showed that FCs between DMN and salience net-

ork (SN) play an essential role in predicting dishonesty ( Fig. 4 c).

omparing the counting matrix with the feature importance matrix,

e noticed that although more preserved features belong to connec-

ions between reward and self-referential networks, edges within re-
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ard network showed higher feature importance. This result indicated

hat feature importance should be taken into account in addition to

uantity. 

To confirm our hypothesis that rsFC of social brain regions are pre-

ictive of dishonest behavior and complement the CPM results, we fur-

her performed the ROI-based analysis and provided the results in sup-

lementary materials (Fig. S4 and Table S1). 

. Discussion 

The present study investigated whether rsFC can predict individuals’

otivated dishonesty, with two datasets. For both datasets, we designed

he information passing task with monetary reward temptation, and col-

ected rsfMRI data before the task. The correlation analyses between

ndividuals’ intrinsic FC and the spontaneous lying rate demonstrated

hat the rsFC of social networks can predict motivated dishonesty. Our

ork provides additional evidence linking individuals’ dishonest behav-

or and rsFC in critical cognitive networks, in line with previous studies

 Greene and Paxton, 2009 ; Speer et al., 2022 ; Yin et al., 2021 ; Yin and

eber, 2019 ). 

The results of the CPM analysis suggest that the strength of FCs

ithin and between the four social brain networks (i.e., reward, self-

eferential, moral, and cognitive control networks) can predict dishon-

sty. Among all selected features in the CPM, FCs within the reward

etwork and FCs between reward and self-referential networks showed

he most considerable contribution. These findings are consistent with

revious studies ( Sai et al., 2021 ; Speer et al., 2020 ; Yin et al., 2021 ).

or example, a meta-analyses research summarized 58 neuroimaging

tudies and found that spontaneous dishonesty consistently activate pre-

enual ACC and VLPFC, which are closely associated to reward and so-

ial cognition. A cross-age research has proved that FC between caudate

regarded as reward-related brain region) and mPFC (regarded as self-

elated brain region) can predict variations of self-reported trait hon-

sty ( Yin et al., 2021 ). Another study using CPM revealed that individu-

ls’ dishonest decisions are associated with the strength of FCs between

he self-referential and reward networks ( Speer et al., 2020 ). Compared

ith above-mentioned studies, we used a different kind of paradigm

o measure participants’ motivated dishonest behavior, named sender-

eceiver paradigm. Our findings replicated main results of these stud-

es that self-related and reward-related brain regions support dishon-

st behavior. Moreover, our findings highlighted the role of cognitive

ontrol network in predicting motivated dishonesty. In addition, the

ethod we obtain FC among social brain regions enabled us to intu-

tively compare contributions from the perspective of large-scale brain

etworks. 

.1. Reward network in dishonesty prediction 

As one drive to motivated unethical behaviors, monetary re-

ards is commonly used to induce selfinterest related moral decisions

 FeldmanHall et al., 2012 ). In both tasks of the internal and exter-

al validation dataset, we used monetary rewards to induce sponta-

eous dishonesty. As a result, the functional coupling within the re-

ard network maps out individuals’ sensitivity to money, which pro-

oundly influences dishonest behavior. These results echo previous work

ndicating that neural response to anticipated reward can predict dis-

onesty in another independent task ( Abe and Greene, 2014 ). Our re-

ent work addressed that honesty or dishonesty default depends on the

elf-interest ( Wu et al., 2021 ), honest responses are slower for self-

sh people since it is harder for them to resist the monetary temp-

ation. Combined with previous works showing value representation

s foundation of dishonesty ( Gross et al., 2014 ; Wang et al., 2014 ;

azit et al., 2020 ), the increased FCs in the reward network may imply

hat the stronger encoding of the rewards, the more motivated dishonest

ehavior. 
7 
.2. DMN in dishonesty prediction 

FC related to self-referential network is highly predictive of dishon-

st decisions as well. Based on Power’s atlas( Power et al., 2011 ), FCs

ithin the DMN have a dominant effect in the prediction. Given the

rominent role of the DMN in generating internally-direct thought and

rocessing self-related information, it proves the importance of self-

elated neural activity in predicting dishonesty ( Molnar-Szakacs and Ud-

in, 2013 ; Qin and Northoff, 2011 ). Furthermore, FC between reward

nd self-referential networks may reflect that the reward representation

s modulated by self-awareness ( Ross et al., 2011 ; Speer et al., 2020 ).

articipants with solid self-awareness have stronger motivation to main-

ain self-image and resist temptation ( Yin et al., 2021 ). In keeping with

hat, the increased FC between reward and self-referential networks in-

icates the process of balancing between reward and self-worth. More-

ver, self-awareness forces individuals to behave under moral code and

ocial norms, resulting in strengthened FC between self-referential and

oral networks. 

.3. Cognitive control network in dishonesty prediction 

Consistent with previous work, our findings showed that the neural

ctivity of the cognitive control network affects the prediction by links

ith the other three social networks. Several lines of evidence support

hese links. Theoretically, lying requires the recruitment of cognitive

esources to solve the conflicts between money temptation, self-image,

nd moral norm ( Van’t Veer et al., 2014 ). Since the cognitive control net-

ork is related to executive function, including conflict monitoring and

esolution, frequent lying may result in a greater likelihood of exerting

op-down control on other related cognitive networks ( Brydges et al.,

020 ; Jiang et al., 2018 ; Marek and Dosenbach, 2018 ; Van’t Veer et al.,

014 ; Wang et al., 2010 ). Also, it was found that the cognitive control

etwork may play a role in rationalization to resolve cognitive disso-

ance ( Jarcho et al., 2011 ). Therefore, the strengthened FCs between

ognitive control and the other three networks may be associated with

ore dishonesty by resolving the moral conflict and rationalizing the

ishonesty. These findings further accentuate the close association be-

ween the increased connectivity of the four social cognitive networks

nd human’s adaptive dishonesty. 

.4. Replicable effect from rsFC to dishonesty prediction 

To deal with the recent concern on the reproducibility and repli-

ability of neuroimage studies, much efforts and attempts in develop-

ng workflows, tools, and guidelines that aim to increase them in re-

earch have been made ( Dosenbach et al., 2017 ; Kundu et al., 2012 ;

arek et al., 2022 ). Since obtaining MRI data remains expensive and

cquiring big sample size is difficult for rarer clinical conditions, small-

ample neuroimaging will always be critical for studying the human

rain ( Marek et al., 2022 ). Our work, contributes to this field as one

ractices that can be implemented in other labs worldwide, which is

o reproduce previous findings in different samples, different cultures,

ifferent tasks, though with small sample size. A critical consideration

elating to small sample size is the statistical power, however, the repli-

ation study with prior hypothesis and cross validation can still con-

ribute evidence and confirm existing findings ( Scheinost et al., 2019 ).

lthough it is hard to define ”successful ” replication with small sam-

le size, our results largely overlap with previous studies in predicting

ishonesty ( Speer et al., 2022 ; Yin et al., 2021 ). 

.5. Limitations of the current study 

There are several limitations in the current study. First, the behav-

oral tasks in both the internal and external validation datasets ( Fig. 1 )

re more complex than common paradigms. Participants cannot lie in

rivate but have to deceive others for more rewards, which may lead
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hem to be distracted by self-evaluation ( Cui et al., 2018 ). Without post-

hecking of the awareness of possible dishonesty after the task, it makes

he interpretation or inference of the propensity of dishonesty harder

n individuals with low lie rate or not lied at all. We have excluded

hree participants with zero dishonesty rate in the external validation

ataset. After including these three participants, the generalizability of

he model went worse ( 𝜌 = 0.329, p = 0.088). Second, FCs are measured

y Pearson correlation which cannot reflect the directionality of the in-

eractions between brain regions, thus our findings cannot reveal the

ausal effects of FCs on dishonesty either. Most importantly, although

e did external validation using another independent dataset and the

rue model survived the permutation test, the relatively small sample

ize may bring bias and variance to the model ( Scheinost et al., 2019 ).

ccording to the recent paper, a sample size of about 2000 is required

or the reproducibility of models between rsFC and cognitive ability

 Marek et al., 2022 ). Furthermore, this study only focused on the cogni-

ive system of dishonesty while ignoring the emotion system. According

o previous studies, individuals cannot avoid emotion fluctuations in the

rocess of lying, therefore emotion could be an important indicator of

ie detection ( Greene and Haidt, 2002 ; Moll et al., 2002 ). How the cog-

ition and emotion systems interact in the process of lying and whether

hese interactions can be manifested at the neural level remains to be

xplored in the future. 

. Conclusion 

In summary, the CPM analysis across two datasets demonstrated that

C during resting-state can predict dishonesty. Increased FCs within the

eward network and between reward and self-referential networks can

trongly predict dishonesty, indicating top-down control of self-related

rocessing. The results reflect an essential role of social brain regions in

romoting dishonest behavior and such effect is reproducible in several

tudies. 
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