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Abstract 21 

Background: Interrater reliability, aka intercoder reliability, is defined as true agreement 22 

between raters, aka coders, without chance agreement. It is used across many disciplines 23 

including medical and health research to measure the quality of ratings, coding, diagnoses, or 24 

other observations and judgements. While numerous indices of interrater reliability are 25 

available, experts disagree on which ones are legitimate or more appropriate. 26 

Almost all agree that percent agreement (ao), the oldest and the simplest index, is also 27 

the most flawed because it fails to estimate and remove chance agreement, which is produced 28 

by raters’ random rating. The experts, however, disagree on which of the chance-adjusted 29 

indices are legitimate or better. The experts also disagree on which of the three factors, rating 30 

category, distribution skew, or task difficulty, a good index should rely on to estimate chance 31 

agreement, or which of the factors the known indices in fact rely on.  32 

The most popular chance-adjusted indices, according to a functionalist view of 33 

mathematical statistics, assume that all raters conduct intentional and maximum random 34 

rating while typical raters conduct involuntary and reluctant random rating. The mismatch 35 

between the assumed and the actual rater behaviors causes the indices to rely on mistaken 36 

factors to estimate chance agreement, leading to the numerous paradoxes, abnormalities, and 37 

other misbehaviors of the indices identified by prior studies.   38 



 

Methods: We conducted a 4×8×3 between-subject controlled experiment with 4 subjects per 39 

cell. Each subject was a rating session with 100 pairs of rating by two raters, totaling 384 40 

rating sessions as the experimental subjects. The experiment tested seven best-known indices 41 

of interrater reliability against the observed reliability and chance agreement. Impacts of the 42 

three factors, i.e., rating category, distribution skew, and task difficulty, on the indices were 43 

tested. 44 

Results: The most criticized index, percent agreement (ao), showed as the most accurate 45 

predictor of reliability, reporting directional r2=.84. It was also the third best approximator, 46 

overestimating observed reliability by 13 percentage points. The three most acclaimed and 47 

most popular indices, Scott’s π, Cohen’s κ and Krippendorff’s α, underperformed all other 48 

indices, reporting directional r2=.312 and underestimated reliability by 31.4~31.8 points. The 49 

newest index, Gwet’s AC1, emerged as the second-best predictor and the most accurate 50 

approximator. Bennett et al’s S ranked behind AC1, and Perreault and Leigh’s Ir ranked the 51 

fourth both for prediction and approximation. The reliance on category and skew and failure 52 

to rely on difficulty explain why the six chance-adjusted indices often underperformed ao, 53 

which they were created to outperform. The evidence corroborated the notion that the chance-54 

adjusted indices assume intentional and maximum random rating by the raters while the 55 

raters instead exhibited involuntary and unwilling random rating.  56 



 

Conclusion: The authors call for more empirical studies and especially more controlled 57 

experiments to falsify or qualify this study. If the main findings are replicated and the 58 

underlying theories supported, new thinking and new indices may be needed. Index designers 59 

may need to refrain from assuming intentional and maximum random rating, and instead 60 

assume involuntary and reluctant random rating. Accordingly, the new indices may need to 61 

rely on task difficulty, rather than distribution skew or rating category, to estimate chance 62 

agreement. 63 

Key words: intercoder reliability, interrater reliability, reconstructed experiment, Cohen’s 64 

kappa, Krippendorff’s alpha,. 65 
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Interrater Reliability Estimators Tested against True Interrater Reliabilities 67 

 68 

Background 69 

Intercoder or interrater reliability is used to measure measurement quality in many 70 

disciplines, including health and medical research (1–10). A search of databases including 71 

Google Scholar, Scopus, and Web of Science found dozens of terms in academic literature, 72 

such as diagnostician for inter-diagnostician reliability and patient for inter-patient reliability, 73 

showing the concept’s broad reach -- 74 

annotator, arbitrator, assessor, auditor, diagnostician, doctor, editor, evaluator, 75 

examiner, grader, interpreter, interviewer, judge, monitor, observer, operator, patient, 76 

pharmacist, physician, reader, referee, reporter, researcher, respondent, scorer, 77 

screener, student, supervisor, surgeon, teacher, tester, therapist, transcriber, translator, 78 

user, voter. 79 

Likely the earliest index is percent agreement, denoted ao (9,11). Almost all reliability 80 

experts agree that ao inflates reliability because it fails to remove chance agreement (ac) (2–81 

5,12–14). Scores of indices have been proposed to estimate and remove ac. Bennett and 82 

colleagues’ S and Perreault and Leigh’s Ir estimate ac as functions of category (C) (7,15). 83 

Scott’s π, Cohen’s κ and Krippendorff’s α estimate ac as functions of distribution skew (sk) 84 

(2,16–19). Gwet’s AC1 makes ac a function of both category and skew. Although many other 85 

indices are available and new indices continue to emerge, only these seven are in regular use 86 

and continue to be recommended or advocated, according to comprehensive reviews (14,20–87 

26).  88 



 

Using derivation or simulation, statisticians discuss and debate three questions: 1) 89 

Which indices are valid or more accurate when estimating reliability or chance agreement? 2) 90 

What factors affect the indices? 3) What factors should affect the indices? Answers to 91 

Questions 2 and 3 explain the answers to Question 1 (14,27). Underlying the debates are five 92 

viewpoints, the first of which is widely shared by almost all experts, while the others are 93 

contested, often heatedly. The five viewpoints lead to five groups of conjectures, which we 94 

list below and leave the details to Appendix, Section I.2. 95 

1.  Percent agreement (ao) ignores chance agreement (ac), therefore is inflated. 96 

2.  Rating category (C) inflates S, Ir, and AC1 by deflating the indices’ ac 97 

estimates. 98 

3.  Distribution skew (sk) deflates π, κ & α by inflating the indices’ ac estimates. 99 

4.  Major indices overlook task difficulty, a major factor affecting ac; 100 

consequently, they misestimate reliability. 101 

5.         Chance-adjusted indices, S, π, κ, α, Ir, and AC1 included, assume intentional 102 

and maximum chance rating by all raters; it is under this assumption that the 103 

chance-adjusted indices share the same chance correcting formula, Equation 1, 104 

where ao is observed %-agreement, ac is estimated chance agreement, and ri is 105 

estimated true agreement, i.e., reliability index. 106 
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The intentional-random assumption, aka maximum-random assumption, is said to be a 107 

root cause of many known paradoxes, abnormalities, and other misbehaviors of the indices, 108 

because raters are believed to be honest and truthful. Random ratings, if any, should be 109 

involuntary rather than intentional, task-dependent rather than invariably maximized (14,21–110 

24,26,28–30). 111 

Chance agreement is a product of rater behavior, and the debates are ultimately about 112 

rater behavior (14,31): What behaviors are assumed by the indices’ estimations? What 113 

behaviors in fact take place? Do the assumptions match the behaviors? The debaters rely on 114 

theoretical arguments, mathematical derivation, fictitious examples, naturalistic comparisons, 115 

and Monte Carlo simulation. A systematic observation of rater behavior is needed to inform 116 

the debates over rater behavior. 117 

This paper reports a controlled experiment that manipulated category, skew, and 118 

difficulty, and observed raters’ behavioral responses. The seven indices were tested against 119 

the observed behavior. The findings also apply to the two equivalents of ao, six equivalents of 120 

S, two equivalents of π, and one equivalent of κ, covering 18 indices in total, all of which had 121 

been analyzed mathematically by Zhao, Liu and Deng (14). 122 

Methods 123 

Reconstructed Experiment with Golden Standard 124 



 

Reconstructed Experiment on Real Data (REORD) 125 

We conducted a 4×8×3 between-subject controlled experiment with 4 subjects per 126 

cell. Here the term “subject” refers to the unit of analysis of a study, such as a participating 127 

patient in an experiment on the effectiveness of a new drug. A “subject” in this study, 128 

however, was a rating session with 100 pairs of rating by two raters. As 4×8×3×4=384, this 129 

study was based on 384 rating sessions, aka subjects. The three manipulated factors included 130 

four levels of category (C=2,4,6,8), eight levels of difficulty (df  ranges 0~1, 0 for the least 131 

and 1 for the most difficult), and three levels of skew (sk=0.5 for 50-50 distribution, 0.75 for 132 

75-25 or 25-75 distribution, and 0.99 for 99-1 or 1-99 distribution), as summarized in Table 133 

1. 134 

[Insert Table 1 about here] 135 

Over three hundred raters, registering 383 web names, from 53 Asian, European, and 136 

North American cities judged online the lengths of bars, which served as the experimental 137 

stimulus. A total of 22,290 items were rated, of which 19,900 were successfully paired, 138 

producing 9,950 pairs of rating. Borrowing techniques from bootstrap (32,33), jackknife (34), 139 

and Monte Carlo simulation (35), we sampled and resampled from the 9,950 pairs to 140 

reconstruct the 384 rating sessions (36).  141 

Thus, raters and rating were real, while rating sessions were reconstructed, making it a 142 

reconstructed experiment on real data (REORD). The Appendix at the end of this manuscript 143 



 

(Section II) provides further details and rationales of this REORD experiment. 144 

Observed True Reliability (ori) and True Chance Agreement (oac) as Golden Standards 145 

The raters were instructed to judge the length of bars. The researchers determined the 146 

bar lengths through programming, therefore know with certainty which rating decision was 147 

right or wrong. As the lengths of the bars were set such that random guesses would occur 148 

only between the longest and the second longest bars, the true chance agreement (oac) was 149 

twice the wrong agreement (Eq. 3, Appx.), and true reliability (ori) was observed agreement 150 

ao minus oac (Eq. 5 of Appx.).  Thus, ori served as the golden standard, namely the observed 151 

estimand, against which the seven indices were evaluated, and oac served as the golden 152 

standard for the seven chance estimators (37).  153 

Five Independent Variables and Sixteen Dependent Variables 154 

Thus, this REORD experiment features three manipulated independent variables, 155 

category I, skew (sk) and difficulty (df) and 16 main dependent variables, which are the seven 156 

indices’ reliability and chance estimations plus the observed true reliability (ori) and true 157 

chance agreement (oca). As the two main estimands, ori and oca sometimes also serve as 158 

independent variables when assessing their impacts on the indices’ estimations. Table 1, 159 

Table 2 and the Appendix provide more details and rationales of variable calculations. 160 

[Insert Table 2 about here] 161 

Statistical Indicators – Directional R Squared (dr2) and Mean of Errors (me) 162 



 

Reliability indices serve two functions. One is to evaluate measurement instruments 163 

against each other, for which an index needs to accurately predict, meaning positively and 164 

highly correlating with, true reliability. We use directional r squared (dr2=r•|r|) to gauge the 165 

predictive accuracy of the seven indices and their chance estimators (Table 2 and Eq. 10 of 166 

the Appendix). We preferred r2 over r because r2 has a clearer and more practical 167 

interpretation, percent of the DV variance explained by the IV; r2 is also more conservative as 168 

r2≤|r|. We preferred dr2 over r2 because dr2 indicates the direction of the relationship while r2 169 

does not.  170 

The second function of the indices is to evaluate measurement instruments against 171 

fixed benchmarks, such as 0.67 and 0.80, that some reliability authorities recommend 172 

(19,30,38,39). For this function, an index needs to approximate true reliability. We use mean 173 

of errors, me, which is the indices’ deviations from the observed true reliability averaged 174 

across the 384 rating sessions, to gauge the approximating accuracy of the seven indices, 175 

denoted me(ri) in Table 2 and Eq. 8 of the Appendix. With the same reasoning, we also use me
  176 

to assess and compare the chance estimators of the indices, denoted me(ac) in Table 2 and Eq. 177 

9 of the Appendix. 178 

We adopted dr2>.8 as the primary benchmark and me<.02 as the secondary benchmark 179 

when evaluating the seven indices. Section V of the Appendix details the calculations of and 180 

the rationales behind the benchmarks. 181 



 

Functions of P Values and Statistical Pretests 182 

This study observes the tradition of reporting p<α, where α=.05, .01, or .001. We 183 

however also strive to follow what have been advocated as a better statistical practice (40–184 

44): 185 

1)  avoiding the terms containing “significance, e.g., “statistical significance,” for 186 

p<α;  187 

2)  considering p<α as a prescreen threshold, passing which allows us to assess, 188 

interpret, and compare effect size indicators, such as r2, dr2 and me, with some 189 

confidence; 190 

3)  using terms such as “statistical pretest” and “statistically acknowledged” where we 191 

would have traditionally used “significance test” and “statistically significant;” 192 

4)  reserving the terms containing “significant” and “significance” exclusively for 193 

effect sizes of practical or theoretical importance.  194 

More of our views and practices regarding the functions of p values may be found in 195 

our prior work (45–47).      196 

Results 197 

Reliability Estimations Tested Against Observed Reliability 198 

Findings are summarized in Tables 3 through 6 and Figure 1 and discussed in three 199 



 

sections.  This section (II) reports the performance of the seven indices when predicting and 200 

approximating the observed reliability. The next section (III) analyzes the impact of four 201 

factors on the indices’ performance. The following section (IV) discussed offset mechanism, 202 

which is a key to understand the indices’ complex behavior.     203 

Overall, 2.86% of the raters’ decisions fell on the short bars (1.11%, 1.93% and 204 

5.53% respectively for four, six, and eight categories). As expected, there were fewer 205 

agreements on short bars, averaging 0.45% (0.04%, 0.12%, and 1.18%). These agreements 206 

showed no detectable effects on the main relations we investigate. The correlations between 207 

the manipulated variables were practically zero, confirming orthogonality, which rules out 208 

confounding or multicollinearity. 209 

Predicting Reliability 210 

Percent agreement, ao, the oldest and the most criticized index of interrater reliability, 211 

did well predicting true reliability, showing dr2=.841 (Line 3, Table 3). Of the seven indices 212 

tested, ao was the only one meeting the primary benchmark dr2>.8 (Ineq. 11), outperforming 213 

the second best, AC1 (dr2=.721), and the third best, S (dr2=.691) by more than 10 points, 214 

although the latter two met the tentative benchmark dr2>.67. 215 

[Insert Table 3 and Figure 1 about here] 216 



 

The most respected three, π, κ and α, tied as the least accurate predictor, reporting 217 

dr2=.312, failing the tentative benchmark by margins. They also underperformed the next 218 

worst, Ir, by 28.7 points (dr2=.599). 219 

The underperformances of the chance-adjusted indices, especially the popular π, κ and 220 

α, were disappointing, considering that the whole mission of the indices was to outperform 221 

ao. The low r2 means large predictive errors, suggesting that the three indices too often assign 222 

lower scores to more reliable instruments, and attach higher scores to less reliable ratings. 223 

They failed to differentiate reliable instruments from unreliable ones accurately and 224 

consistently. 225 

Figure 2 visualizes the performances and ranks the indices by their dr2 scores. It is 226 

noticed, again, that κ and α ranked among the lowest while percent agreement (ao) ranked the 227 

highest. Figure 2 also shows a strong and positive correlation between accuracy of predicting 228 

chance agreement and accuracy of predicting interrater reliability (dr2=.9768, p<.001), 229 

supporting a design feature of this study, which is to analyze the indices’ chance estimates for 230 

the purpose of understanding the indices. 231 

[Figure 2 About Here] 232 

Approximating Reliability 233 

A .555 average reliability (ori) was observed (A3, Table 5). The seven indices’ 234 

estimation of reliability, however, ranged from .237 (π) to .726 (Ir), implying large 235 



 

approximation errors. As expected, percent agreement (ao) overestimated reliability, reporting 236 

em=.13 (B6, Table 5) and me=.13 (A3, Table 4). The error, however, was below what’s 237 

allowed by the secondary benchmark, me<.2 (Ineq. 13 of the Appendix). So ao was the only 238 

index meeting both primary and secondary benchmarks.  239 

[Insert Table 4 about here] 240 

[Insert Table 5 about here] 241 

Three other indices also met the me<.2 benchmark, of which two, AC1 (me=.093) and 242 

S (me=.096). also outperformed ao (Line 3 Table 4). 243 

The trio, π, κ and α, again underperformed all others, reporting me .323~.327 (Line 8, 244 

Table 5). The errors equaled one third of the 0~1 scale, and more than doubled the errors of 245 

ao (me=.130). Ir overestimated reliability across the board like ao did (D6, Table 5), while κ, π 246 

and α underestimated across the boa– -- 23.7%~24.1% estimated versus 55.5% observed 247 

(Line 3, Table 5).   248 

AC1 and S underestimated some sessions while overestimated other sessions (Line 6, 249 

Table 5).  Of AC1 and S, the under and over estimations offset each other to make the sizes 250 

(absolute values) of em much smaller than that of me. Of the other five indices, em and me are 251 

about equal in size (Line 6, Table 5 vs Line 3, Table 4).  252 

In part because of the offsets, AC1 and S produced near-zero or very small em errors 253 

(.001 and .044, respectively), much smaller than any of the other five indices did. By 254 



 

contrast, κ, π and α again produced the largest errors, reporting em ranging from -.318~-.314, 255 

much worse than the next worst, Ir (em=.171, Line 6, Table 5). 256 

Pi-Kappa-Alpha Synchrony 257 

As shown above, π, κ and α behaved like one index, despite the spirited debates on 258 

which of them is the best (10,12,48–51). This pattern of π-κ-α synchrony persisted throughout 259 

the data. 260 

Impacts of Four Factors  261 

 The five viewpoints reviewed earlier discussed four factors behind reliability and/or 262 

reliability estimations. Now that we have observed rater behavior, we examine the true 263 

impacts of the four factors.    264 

Conjecture Group 1: Chance Agreement Inflates ao 265 

As said, a 13% chance agreement (oac) and a 55.5% reliability (ori) were observed, 266 

while percent agreement (ao) assumed 0% chance agreement and reported a 68.5% reliability, 267 

which means a 13-point overestimation (Tables 4 and 5). Conjecture 1 and the century-old 268 

beliefs were supported.  269 

(1) Chance agreement exists.  270 

(2) By completely overlooking chance agreement, ao inflates the estimated reliability. 271 

 The data from this experiment, however, adds a third point:  272 



 

(3) The chance agreement may not be as large as previously thought. 273 

In this experiment, the chance agreement of ao stayed below the .2 threshold, which 274 

was a main factor that allowed the predictive accuracy (r2) of ao to stay above the .8 275 

threshold. As ao outperformed all six indices on the primary benchmark (r2) and 276 

outperformed four out of the six on the secondary benchmark (me), an argument could be 277 

made that overestimating and misestimating chance agreement can be as counterproductive 278 

as overlooking chance agreement. 279 

Conjecture Group 2, Category Inflates S, Ir  & AC1 280 

As critics of S, Ir and AC1 would have predicted, categoI(C) had large and negative 281 

effects on chance estimations Sac, Irac and ACac, with dr2 ranging -.863~-.661, (p<.001, Line 282 

9, Table 3). Table 6 (K4~K7) shows more details, e.g., Sac was 50% when C=2 but plunged to 283 

12.5% when C=8. The decreases appeared large compared to the 13-point average oac.  284 

[Insert Table 6 about here] 285 

Negative effects on chance estimations contribute to positive effects on reliability 286 

estimations, as shown in the dr2 ranging .599 ~.721 (p<.001, Line 3, Table 3). S jumped from 287 

40.2% when C=2 to 64.1% when C=8 (C4~C7, Table 6). The effect (difference) of 23.9 288 

points is large compared with the 55.5-point average ori. In contrast, category effects on the 289 

targets of estimations, ori and oac, were tiny. Coefficients dr2 were respectively .003 (p≥.05) 290 

and -.019 (p<.01) (A4 and A9, Table 3, See Table 6, Lines 4~7, for more details).  291 



 

These results support the classic theory that S and equivalents underestimate chance 292 

agreement when categories exceed two, even when additional categories are largely empty. 293 

The tables also show that Ir and AC1 relied on category in the same fashion that S did 294 

and shared the same deficiency. The differences between the category effect on S, Ir or AC1 295 

estimation and the category effect on observed reliability all passed the p<.001 pretest. At the 296 

meantime, category showed minimal effects (dr2≈.001, p≥.05) on π, κ and α, as their authors 297 

intended (Line 4, Table 3). 298 

Conjecture Group 3: Skew Depresses κ, π & α 299 

As critics of κ, π & α would have predicted, skew had substantial and positive effects 300 

on chance estimators κac, πac & αac, with dr2 ranging .434~.437 (p<.001, Line 10, Table 3). 301 

Table 6 (Lines 8~10) shows more details, e.g., κac was 50% when distribution was 50&50, 302 

but rose to 67.6% when distribution changed to 1&99. 303 

The positive effects on chance estimates led to negative effects on reliability 304 

estimates. Skew effects on the three indices were all negative, with dr2 ranging -.293 ~ -.292 305 

(p<.001, Line 5, Table 3). When distribution changed from completely even to extremely 306 

skewed, the trio’s chance agreement estimates increased from about .5 to about .68, and in 307 

parallel their reliability estimates decreased from about .37 to about .04, a drop of over 89% 308 

(Lines 8~10, Table 6). While mathematical analyses of prior studies had predicted a drop 309 

(14,26,52), the empirical evidence of this study showed the drastic magnitude of the drop. 310 



 

In contrast to the large effects on the index estimators, skew showed minimal effect 311 

on the observed estimands, ori and oac (p≥.05 for both dr2, A5 & A10, Table 3), supporting the 312 

argument that chance estimates and reliability indices should not rely on skew. Each 313 

difference between the skew effect on π, κ or α estimation and the category effect on the 314 

observed estimand passes the p<.001 pretest. 315 

In another contrast, skew showed practically zero effects on S, Ir or their chance 316 

estimates, and a small negative effect on ACac (dr2=-.039, p<.001, Lines 5 & 10, Table 3). So 317 

Ir avoided the skew effect as its authors intended, while AC1 reversed the effect as its author 318 

intended, although the reversed effect was small. A long-suspected pattern was confirmed 319 

empiri–lly -- κ, π & α were dependent on skew while S, Ir & AC1 were dependent on 320 

category. 321 

Conjecture Group 4: Indices Overlook Task Difficulty 322 

Difficulty showed a substantial and positive effect on oac (dr2=.585, p<.001, A11, 323 

Table 3), and a large and negative effect on ori (dr2=-.774, p<.001, A6). A change from 324 

extremely easy to extremely difficult decreased ori by over 68 percentage points and 325 

increased oac by nearly 36 points (Columns A and I, Table 6). These effects appear large 326 

compared with 13-point average oac and 55.5-point average ori, suggesting that chance 327 

estimates and reliability indices should rely on difficulty. 328 



 

In contrast, difficulty had minimal effects on Sac, Irac and ACac (dr2=.000~.009, p≥.05, 329 

Table 3) and negative effects on κac, πac & αac (dr2=-.123 or -.125, p<.001, Table 3; c.f. 330 

Columns I & N~P, Lines 11~18, Table 6), implying that the indices either failed to rely on 331 

difficulty or relied on its opposite, easiness, to estimate chance agreement. Each difference 332 

between the difficulty effect on chance estimation and the difficulty effect on observed 333 

chance agreement was statistically acknowledged at p<.001. 334 

Difficulty showed weaker effects on the six chance-adjusted indices (dr2=-.566~-.389, 335 

Line 6, Table 3) than on the estimation target ori (dr2=-.774).  Each difference between the 336 

difficulty effect on reliability estimation and the difficulty effect on observed reliability was 337 

statistically acknowledged at p<.001. 338 

By contrast, ao, showed a strong and negative correlation (dr2=-.778, B6, Tables 3) 339 

with difficulty. The correlation was as strong as the correlation between ori and difficulty 340 

(dr2=-.774, A6), suggesting the negative correlations between the chance-adjusted indices 341 

and difficulty (dr2=-.566~-.389) are likely due to ao embedded in the indices.    342 

Based on derivation and simulation, Gwet concluded that the indices before AC1 had 343 

not handled difficulty properly, and AC1 handled it better, at least than κ (53–55). The above 344 

findings support both claims. The near zero correlation between ACac and difficulty 345 

(dr2=.009, p≥.05, E11, Table 3), however, suggests that AC1 still does not handle difficulty 346 

well. 347 



 

Conjecture Group: Indices Assume Intentional and Maximum Random Rating 348 

 The precision evidence for the behavioral assumptions behind the statistical indices 349 

comes from mathematical analysis. A 2013 study provides detailed scenarios of rater 350 

behavior assumed by each of the 22 indices analyzed (14). Readers are invited to derive 351 

mathematical formulas from the behavioral scenarios. If a reader-derived formula matches 352 

the formular for the corresponding index, then the reader may conclude that the 353 

corresponding index indeed assumes the behavioral pattern spelt out in the scenario. If, for 354 

example, a formula derived from the Kappa Scenario provided by the 2013 study matches the 355 

formula for Cohen’s κ published in 1960 (2), it would confirm that κ indeed assumes the rater 356 

behavior depicted in the 2013 Kappa Scenario. Such exercises by readers have shown them 357 

that chance-adjusted indices all assume that raters regularly conduct intentional and 358 

maximum random rating. 359 

 This study provided corroborating empirical evidence. The indices’ chance estimates 360 

were poorly correlated with their estimands, the observed chance agreements (Table 3, Line 361 

8). The observed chance agreement (oac) explained less than 8% of the variance in each of the 362 

category-based indices’ chance estimates, Sac (2.1%), Irac (2.1%), and ACac (7.5%). Although 363 

the correlations were stronger for the skew-based indices’ chance estimates, πac (-15.1%), κac 364 

(-15.2%), and αac (-15.1%), the dr2 coefficients were all negative, suggesting that the three 365 

indices tended to give higher estimates when the true chance agreements were lower, and 366 



 

give lower estimates when the true chance agreements were higher. Clearly, the index-367 

estimated random ratings were not the raters’ random ratings observed in this study. This 368 

finding supports the argument that the chance-adjusted indices assume intentional and 369 

maximum random rating while typical raters conduct involuntary and task-dependent random 370 

rating. The mismatch between the assumptions and the observations explains the negligible 371 

or negative correlations between the estimates and the estimands. 372 

 More corroborating evidence for the maximum-random assumption came from the 373 

large overestimation of chance agreement by the six chance-adjusted indices, as shown at 374 

Line 12 of Table 5 and the right half of Table 6, summarized in Line 19.  375 

The more situational and detailed evidence of the behavioral assumptions come from 376 

the influences of the four factors and the offset and aggravation behaviors of the indices, 377 

which are discussed below. 378 

Summarizing the Impact of Four Factors 379 

Each index of interrater reliability implied one or more misassumptions about chance 380 

agreement. ao Overlooked chance agreement. S, Ir and AC1 inappropriately relied on 381 

category. π, κ And α inappropriately relied on skew. While difficulty had a strong and 382 

positive effect on chance agreement, all chance adjusted indices failed to rely on difficulty. π, 383 

κ and α even relied on its opposite, easiness. The misassumptions, including missed, 384 

mistaken, and contra assumptions, impeded estimation. π, κ and α fared worse in part because 385 



 

they entailed more and more devastating misassumptions, some of which had been mistaken 386 

as signs of sophistications. 387 

Recall that the main mission of chance adjusted indices is to remove chance 388 

agreement in order to improve on percent agreement. When they mishandled the factors 389 

affecting chance agreement, they misestimated chance agreement, thereby misestimated 390 

reliability. Misassumptions about the four factors are keys to understanding the indices’ 391 

underperformance.  392 

To understand more, we discuss below the offsetting mechanism, which interacts with 393 

the assumptions and misassumptions of the indices to define the indices’ behavior. 394 

Offsets in Reliability Estimation 395 

Puzzles may arise if one peruses Tables 3 through 6, five of which discussed below. 396 

Puzzle 1. Each chance-adjusted index relied on a wrong factor, skew or category, to 397 

estimate chance agreement; none of them relied on a right factor, difficulty. How come some 398 

approximated chance agreement far better than others (Line 12 of Table 5 and Line 7 of 399 

Table 4)? 400 

Puzzle 2. Chance estimators barely measured the observed chance agreement oac, or 401 

even measured anti oac (C8~H8 of Table 3). How come the reliability estimations were all 402 

positively and sometimes substantially correlated with the observed reliability (C3~H3)? 403 

Puzzle 3. Assuming a negative relation between chance agreement and reliability, one 404 



 

might expect that an over estimation of chance agreement leads to an under estimation of 405 

reliability. How come S overestimated chance agreement by 100% (oac =.130 compared to 406 

Sac=.260, Line 9, Table 5) while at the same time approximated reliability almost perfectly 407 

(S=.556, compared to ori=.555, Line 3, Table 5)?  408 

Puzzle 4. Continued from Puzzle 3, how come AC1 overestimated chance agreement 409 

(em=.044, Line 12, Table 5) while also overestimated reliability (em =.044, Line 6, Table 5)?  410 

More generally, how come across-the-board overestimations of chance agreement did 411 

not translate into across-the-board underestimations of reliability (Line 12 vs Line 6, Table 412 

5)? 413 

Puzzle 5. Continued from Puzzles 3 & 4, how come Ir overestimated chance 414 

agreement more than AC1 did (Irac=.131 vs ACac=.044, Line 12, Table 5), while also 415 

overestimated reliability more than AC1 did (Ir=.171 vs AC1=.044, Line 6, Table 5)?  416 

The puzzles can be explained in part by offsets, including partial offset, over offset, 417 

and counter offset (aggravation) built into the reliability formulas, some of which discussed 418 

below. 419 

Category offset, skew aggravation, and skew offset 420 

To understand Puzzle 1, first recall that, under intentional-and-maximum-random 421 

assumption, chance-adjusted indices tend to overestimate chance agreement 422 

(9,14,29,38,39,56–58). In this experiment, the overestimations ranged from 4.4 percentage 423 



 

points by AC1 to 44.5 points by Scott’s π, all statistically acknowledged (p<.001, Line 12, 424 

Table 5).  425 

To explain Puzzle 1, we note that the category-based indices assume that larger 426 

number of categories decreases chance agreement (C9~E9, Table 3), which offset the general 427 

overestimation. The skew-based indices assume that higher skew increases chance agreement 428 

(F10~H10), which aggravated the general overestimation. AC1 assume both, that category 429 

and skew both decrease chance agreement (E10), thereby offset the overestimation even more 430 

than the other two category-based indices.   431 

To illustrate the point, we follow the textbook tradition of starting from ground zero, 432 

which is the condition of two raters, two categories, and 50&50% distribution. Here, and only 433 

here, all major indices gave about the same estimates, ac≈0.5 (K2~P2, Table 6).  Under 434 

intentional-and-maximum-random assumption, two raters draw from marbles, half with one 435 

color and half another color; they rate randomly if the colors match, and honestly if mismatch 436 

(9,14,29,38,39). Task difficulty is not a factor in this view of rater behavior. 437 

In actual rating, however, ac=0.5 could occur only if the task is extremely difficult. In 438 

our experiment, even the most difficult (df=1 for 1-pixel difference) condition did not reach 439 

that theoretical maximum, reporting an oac=.38 (I18, Table 6). The less difficult sessions 440 

reported significantly smaller oac, averaging 0.13 across all levels of difficulty. This means a 441 

37-point initial overestimation at the ground zero by each chance-adjusted index 442 



 

(em=.5-.13=.37). 443 

When category increased from ground zero, Sac, Irac and ACac decreased quickly 444 

under the category assumption (Columns K~M, Row 4~7, Table 6). While the assumption 445 

was unjustified given the small change in oac (I4~I7), the decrease partially offset the 37-446 

point overestimation, making Sac, Irac and ACac less inaccurate. By contrast, κac, πac & αac 447 

rejected the category assumption to remain unchanged (Columns N~P), hence did not benefit 448 

from the partial offset. Thus, Sac, Irac & ACac became less inaccurate than κac, πac & αac. 449 

Now return to ground zero, then increase skew. Under the skew assumption, κac, πac & 450 

αac increased with skew (Columns N~P, Row 8~10, Table 6). While the assumption was 451 

unjustified given the small change in oac (I8~I10), the increase further aggravated the 37-452 

point overestimation, making κac, πac & αac even more inaccurate. By contrast, Sac and Irac 453 

rejected the skew assumption to remain unchanged (K~L, 8~10), hence did not suffer from 454 

the aggravation. Thus, κac, πac & αac became even more inaccurate than Sac & Irac. 455 

Rather than accepting or rejecting the skew assumption, ACac reversed it, by assuming 456 

that skew reduced ac (M8~M10). While the assumption also mismatched the observed skew 457 

effects (I8~I10), the decrease further reduced the once 37-point overestimation. Here two 458 

unjustified assumptions, category and reversed skew, joined hands to partially offset another 459 

unjustified assumption, intentional and maximum random. Thus, ACac became even less 460 

inaccurate than Sac & Irac, hence the least inaccurate of the six. As the effect of intentional-461 



 

and-maximum-random assumption was stronger than the other two effects combined, a net 462 

effect was that even ACac still overestimated chance agreement. 463 

There were other under-offsets, over-offsets, and counter-offsets, i.e., aggravations, 464 

some of which discussed below. Behind multifarious offsets were multifarious assumptions 465 

about rater behaviors, which fought or allied with each other or stayed neutral to produce the 466 

multifarious outcomes. Two wrongs sometimes made one right, sometimes half right, and 467 

often three, four, or more wrongs.  468 

Chance-removal offset 469 

To understand Puzzle 2, we first recall that, assuming intentional and maximum 470 

random rating, index designers want to remove maximum amount of chance agreement from 471 

all considerations, which requires to remove ac not only from percent agreement (ao), but also 472 

from the realm of consideration (9,14,23,24,29,38,39). Accordingly, ac is subtracted twice in 473 

Eq. 1, first from ao in the numerator, and second from 1 in the denominator, which represents 474 

100% of the realm of consideration. Two offsets occurred as a result. First, ac offsets ao in the 475 

numerator. Second, ac in the denominator offsets its own impact in the numerator. As the 476 

self-offsets weaken ac’s effects, ao dominates Eq. 1, the indices’ estimation of reliability. That 477 

explains Puzzle 2: the minimal or negative ac–oac correlations exerted weaker effects than the 478 

strong and positive ao-ori correlation.  479 

The weaker effects still hinder. The chance estimators not only failed to fulfill their 480 



 

prescribed mission of improving on percent agreement, but the estimators worked against the 481 

mission. Consequently, all six indices underperformed percent agreement when predicting 482 

observed true chance agreement. Ironically, it was the supposedly “most primitive” and 483 

“flawed” percent agreement (ao) that worked inside the indices to keep them from performing 484 

and looking even worse (2 p38,12 p80). 485 

The offsets also help to explain Puzzle 3. While S overestimated chance agreement by 486 

an averaged 13.1 points (Line 12, Table 5), the chance-removal offset helped to bring down 487 

the scalar error of reliability estimation to 9.6 points (Line 3, Table 4). This across-session 488 

error contains over- and under-estimations of individual sessions, which offset each other in 489 

averaging to reduce the vector error to near zero (em=.001, Line 6, Table 5. See also the 490 

discussion of aggregation bias earlier). 491 

By setting estimated reliability (ri in Eq. 1) equal to observed reliability (ori in Eq. 5 492 

of Appendix), ri=ori, we derive a threshold (th) for ac, which is Eq. 2: 493 

𝒕𝒉 =
𝒐𝒂𝒄

𝟏 − 𝒐𝒓𝒊
 0≤oac≤ th≤∞ ( 2 ) 

For any rating session, an index accurately estimates reliability when ac=th, 494 

underestimates when ac>th, and overestimates when ac<th.  Therefore, when oac<ac<th, the 495 

index overestimates both the chance agreement and the reliability, explaining Puzzle 4.  496 

Across the 384 sessions, average th would be .292 if we plug oac (.13) and ori (.555) into Eq. 497 

2. As Table 5 shows, of the six chance-adjusted indices, the three (κ, π, α) reporting ac>.292 498 



 

(Line 9) also underestimated reliability (Line 6), and the three (S, Ir, AC1) reporting ac<.292 499 

also overestimated reliability. At the same time, all six overestimated chance agreement (Line 500 

12). Due to the chance-removal offset, it is possible and possibly common for some category-501 

based indices to overestimate both chance agreement and reliability. 502 

A previously undocumented paradox emerges from this analysis (Eq. 1 and Eq. 2). An 503 

index estimates reliability accurately (ri=ori) only when it overestimates chance agreement 504 

(ac>oac), an index that estimates chance agreement accurately (ac=oac) inevitably 505 

underestimates reliability (ri<ori), except in the extreme and impractical situation when 506 

ri=ori=0. The paradox, applicable for all known chance-adjusted indices, is rooted in the 507 

chance-removal offset imposed by Eq. 1, which traces back to the intentional and maximum 508 

random assumption (14,23,24,26).  509 

Square-root over offset 510 

To understand Puzzle 5, recall that Perreault and Leigh’s Ir adopts the chance 511 

estimator of S, Irac=Sac, and takes the square root of S as the reliability estimation (7). S≤Ir, as 512 

Ir=S½ for 1≥S≥0 and Ir=0 for -1≥S<0. When chance agreement is overestimated, the square 513 

root operation constitutes an additional offset (14). Due to the category-based over-offset of 514 

S, Ir overestimates chance agreement more than AC1; at the meantime, due to the square root 515 

over-offset of Ir, Ir overestimates reliability more than AC1. The two offsets explain Puzzle 5.  516 

A rating session in this experiment simulates a study. In practice, errors do not offset 517 



 

across studies, e.g., one study’s overestimation of Disease A does not offset another study’s 518 

underestimation of Disease B.  We should not overemphasize the near-zero aggregated error 519 

by S shown in em or overlook the sizable individual errors by S shown in me. 520 

Discussion 521 

Main Findings 522 

Of the seven indices, percent agreement (ao) stood out as the most accurate predictor 523 

of reliability (dr2=.841, Table 3) and the third most accurate approximator (me=.130, Table 524 

4). AC1, the newest and the least known, was the second-best predictor (dr2=.721) and the 525 

best approximator (me=.093). S ranked behind AC1 for both functions (dr2=.691, me=.096).  526 

The most respected, the most imposed, and the most applied indices, π, κ and α, 527 

ranked the last for both functions (dr2=.312, me=.323~.327). 528 

The indices’ underperformances appeared attributable to mismatches between the 529 

assumed and observed rater behaviors, and multifarious offsets and aggravations between the 530 

misassumptions. Percent agreement assumed zero random rating, leading to the 13-point 531 

overestimation of reliability. The other six indices assumed intentional and maximum random 532 

rating, leading to a 37-point initial overestimation of chance agreement at “ground zero” for 533 

interrater reliability (Line 3, Table 6).  534 

Away from ground zero, S, Ir and AC1 assumed larger number of categories produced 535 

less chance agreement, which offset the initial overestimation, while π, κ and α assumed 536 



 

skewer distributions produced more chance agreement, which aggravated the overestimation. 537 

The opportune offsets and the austere aggravations explain the smaller approximation errors 538 

by the category-based indices than by the skew-based indices. Contrary to the assumptions, 539 

neither rating category nor distribution skew showed meaningful effects on the observed true 540 

chance agreement.  541 

Difficulty exhibited a substantial and positive effects on chance agreement (dr2=.585, 542 

p<.001, Table 3), while S, Ir, and AC1 did not rely on difficulty to estimate chance agreement 543 

(dr2=.000~.009, p≥.05). Failing to rely on difficulty further explains the three indices’ 544 

underperformance in prediction. Moreover, π, κ & α relied on the opposite, easiness, to 545 

estimate chance agreement (dr2 =-.125~-.123, p<.001), which contributed another part to π, κ 546 

& α’s worse performance than S, Ir, and AC1. 547 

What Did the Indices Indicate?  548 

An index indicates a certain concept. What did the seven indices indicate? Did they 549 

indicate what they purport to indicate?  550 

Percent agreement ao was the only index meeting the primary benchmark (dr2>.8), 551 

thereby also meeting the competitive benchmark. By overlooking chance agreements, ao 552 

overestimated reliability by 13 percentage points (em=me=.130, Tables 4 & 5). The error, 553 

however, was within the margin allowed by the secondary benchmark (me<.2). The 554 

overestimation appeared across the board, as shown in Columns A and B (Lines 4 through 555 



 

18) of Table 6, which implies that researchers and reviewers may manage ao’s deficiency by 556 

discounting a certain amount, such as 15 points, treating ao-0.15 as a crude estimation of 557 

reliability. Overall, in this experiment percent agreement behaved as a good predictor and a 558 

13-point over-approximator of interrater reliability. 559 

The other six indices set out to outperform ao by removing estimated chance 560 

agreement ac. Unfortunately, their ac estimations failed to accurately estimate true chance 561 

agreement oac. Sac, Irac, and ACac were slightly influenced by oac (dr2=.021~.075, p<.01 or 562 

p<.001, Table 3). They were instead strongly and negatively influenced by category 563 

(dr2=-.863~-.661, p<.001), suggesting they indicated fewness of category more than they 564 

indicated chance agreement. The other three chance estimators, πac, κac & αac, predicted far 565 

less accurately. They indicated mostly skew (dr2=.434~.437) and, to a lesser extent, easiness, 566 

the opposite of oac (Lines 8-10, Columns F-H, Table 3). 567 

When Eq. 1 was used to remove ac, ao offset some impact of ac, which also self-offset 568 

some. The offsets reduced the category and skew effects and kept the index-ori correlations 569 

positive (Line 3-5, Table 3). But still, ac, the unique core of each index, all impeded the 570 

reliability estimation. Sac, Irac and ACac impeded less than πac, κac, & αac did, allowing S, Ir 571 

and AC1 to predict reliability better than π, κ, & α did (Line 3, Table 3).  But the reduced 572 

impediments were still impediments. Consequently, none of the chance-adjusted indices had 573 

a good chance of outperforming ao when predicting reliability. Two indices, AC1 (me=.093) 574 



 

and S (me=.096), did outperform ao (me=.13) for approximation, which was due more to 575 

opportune offsets between misassumptions, and less to removing chance agreements (Line 3, 576 

Table 4). 577 

At the end, no chance-adjusted index passed the primary benchmark dr2>0.8. Two, 578 

AC1 (.721) and S (.691), passed the threshold dr2>0.67 for tentative acceptance (Table 3). 579 

Being the best approximator, AC1 (me=.093) was the one meeting the competitive benchmark. 580 

AC1 and S were also two of the four indices meeting the secondary benchmark, me<.2 (Line 3, 581 

Table 3).  582 

Category exerted some effects on AC1 (dr2=.123) and S (dr2=.175). Fortunately for the 583 

two indices, the category effects were much smaller than the estimand effects of ori (dr2=.721 584 

& .691). The two indices underestimated reliability when C=2, and overestimated when C≥4 585 

(Columns A, C and E, Lines 4~7, Table 6). Overall, AC1 and S were acceptable predictors of 586 

interrater reliability, and under- or over-approximators when category was respectively under 587 

or over 3. 588 

Ir (dr2=.599, me=.18) failed the tentative benchmark for prediction but satisfied the 589 

secondary benchmark for proximity. It overestimated reliability across the board. Overall, Ir 590 

was a poor predictor and an 18-point over-approximator of interrater reliability. Ir’s 591 

overestimation was worse when the number of categories was increased.   592 



 

The performances of π, κ and α belong to another class. The trio’s estimation-593 

estimand correlations (dr2=.312) were far below the primary benchmark of dr2>.8 or the 594 

tentative benchmark of dr2>.67; and their approximation errors (me=.323~.327) were far 595 

above the secondary benchmark me<.2. Furthermore, evenness (1-skew) exerted nearly as 596 

large effects on the trio (dr2=.292~.293, Line 5) as their estimand ori did (dr2=.312), 597 

suggesting that the trio indicated distribution evenness nearly as much as they indicated 598 

interrater reliability. More even distributions raised π, κ and α nearly as effectively as higher 599 

reliability did, even though skew or evenness showed no effect on observed reliability or 600 

chance agreement.  601 

Overall, π, κ & α were crude predictors of reliability and evenness, and 31-point 602 

under-approximators of reliability.  They were crude because they showed large errors when 603 

predicting reliability (dr2=.312) or evenness (dr2=.292~.293).  604 

While dr2 (.292~.293) were too low to make π, κ & α precise indicators of evenness 605 

or skew, they were too high to allow the trio to be pure indicators of reliability. The 606 

correlation can be even more disconcerting if one considers its impact on the creation and 607 

selection of scientific knowledge. Reviewers and researchers use the trio to screen 608 

measurements and manuscripts, while trio systematically favor more even distributions, 609 

making the world appear flatter. It would be a collective version of the conservative bias, 610 



 

except this one permeates scientific knowledge (59,60). By contrast, ao showed none of this 611 

disparaging deficiency (dr2=.000). 612 

Conclusion 613 

Like most controlled experiments, this study had limited external validity. The raters 614 

made visual judgments, which did not represent all tasks. The categories stopped at eight.  615 

The short-bar categories were largely empty by design. Each session had only two raters. The 616 

list could go on. To avoid unwarranted generalization, we used past tense to describe the 617 

indices’ behaviors and their impact. 618 

Our findings, however, have been speculated or predicted by the theoretical analyses, 619 

mathematical derivations and Monte Carlo simulations (14,29,64,65,53,55–58,61–63). These 620 

studies used no actual measures, specific tasks, human raters, or other specifics that may limit 621 

external validity. What some other studies lack in internal validity, this study provides. The 622 

validity of our collective knowledge is significantly strengthened by adding empirical studies 623 

based on observing rater behavior.  624 

The indices were advertised to be “standard” and “global” for “general purpose” 625 

(12,14,66,67). Now that some reigning indices did not perform as advertised against one set 626 

of observed behavior, it is good evidence that indices are not general or global or standard. 627 

The burden is not on doubters to prove that the indices always fail, but on defenders to 628 

demonstrate that the indices perform, at least sometimes. 629 



 

Despite the lack of empirical evidence in support of the reigning indices, the spiral of 630 

inertia may continue, forcing some and enticing others to work with the indices (26,52). In 631 

that event, the interpretation of π, κ and α may warrant more caution, and the application of 632 

ao and AC1 may deserve more credence, to the extent that findings of this experiment will be 633 

replicated. 634 

Future Research 635 

Replication studies. More controlled experiments are called for to falsify or qualify 636 

the findings of and the theories behind this experiment, and to test the other reliability indices 637 

against their estimands (66,68,69).  638 

New Indices. New indices may be needed. Index designers may be more cautious 639 

about the assumptions that raters conduct intentional and maximum chance rating, or their 640 

chance rating is determined by skew or category. More thoughts may be given to the 641 

possibility that raters conduct instead involuntary and task-dependent random rating, and 642 

more weights given to task difficulty. The index designers are encouraged to assess and 643 

adjust their ideas and indices against behavioral data, including the data from this experiment, 644 

which will be made public upon publication of this manuscript. 645 

REORD and Behavior-based statistical methods. Mathematical statistics use a 646 

system of axioms and theorems to build tools for analyzing behavioral data. The REORD 647 

(reconstructed experiment on real data) methodology reverses the logic, using observed 648 



 

behavior to inform statistical methods. The application might not be limited to interrater 649 

reliability. REORD, for example, may open a new front for the studies of sensitivity and 650 

specificity measures, two practical tools often used in medical and health research. REORD 651 

may also help to investigate the empirical relationship between reliability and validity, two of 652 

the most fundamental concepts of scientific enquiry. 653 

Rater expectations of prevalence or skew. The researchers in this REORD 654 

experiment told the raters nothing about the prevalence or the skew of the long and short 655 

bars. As prevalence and skew were programmed to vary randomly between trials and 656 

between rating sessions, the researchers themselves did not know about the prevalence or 657 

skew until data analysis, and the raters could not have guessed accurately. This design feature 658 

was chosen because it resembled one type of research condition, under which raters don’t 659 

know what to expect, therefore they don’t expect. 660 

For some tasks, however, raters do expect about prevalence and skew, due to their 661 

prior experience with the same tasks or their prior exposure to second-hand information. A 662 

follow-up study may investigate the impact of such expectations on raters’ rating or the 663 

indices of reliability, sensitivity, and specificity.  664 

Human vs machine raters.  Expectations about distribution, prevalence, and skew 665 

can be programmed into artificial intelligence (AI) to aid automated diagnoses, judgements, 666 

scorings, evaluations, ratings, and other decisions by machines. Unlike human decisions and 667 



 

human expectations that are often vague and varying, machine decisions and machine 668 

expectations can be programmed to be super clear and super consistent (70,71). Topics of 669 

human-machine reliability and inter-machine reliability versus inter-human reliability could 670 

be fruitful and fascinating for research using REORD, and so could topics of sensitivity, 671 

specificity, and validity with human and/or machine raters. 672 
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I. Five Concepts and Five Viewpoints about Interrater Reliability 765 

Section I discusses five concepts and five viewpoints about interrater reliability to 766 

supplement the literature review and design sections of the manuscript. 767 

I.1. Five Concepts 768 

Five of the fundamental concepts, interrater reliability (ri), chance agreement (ac), 769 

rating categories (C), distribution skew (sk), and task difficulty (df), is explicated below (72). 770 

Indicators of ri and ac were measured as dependent variables in this experiment, while C, sk 771 

and df were manipulated as the three independent variables. 772 

I.1.1. Interrater Reliability (ri). Interrater reliability (ri) refers to the true agreement 773 

between raters, aka coders, engaged in systematic and task-driven rather than random rating, 774 

aka coding. Indices of interrater reliability are meant to estimate this true agreement. As 775 

chance agreement (ac), defined below, is believed to inflate reliability estimate, many indices 776 

attempts to estimate and remove ac (7,53,55,73,74). All major indices, including the six 777 

examined in this study other than %-agreement ao, share Eq. 1 to remove ac and estimate ri. 778 

 𝒓𝒊 =
𝒂𝒐−𝒂𝒄

𝟏−𝒂𝒄
  ( 1 

) 

) 

A main objective of this study is to assess the seven indices of interrater reliability 779 

against observed true reliability (ori). The eight measures also serve as dependent variables, 780 

on which the effects of category, skew, and difficulty are assessed and compared. 781 



 

I.1.2. Chance Agreement (ac). This study also measured seven chance agreement (ac) 782 

variables, one chance estimate for each of the six chance-adjusted indices plus observed true 783 

chance agreement (oac). There was an implied eighth chance indicator, by percent agreement 784 

(ao), which is, by definition, a constant at zero. 785 

Chance agreement (ac) refers to the agreement produced by random rather than 786 

systematic and task-driven rating. Five indices invented their own chance estimators while Ir 787 

adopted the estimator from S. 788 

In addition to comparing the indices with observed reliability, it is important to also 789 

compare the indices’ chance estimates with observed chance agreement. In Equation 1, 790 

subtraction of ac in the nominator decreases ri, while the subtraction in the denominator 791 

increases ri. The varying offsetting obscures the differences between indices (14). Since the 792 

main or only difference between many indices is in chance estimators (ac), comparing ac with 793 

its estimation target (oac) may tell us more about the inside mechanism at the core of the 794 

indices.  795 

The seven chance estimate measures also serve as dependent variables, on which the 796 

effects of category, skew, and difficulty are assessed and compared. 797 

I.1.3. Category (C). Category (C) was defined as the number of choices available to a 798 

rater on a nominal scale. For example, variable gender often has two categories, while party 799 

affiliation in U.S. may have four, democrat, republican, independent, and others.  800 



 

I.1.4. Distribution Skew (sk). Distribution, aka base rate, frequency, marginal, or 801 

prevalence, refers to the pattern of percentage occurrences, e.g. 49% female and 51% male, 802 

or 5% unhealthy and 95% healthy (27,29,76,77,53–58,65,75). Major indices are symmetrical, 803 

centered on 50&50% distribution. Accordingly, this study folded the original distribution to 804 

create distribution skew (sk), which served as a main independent variable. 805 

I.1.5. Difficulty (df). Difficulty (df) represents the combination of all factors that make 806 

rating inaccurate, including 1) task difficulty: Some tasks are more difficult than others; 2) 807 

rater difficulty: Some raters are less capable, focused, or motivated than others, which 808 

increases difficulty; 3) instrument difficulty: Instruments are means that help raters to 809 

accomplish a task, including organization, instruction, training, and equipment. Deficient 810 

instruments increase difficulty.  This study fixed instrument difficulty at the lower end by 811 

giving easily understood tasks and instructions. We manipulated task difficulty and assumed 812 

variation in rater difficulty.   813 

I.2. Five Viewpoints 814 

Five viewpoints have influenced experts’ understanding of interrater reliability. They 815 

are also the theoretical focal points of this study.     816 

I.2.1. Chance agreement inflates ao. In the academic literature on interrater-817 

interrater reliability, likely the earliest and the most widely received viewpoint is that percent 818 

agreement (ao) inflates reliability by overlooking chance agreement (ac).  Consequently ao is 819 



 

considered “the most primitive,” (2 p38) “inadequate,” (13 pp187&193) and “flawed,” (12 820 

p80) therefore “should not be used.” (3–5,13 p187). Removing chance agreement is the core 821 

or the stated mission of early indices, e.g., Benini’s β (11). Bennett et al’s S (15), Goodman & 822 

Kruskal’s λr (78) and Guttman’s ρ (79). Of these, only S remains in regular use today (28, 823 

29).  824 

I.2.2. Rating category inflates S, Ir, and AC1. Another widely shared viewpoint is 825 

that S depends on category while it should not. Large number of categories, even if empty, 826 

deflates chance estimates of S (Sac), thereby inflates S (16,49,56–58,66). The criticism also 827 

applies to six equivalents or special cases of S, namely C (80), G (81,82), kn (61), PABAK 828 

(83), RE (84), and redefined Pi (85).  829 

Perreault & Leigh took the square root of S to produce Ir (7). Gwet41–44 incorporated 830 

the entire S into his AC1. So category affects Ir and AC1 in a similar way as it affects S, 831 

according to mathematical analysis and simulation (14,56–58), although some consider Ir 832 

“the best” (87,88,89 p.384). As Ir regularly produces higher scores than other indices, its 833 

popularity has grown fast in some fields (25). 834 

Eliminating category effect was a main justification for Scott (16) to offer π, which in 835 

turn inspired Cohen’s κ (2) and Krippendorff’s α (19,67). Not suffering from category effect 836 

is a main reason that methodologists recommend π, κ or α over alternatives (12,14). 837 



 

I.2.3. Distribution skew deflates π, κ & α. Considered the “statistics of choice” (90 838 

p140), κ is by far the most often used index across disciplines, followed by π and α 839 

(3,4,94,14,51,56–58,91–93). 840 

A controversial viewpoint is that π, κ and α depends on distribution skew while they 841 

should not. The trio, critics argue, mistakenly assumes that more skewed distributions create 842 

more chance agreements. Consequently, higher or lower prevalence of a variable, e.g., 843 

disease, produces larger estimates of chance agreement, thereby deflates estimated reliability 844 

(3,4,56–58,61–63,65,74,76,77,5,83,93–100,7,10,27,29,51,53,55). 845 

By contrast, AC1 assumes a negative skew effect on chance agreement, while Ir 846 

follows S to assume no skew effect. 847 

The alleged dependence of π, κ and α on skew ignited repeated and spirited debates. 848 

Experts defended κ by reaffirming its validity, extending its application, or teaching its use 849 

(48,75,101–108). Rogot & Goldberg introduced A2, a mathematical equivalent of κ (109). 850 

Byrt and colleagues introduced BAK (83), and Siegel & Castellan introduced Revised Κ 851 

(110), which are two equivalents of π. Krippendorff advocated and defended α vigorously 852 

(12,49,50). Zwick recommended π over κ and S (10), while Hsu & Field recommended κ 853 

over π (48). Vach opined that the dependence on skew is harmless (107 p655), and 854 

Krippendorff acclaimed that the dependence is desirable and by design (49,50). 855 



 

I.2.4. Reliability indices overlook task difficulty. An emerging viewpoint is that 856 

indices of interrater reliability should depend on task difficulty, but they do not.  More 857 

difficult tasks induce more chance rating, therefore more chance agreements 858 

(9,14,86,95,29,38,53–58). Krippendorff , however, opined the opposite, that “more complex” 859 

tasks lead to “very small” chance agreement (50 p488). 860 

I.2.5. Indices assume intentional and maximum random rating. Among the most 861 

fundamental hence the most forcefully debated views is that the chance-adjusted indices all 862 

assume intentional and maximum random rating by conspiring raters, which include all raters 863 

for all ratings, all the time (9,14,23,24,26,28,52,111). The raters, according to this 864 

assumption, agree a priori to do the following - 865 

1)  To “rate” at the commands of randomization devices, e.g., randomly thrown coins, 866 

rolled dice, or drawn marbles, virtual or actual, without looking at the subjects under rating, 867 

2)  To rate truthfully only when the randomization devices disagree with each other, 868 

therefore rendering no consistent command for raters to follow. 869 

Krippendorff rejected this view regarding Krippendorff’s α, and characterized the 870 

discussion as “strange, almost conspiratorial uses of language.” (50). 871 

Bipolar all-or-nothing assumptions were detected hidden in the indices. Percent 872 

agreement assumes absolutely no random rating, while the chance-adjusted indices assume 873 



 

intentional and maximum random rating. The latter group assume that raters draw virtual or 874 

actual marbles before any “rating;” they “rate” by the order of the marbles whenever the 875 

marbles agree to give a consistent order; they rate honestly only when the marbles disagree 876 

with each other thereby giving no consistent order (9,14,29,38,39,56–58).  877 

Different indices assume different ways that raters arrange the virtual or actual 878 

marbles for the random drawing and rating. S, Ir and AC1 assume that raters arrange the 879 

marbles evenly across color types that are matched with rating categories, causing the triad's 880 

dependence on rating category. π, κ And α assume that raters match the distribution of marble 881 

colors to the pre-determined but post-reported target distribution, causing the trio’s 882 

dependence on target distribution and skew. As said, Krippendorff denied that α makes such 883 

assumptions (50,112–114). 884 

The key questions, therefore, are about rater behavior. What behaviors are assumed? 885 

What behaviors take place? Do the assumptions match the behaviors?  Reliability researchers 886 

rely on theoretical arguments, mathematical derivation, fictitious examples, naturalistic 887 

comparisons, and Monte Carlo simulation. A systematic observation of rater behavior is 888 

needed to inform the debates over rater behavior. 889 

This paper reports a controlled experiment that manipulated category, skew, and 890 

difficulty, and observed raters’ behavioral responses. Seven indices of interrater reliability 891 

were tested against the observed behavior. The findings also apply to the two equivalents of 892 



 

ao, six equivalents of S, two equivalents of π, and one equivalent of κ, covering 18 indices in 893 

total. 894 

II. Reconstructed Experiment with Golden-Standard Task 895 

Section II details the design and the execution of the reconstructed experiment that 896 

provided the main empirical evidence for this study. 897 

We programmed a website that asked raters to identify the longest bar from several 898 

bars (Figure 1). Two of the independent variables, category, and difficulty, were manipulated 899 

by programming the website. 900 

II.1. Manipulating Category (C). Category (C) was manipulated by giving raters 901 

two, four, six or eight bars to choose from. Thus, C had four values, 2, 4, 6 and 8. 902 

II.2. Manipulating Difficulty (df). Task difficulty (df) was manipulated by varying 903 

the differences between two longest bars. The differences ranged from one pixel, the smallest 904 

controllable element on a computer screen, to eight pixels, which were clear to nearly 905 

everyone. The variable df was linearly transformed to a 0~1 scale where 1 represents the most 906 

difficult.  907 

The two longest bars (long bars) were 200 pixels long plus or minus 0~4 pixels for 908 

the manipulation of difficulty. The lateral distance between long bars was fixed at 150 pixels 909 

to minimize distance effect. 910 

We confined the main competition between the long bars. Few raters chose the short 911 



 

bars as they were clearly shorter, which made this experiment very close to Scott's empty-912 

category assumption and minimized the correlation between category and difficulty (16).  913 

II.3. Creating One-way Golden Standard. A gold standard is a consensus criterion 914 

under which judgments can be made with certainty. Reliability indices are standards to 915 

evaluate instruments. Now that we are to evaluate the standards, a golden standard would be 916 

helpful if available. The longest-bar task provides such a golden standard. Through 917 

programming codes, we the researchers always know with certainty which bar was the 918 

longest, and whether each rating decision was right or wrong, based on which chance 919 

agreement and true reliability can be calculated and analyzed. We use “golden standard” as a 920 

stronger term than “gold standard.” The latter term was borrowed by Rudd in 1979 from 921 

economics where it referred to the value of gold as a monetary standard (37,115). 922 

So that variables vary, the golden standard needs to be equipped with a one-way 923 

mirror that is always crystal clear to researchers, but variably clear to participants. The 924 

longest-bar task also provides this figurative or virtual mirror, as the task was designed such 925 

that raters sometimes knew with near certainty, but sometimes did not, thereby they had 926 

opportunities to rate randomly and agree by chance. 927 

II.4. Pairing Rater Responses. Each rater rated 10 items per period and was given 928 

summary statistics of right and wrong at the end of each period. The task was made to 929 

resemble an online game or IQ test to maintain raters’ attention and focus. Items per period 930 



 

were limited to 10 to reduce clutter effect (116,117). Number of bars, level of difficulty, and 931 

the location of long bars were randomly rotated to minimize the effects of learning, fatigue, 932 

boredom, serial position, rater idiosyncrasies, and other possible confounders (117–121). 933 

The same 10 items were rated again in the same order by the next rater available. 934 

After completing 10 items, a rater may choose to rate 10 more. He or she might be given 10 935 

unpaired items rated by another rater, or 10 new items if all rated items had been paired. The 936 

process repeated until the end of data collection. 937 

The data collection took place in a three-month period. Students, teachers, 938 

researchers, technicians, managers, office workers and other professionals from 15 colleges 939 

and two research firms in America, China mainland, Hong Kong, Macau and Singapore 940 

participated as a part of their class exercises, professional training, or work assignments. 941 

They registered 383 web names and logged on from 53 Asian, European and North American 942 

cities. They rated a total of 22,290 items, of which 19,900 were successfully paired, 943 

producing 9,950 paired responses, from which we sampled and resampled to reconstruct 384 944 

rating sessions to form a between-subject (session) experiment that we report below.  945 

II.5. Manipulating Skew (sk). As the longest bar is either at the left or right side of 946 

the second longest bar, we defined distribution as the left-and-right percentage. For example, 947 

when 1% of the rated screens had the longest bar at the left, the distribution is denoted 1&99.  948 

Five levels were chosen: 1&99, 25&75, 50&50, 75&25, and 99&1, the last of which 949 



 

represented 99% left & 1% right. 0&100 and 100&0 were omitted as π, κ and α would be 950 

undefined. 951 

It is skew, but not the unfolded distribution, that’s expected to affect the indices 952 

(14,29,61,65,76). Therefore, skew (sk) was operationalized as distribution folded in the 953 

middle. 1&99 and 99&1 were both assigned sk=0.99, for the highest skew. 50&50 was 954 

assigned sk=0.5 for the lowest skew, and 25&75 and 75&25 were both assigned sk=0.75 for 955 

moderate skew. Variable skew (sk) ranged 0.5~0.99. 956 

II.6. Reconstructing Rating Sessions. To reconstruct the first rating session, we 957 

randomly sampled without replacement 100 paired rating responses (Nt=100) requiring two 958 

categories (C=2), lowest difficulty (df=0), and highest skew (sk=.99). After recording the 959 

variable and response information, we returned the sample to the population of 9,950.  960 

To reconstruct the second rating session, we drew another random sample of 100 pairs 961 

requiring four categories (C=4) while the other two variables, difficulty and skew, remained 962 

df=0 and sk=.99. Again, we returned each pair back to the population after recording the 963 

needed information. We then reconstructed the third session, then the fourth, and so on. We 964 

repeated the process for every combination of category, difficulty, and skew, producing 965 

4*8*3=96 sessions. 966 

A few cases can significantly affect π, κ and α when distribution is skewed (51,56–967 

58,62,63,77,93,108,122). To assure stable effects, we resampled three more times to 968 



 

quadruple the number of sessions, so Nc=96*4=384, which was the total number of the 969 

reconstructed rating sessions that constituted the “subjects” for this experiment. Each skew 970 

condition had an equal number of high- and low- prevalence sessions, that is, each skew=.99 971 

condition had two 1&99 sessions and two 99&1 sessions, and each skew=.75 condition had 972 

two 25%75 conditions and two 75&25 sessions.   973 

II.7. Reconstructed Experiment in Summary. This was a 4X8X3 between-subject 974 

controlled experiment with 4 subjects per cell where each subject was a rating session, as 975 

shown in Table 1. The execution took two stages. The first was individual-level treatment-976 

response, during which individual-level independent variables, category and difficulty, were 977 

manipulated, stimulus and treatment were administered, and individual responses were 978 

recorded. The second was group-level reconstruction, during which individual responses 979 

were sampled and resampled, and the group-level independent variable, skew, was 980 

manipulated.  981 

While the treatment and response collection followed the procedure of typical 982 

controlled experiment (36), the sampling and resampling benefited from the theories and 983 

techniques of bootstrap (32,33); jackknife (34) and Monte Carlo simulation (35). 984 

Simulation is a powerful tool for understanding reliability. But simulations do not 985 

measure behavior. They presume certain behaviors then examine their consequences (53,55–986 

58,123). A typical individual-level experiment is unsuitable because reliability indices are 987 



 

meaningful only for rating sessions. A session-level experiment would require hundreds of 988 

rating sessions, which would be too costly and too difficult to administer. Each rating session 989 

would require a fixed level for each independent variable, e.g., all tasks are extremely 990 

difficult, have eight categories, and 99% are left, which would deviate too much from 991 

realistic rating.  Reconstructed experiment offers a useful and feasible addition to our toolkit, 992 

allowing observed rater behaviors to be factored into the debate over how raters behave.  993 

III. Variable Measurements and Calculations 994 

III.1. Calculating Chance Agreement (oac). The raters reported few agreements on 995 

short bars (0.45%, Table 2), confirming that the main competition was successfully limited 996 

between the long bars.  It also simplifies the calculation for chance agreement. Assuming no 997 

deliberate and systematic errors, each erroneous agreement (oae), the agreement between two 998 

raters choosing a same wrong bar, is considered random. Because there were only two real 999 

choices, the probability theory predicates an equal number of agreements falling on the 1000 

longest bars, thus being correct by chance. Therefore, observed chance agreement (oac) was 1001 

calculated by doubling the directly observed erroneous agreement oae:   1002 

To be sure, we derived another formula for oac assuming that sometimes raters had 1003 

four, six, or eight real choices, as described in Section III.2 below. The two measures yielded 1004 

essentially the same results. As Eq. 3 is simpler and easier to trace back to the directly 1005 

𝑜𝑎𝑐 = 2 ∗ 𝑜𝑎𝑒 ( 3 ) 



 

observed oae, we report statistics based on Eq. 3.  1006 

III.2. Alternative Calculation of Observed Chance Agreement (oac). We identified 1007 

two formulas for calculating the observed chance agreement (oac). The findings section of the 1008 

manuscript reports the results based on the simpler formula (Eq. 3). All analyses involving oac 1009 

were performed twice using the two different formulas, which produced essentially the same 1010 

results.  We describe the alternative formula (Eq. 4) below.   1011 

Some agreements are right, some are erroneous. This study directly observed 1012 

erroneous agreement (oae).  As we assume no systematic error, all oae are assumed to have 1013 

come from chance rating, which constitutes the first part of the chance agreement to be 1014 

estimated.   1015 

The observed right agreement (oar) includes randomly and systematically right 1016 

agreement. We need to estimate the former. Due to our design of two long bars and several (0, 1017 

2, 4, 6) short bars, the chance agreement came from two types of random selection: between 1018 

two long bars, and among all bars.  When the latter results in an agreement on the longest bar, 1019 

we call it right agreement from random choices among all bars (ara) 1020 

All agreement on the short bars resulted from raters choosing randomly among all 1021 

bars.  With C categories, 1/C of such random choices should fall on each bar, including the 1022 

longest bar.  Suppose there are four bars (C=4), and os4 represents observed agreement on the 1023 

two short bars, the right agreement (on the longest bar) from choosing randomly among four 1024 

bars equals the agreement on each short bar, which is os4/2. Similarly, the right agreement 1025 



 

from choosing randomly among six or eight bars is os6/4 or os8/6, respectively. So the total 1026 

amount of right agreement from random selection among all bars is 1027 

ara=(os4/2)+(os6/4)+(os8/6), which constitutes the second part of the chance agreement we want 1028 

to estimate.   1029 

Of all observed agreements on the second longest bar (oa2), some came from random 1030 

selection among all bars (ara), and the rest (oa2-ara) came from random selection between the 1031 

two long bars. The same amount (oa2-ara) should fall on the longest bar, which constitutes the 1032 

last part of the chance agreement we want to estimate.   1033 

 Adding up the three parts, the observed chance agreement oac is: 1034 

𝑜𝑎𝑐 = 𝑜𝑎𝑒 + 𝑎𝑟𝑎 + (𝑜𝑎2 − 𝑎𝑟𝑎) = 𝑜𝑎𝑒 + 𝑜𝑎2 
  

( 4 ) 

 As mentioned, the two approaches of calculating oac produced very small differences 1035 

in means and even smaller differences in correlations. The two formulas therefore corroborate 1036 

each other. 1037 

III.3. Calculating Observed Reliability (ori). Observed reliability (ori) is observed 1038 

agreement (ao) minus observed chance agreement (oac): 1039 

𝒐𝒓𝒊 = 𝒂𝒐 − 𝒐𝒂𝒄   ( 5 ) 

IV. Statistical Indicators 1040 

Typical studies calculate estimators to estimate estimands, the targets of estimations. 1041 

This study observed estimands to evaluate their estimators. We adopted and adapted common 1042 



 

indicators, mean, error, and r2, to analyze data from this novel design with novel objectives. 1043 

To guide our choices, we first review the two functions of interrater reliability as estimators.    1044 

IV.1. Approximating and predictive functions of reliability indices. Reliability 1045 

indices serve two functions. One is to compare an instrument with fixed benchmarks, such as 1046 

0 for absence of reliability, 0.67 for highly tentative reliability, 0.8 for acceptable reliability, 1047 

and 1 for perfect reliability (19 p147). This function requires an index to approximate true 1048 

reliability in order to place accurate scores on instruments, and we need a proximity 1049 

measure(s) to assess and analyze indices’ ability to approximate true reliability.  1050 

Another function is to compare instruments with each other in order to differentiate 1051 

them. This function requires an index to accurately predict true reliability, which means to be 1052 

highly and positively correlated with its estimation target, so that it almost always gives 1053 

higher scores to more reliable instruments and lower scores to less reliable instruments. We 1054 

need a correlational measure(s) to evaluate the indices’ ability to predict true reliability. 1055 

If an index always approximates the reliability of every individual session perfectly, it 1056 

also predicts perfectly. Assuming no perfection, however, the prediction-proximity relation is 1057 

more complicated. A good predictor is not necessarily a good approximator. For example, if a 1058 

perfect predictor always overestimates by a constant, it’s still a perfect predictor, because all 1059 

instruments benefit equally. Conversely, a good approximator is not necessarily a good 1060 

predictor. While a dreadful approximator gives higher score to worse instruments and lower 1061 



 

scores to better instruments, its errors could offset each other to make it a perfect 1062 

approximator on average. Therefore, both proximity and prediction measures are needed. 1063 

IV.2. Proximity Measure I -- Error of Mean (em). An intuitive proximity measure is 1064 

error of mean (em), defined as the difference between the grand average (mean) of 1065 

estimations (ri or ac) and the grand average (mean) of estimation targets (ori and oac) . For any 1066 

reliability index ri and chance estimator ac, the error of mean (em) calculations are shown as 1067 

Eqs. 6 and 7.  1068 

𝒆𝒎(𝒓𝒊) = 𝐦𝐞𝐚𝐧(𝒓𝒊) − 𝐦𝐞𝐚𝐧(𝒐𝒓𝒊)                −1 ≤ 𝑒𝑚(𝑟𝑖) ≤ 1 ( 6 ) 

𝒆𝒎(𝒂𝒄) = 𝐦𝐞𝐚𝐧(𝒂𝒄) − 𝐦𝐞𝐚𝐧(𝒐𝒂𝒄)              −1 ≤ 𝑒𝑚(𝑎𝑐) ≤ 1  ( 7 ) 

For example, the difference (em(ri)) between κ estimation (ri) and observed reliability 1069 

(ori), averaged across 384 sessions, would indicate one aspect of κ’s inaccuracy.  1070 

As a vector, a positive em indicates overestimation, while a negative em indicates 1071 

underestimation. A near zero em, however, does not necessarily indicate accuracy for 1072 

individual rating sessions. Overestimations and underestimations of individual sessions may 1073 

offset each other to create a small em, a phenomenon known as aggregation bias or ecological 1074 

fallacy (124,125). 1075 

In typical research, however, overestimation of one study does not offset the 1076 

underestimation of another study. Errors of all directions accumulate or even multiply in 1077 

terms of social impact. We need an additional measure, which is described below.  1078 



 

IV.3. Proximity Measure II -- Mean of Errors (me). To avoid aggregation bias, we 1079 

took the absolute value of the estimation error of each session, |ri-ori| and |ac-oac|, and 1080 

averaged them across all 384 sessions. The results are mean of errors (me) for reliability and 1081 

chance estimations for reliability (ri) and chance errors (ac), as shown in Eqs. 8 & 9: 1082 

𝒎𝒆(𝒓𝒊) = 𝐦𝐞𝐚𝐧(|𝒓𝒊 − 𝒐𝒓𝒊|)               0 ≤ 𝑚𝑒(𝑟𝑖) ≤ 1   ( 8 ) 

𝒎𝒆(𝒂𝒄) = 𝐦𝐞𝐚𝐧(|𝒂𝒄 − 𝒐𝒂𝒄|)             0 ≤ 𝑚𝑒(𝑎𝑐) ≤ 1      ( 9 ) 

Smaller me indicates a smaller error hence a better estimator.  As a scalar, however, 1083 

me does not differentiate overestimations from underestimations, which vector em does.  1084 

The spreads of our main variables varied significantly (Lines 4,5,10 &11 of Table 3), 1085 

which presents another concern.  A narrower spread makes em and me look closer to zero 1086 

because their  baselines (-1~1 or 0~1) do not change with spreads, producing a statistical 1087 

version of baseline bias (126) or scale of reference bias (127). 1088 

IV.4. Predictive Accuracy and Share of Influence -- Directional r2 (dr2). As a ratio 1089 

of regression prediction over total variance, r2 is commonly used to measure predictive 1090 

accuracy (128–130). As a percent of dependent variance explained by independent 1091 

variable(s), r2 also indicates share of influence (128,129,131). As a scalar, however, r2 does 1092 

not signal direction, while direction is important for this study. There are conflicting 1093 

expectations about how difficulty or skew affects chance agreement, for example. We added 1094 

the sign of r to r2 to produce a directional r squared (dr2): 1095 

𝒅𝒓𝟐 = 𝒓 ∗ |𝒓|                   − 𝟏 ≤ 𝒅𝒓𝟐 ≤ 𝟏     ( 10 ) 



 

We use dr2 as the main indicator of indices’ predictive accuracy and various 1096 

variables’ share of influence. 1097 

IV.5. Regression vs ANOVA. Experimenters often employ ANOVA for analyzing 1098 

data. The independent variables of this experiment are on ratio scales, which can be more 1099 

efficiently analyzed with regression. As regression and ANOVA are mathematically 1100 

equivalent, there is no loss in essential information or accuracy.  1101 

V. Benchmarks and Thresholds 1102 

This is the first time interrater reliability estimators and their chance agreement 1103 

estimators are evaluated against their respective estimands, the observed true reliability and 1104 

observed true chance agreement. No preestablished benchmarks or thresholds are available.  1105 

Before reporting the outcome, this section lays out the principles that guide the evaluation. 1106 

Besides helping the reviewers to evaluate our evaluation, we also hope that explicating the 1107 

principles, if published, may start a conversation about what criteria and principles are 1108 

appropriate for this type of evaluations. 1109 

V.1. Ideal index outperforms all others. An ideal index outperforms all other 1110 

indices on all indicators, producing the largest dr2 and smallest me and em for both reliability 1111 

and chance estimations. Since no such index emerged, the following principles applied.  1112 



 

V.2. Reliability over chance agreement. While chance estimation is important for 1113 

understanding an index’s inside, an index’s value is ultimately judged by the accuracy of its 1114 

reliability estimation. 1115 

V.3. Prediction (dr2) over approximation (me & em). As said, a good predictor 1116 

usually gives more reliable instruments higher scores, and less reliable instruments lower 1117 

scores. A good predictor can be a poor approximator only when its estimations deviate from 1118 

the true reliability by a near constant across all studies. If the constant can be estimated, such 1119 

as in studies like this, researchers can add the constant to the estimations to improve the 1120 

approximation. If the constant cannot be estimated, researchers may collectively adjust the 1121 

benchmarks to reduce the impact of the across-the-board miss-approximation. 1122 

When a good approximator is a poor predictor, its consequences are more severe and 1123 

harder to remedy. A poor predictor often gives more reliable instruments lower scores, and 1124 

less reliable instruments higher scores.  A poor predictor can be a good approximator only 1125 

when its errors on individual studies offset each other to lower the across-study errors. The 1126 

offsetting through averaging does not remedy the underlying cause of the large estimation 1127 

errors shown in the low correlation. 1128 

If we cannot have both, we would trade approximating precision for differentiating 1129 

precision. When evaluating reliability indices, therefore, more weights should be placed on 1130 

dr2 than me or em. 1131 



 

V.4. me over em. To evaluate the indices’ approximation accuracy, we place more 1132 

weights on mean of errors (me) because it is less influenced by aggregation bias. 1133 

V.5. Primary Requirement. Some disciplines honor ri>0.8 as the criterion for 1134 

acknowledging reliability, and ri>0.67 for highly tentative acknowledgment (19,49,132). 1135 

Without more reasonable precedents to following, this study tentatively adopts 0.8 and 0.67 1136 

as thresholds for dr2, me and em. In accordance with Reasoning VI.3 above, we consider 1137 

Inequality 11 a primary requirement for accepting an index’s validity, where dr2
(ori&ri) 1138 

represents directional r2 between observed reliability (ori) and an index’s estimated reliability 1139 

(ri): 1140 

The stated mission of chance-adjusted indices is to outperform percent agreement 1141 

(ao), which requires Inequality 12, where dr2
(ori&ao) represents directional r2 between ori and 1142 

ao. 1143 

 Inequality 11 applies when dr2
(ori&ao)<0.8, otherwise Inequality 12 applies. 1144 

 V.6. Secondary Requirement. Inequalities 13 &14 serve as the secondary 1145 

requirement, where me (ri) and me (ao) represent respectively approximation errors (me) of an 1146 

index (ri) and ao. 1147 

𝒅𝒓𝟐
(𝒐𝒓𝒊&𝒓𝒊) > 𝟎. 𝟖               − 𝟏 ≤ 𝒅𝒓𝟐 ≤ 𝟏     ( 11 ) 

𝒅𝒓𝟐
(𝒐𝒓𝒊&𝒓𝒊) ≥ 𝒅𝒓𝟐

(𝒐𝒓𝒊&𝒂𝒐)                − 𝟏 ≤ 𝒅𝒓𝟐 ≤ 𝟏     ( 12 ) 



 

 Inequality 13 applies when me (ao)>0.2; Inequality 14 applies otherwise. The threshold 1148 

0.2 in Ineq. 13 comes from 1-0.8=0.2, where 0.8 is borrowed from, again, from 1149 

Krippendorff’s criteria (19,49,132). 1150 

  V.7. Tentative Requirement. In case no index meets the primary and secondary 1151 

requirements, thresholds of 0.67 for dr2 and 0.33 for me may be applied for tentative 1152 

acceptance, again borrowing Krippendorff’s criteria (19,49,132). 1153 

 V.8. Competitive requirement. To be among the recommended, an index also needs 1154 

to outperform all other indices on at least one of the major indicators. 1155 

  1156 

𝒎𝒆(𝒓𝒊) < 𝟎. 𝟐               𝟎 ≤ 𝒎𝒆 ≤ 𝟏     ( 13 ) 

𝒎𝒆(𝒓𝒊) ≤ 𝒎𝒆(𝒂𝒐)               𝟎 ≤ 𝒎𝒆 ≤ 𝟏     ( 14 ) 
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Tables and Figures 

 

 

 

Table 1 
A Category (C) by Difficulty (df) by Skew (sk) 

- Reconstructed Experiment * 

Across: Distribution & 

Skew (sk) 

 

50&50 

 sk=0.5 

 

25&75, 

75&25 

sk=0.75 

 

1&99, 99&1  

sk=0.99 

Across: Category (C) 2 4 6 8 2 4 6 8 2 4 6 8 

difference 

in pixels (px) 

Difficulty 

df=(8-px)/7 
            

1 =1.000 4 4 4 4 4 4 4 4 4 4 4 4 

2 ≈0.8571 4 4 4 4 4 4 4 4 4 4 4 4 

3 ≈0.7143 4 4 4 4 4 4 4 4 4 4 4 4 

4 ≈0.5714 4 4 4 4 4 4 4 4 4 4 4 4 

5 ≈0.4286 4 4 4 4 4 4 4 4 4 4 4 4 

6 ≈0.2857 4 4 4 4 4 4 4 4 4 4 4 4 

7 ≈01429 4 4 4 4 4 4 4 4 4 4 4 4 

8 =0.0000 4 4 4 4 4 4 4 4 4 4 4 4 

* Main cell entries are number of reconstructed rating sessions (subjects) in each 

experimental condition (cell). 
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Table 2 Concepts and Variables 

  Down: Author or Origin Reliability (True Agreement) Chance Agreement 

 generic for any index  ri  ac 

Dependent 

Variables 

Index 

Estimation 

%-Agreement (unknown author) ao aoac 

Bennett et al (1954)(15) S Sac 

Perreault & Leigh (1989) (7) Ir Irac 

Gwet (2002, 2008, 2010, 2012)(54), 

(96,133),(86) 
AC1 ACac 

Scott (1955) (16) π  πac 

Cohen (1960) (2) κ  κac 

Krippendorff (1970, 1980)(19,67,134) α  αac 

    

Empirical 

Observation 

 

Primary Indicator 

ori 

observed interrater reliability 

oac 

observed chance agreement 

 

Secondary Indicator 

(used in calculation) 

oar 

observed right agreement 

oae  

observed erroneous agreement 

ao 

observed agreement 

do 

observed disagreement  

 
Independent 

Variables 

Denotation C sk df   or   es 

Concept Category  Distribution Skew Difficulty or Easiness 

 

Other 

Concepts 

Denotation em me  sdm dr2 Nc Nd 

Concept 
error of means 

(mean estimation 

minus mean target) 

mean of errors (mean 

of differences between 

estimation and target)  

standard deviation of 

an observed target of 

estimation (oae ori) 

directional r2 

(dr2= r*|r|) 

No. of rating 

sessions 

No. of rating 

decisions within 

a session 
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Table 3 Effects of Estimation Targets, Category, Skew & Difficulty on Observed or Estimated Chance Agreement and Reliability ( dr2) 

   A. B. C. D. E. F. G. H. 

 
1 Right: Source or Author 

Obser-

vation 

%-

agreement 

Bennett  

et al. 

Perreault  

& Leigh 
Gwet Scott Cohen 

Krippen-

dorff 

E
ff

e
c
ts

 o
n

  

In
tc

d
r 

R
e
li

a
b

il
it

y
 

O
b

sv
 &

 E
st

s 

 

2 

 Right: Obsd / Estd Interrater Reliability 

            as Dependent Variables  

 Down: Independent Variables 

ori ao S Ir AC1  π  κ   α  

3  Observed Reliability (ori) 1.00*** .841*** .691*** .599*** .721*** .312*** .312*** .312*** 

4  Category (C) .003 -.002 .175*** .185*** .123*** .001 .001 .001 

5  Distribution Skew (sk) .000 .000 .000 -.000 .003 -.293*** -.292*** -.293*** 

6  Difficulty (df) -.774*** -.778*** -.566*** -.434*** -.554*** -.389*** -.389*** -.389*** 

E
ff

e
c
ts

 o
n

  

C
h

a
n

c
e
 A

g
rt

 

O
b

sv
 &

 E
st

s 7 

 Right: Obsd / Estd. Chance Agreement 

            as Dependent Variables  

 Down: Independent Variables 

oac aoac=0† Sac Irac ACac πac κac αac 

8  Observed Chance Agreement (oac) 1.00*** --- .021** .021** .075*** -.151*** -.152*** -.151*** 

9  Category (C) -.019** --- -.863*** -.863*** -.661*** -.013* -.014* -.013* 

10  Distribution Skew (sk) -.001 --- .000 .000 -.039*** .437*** .434*** .437*** 

11  Difficulty (df) .585*** --- .000 .000 .009 -.123*** -.125*** -.123*** 

 N
  12  Nc (number of rating sessions) 384 384 384 384 384 384 384 384 

13  Nd (number items within each session) 100 100 100 100 100 100 100 100 

Main cell entries are directional r squared (dr2), which are r squared with the directional sign of r, dr2=r•|r|.  

*: p<.05; **: p<.01; ***: p<.001.† As aoac, the chance estimate of ao, is a constant, its correlations (dr2) with other variables cannot be 

calculated.   
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Table 4 Mean of Errors (me) / Distance Between Index Estimations and Targets of Estimation 

   A. B. C. D. E. F. G. 

 
1 Author or Source 

%-

agreement 

Bennett 

et al. 

Perreault 

& Leigh 
Gwet Scott Cohen 

Krippen 

-dorff 

In
te

rr
a
te

r 

R
e
li

a
b

il
it

y
 2  Interrater Reliability Estimator ao S Ir AC1 π κ α 

3  me (ri)=mean (|ri-ori|)  (0≤me≤1)   .130***   .096***   .180***   .093***   .327***   .324***   .323*** 

4  Standard Deviation of me (ri)   .145   .099   .148   .104   .221   .220   .220 

5  95% confidence interval of me  (ri) .115~.144 .086~.106 .164~.194 .082~.103 .304~.349 .302~.346 .301~.345 

C
h

a
n

c
e
 

A
g

re
e
m

e
n

t 6  Chance Agreement Estimator  aoac Sac Irac ACac πac κac αac 

7  me (ac):=mean (|ac-oac|)  (0≤me≤1)   .130***   .182***   .182***   .130***   .450***   .448***   .448*** 

8  Standard Deviation of me (ac)   .145   .141   .141   .127   .201   .201   .202 

9  95% confidence interval of me (ac) .115~.144 .168~.196 .168~.196 .117~.143 .429~.470 .428~.469 .427~.468 

N  10  Nc (number of rating sessions) 384 384 384 384 384 384 384 

11  Nd (number items within each session) 100 100 100 100 100 100 100 

*: p<.05, **: p<.01, ***: p<.001 
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Table 5 Means and Error of Means (em): Index Estimations Against Observations 

   A. B. C. D. E. F. G. H. 

 1 Right: Author or Source 
Observed 

Agreement 

%- 

agreement 

Bennett  

et al. 

Perreault 

& Leigh 
Gwet  Scott Cohen Krippendorff 

In
te

rr
a
te

r 

R
e
li

a
b

il
it

y
 

2 
 Observed or Estimated Reliability 

(denotation) 
ori ao S Ir AC1 π  κ  α  

3  Observed / Estimated Interrater Reliability  .555 .685 .556 .726 .600 .237 .240 .241 

4  Standard Deviation .248 .122 .203 .173 .192 .249 .247 .248 

5  Range (minimum~maximum) -.20~.90 .42~.92 -.10~.856 .0~.925 -.045~.912 -.177~.778 -.173~.778 -.17~.779 

6  em(ri)=mean(ri)-mean(ori)        (-1≤em≤1) .000 .130*** .001 .171*** .044*** -.318*** -.315*** -.314*** 

7  95% confidence interval .00~.00 .115~.144 -.013~.015 .155~.186 .031~.058 -.341~-.295 -.338~-.292 -.338~-.291 

C
h

a
n

c
e
 

A
g

re
e
m

e
n

t 

8  Chance Agreement (denotation) oac aoac Sac Irac ACac πac κac αac 

9  Observed or Estimated Chance Agreement  .130 .000 .260 .260 .173 .575 .573 .572 

10  Standard Deviation .145 .000 .146 .146 .148 .109 .109 .110 

11  Range (minimum~maximum) .0~.72 .0~.0 .125~.50 .125~.50 .022~.50 .448~.905 .447~.905 .445~.905 

12  em(ac)=mean(ac)-mean(oac)      (-1≤em≤1) .000 -.130*** .131*** .131*** .044*** .445*** .443*** .443*** 

13  95% confidence interval .00~.00 -.144~-.115 .111~.15 .111~.15 .026~.061 .423~.466 .422~.465 .421~.464 

N
 14  Nc (number of rating sessions) 38 

100 

384 384 384 384 384 384 384 

15  Nd (number items within each session) 100 100 100 100 100 100 100 

*: p<.05, **: p<.01, ***: p<.001 
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Table 6 Effects of Category, Skew, and Difficulty on Observed Chance Agreement, Reliability, and Index Estimations (Average Scores) 

  A. B. C. D. E. F. G. H. I J K L M N O P Q 

  Reliability Observation or Estimation Chance Agreement Observation or Estimation  

1 Author/ Source Observed 
%- 

Agreement 

Bennett  

et al. 

Perreault  

& Leigh 
Gwet Scott Cohen 

Krippen 

-dorff 
Observed 

%- 

Agreement 

Bennett  

et al. 

Perreault  

& Leigh 
Gwet Scott Cohen 

Krippen 

-dorff 
 

 2 Estimator: ori ao
 S Ir AC1 π κ α oac aoac Sac Irac ACac πac κac αac Nc 

 3 Ground 0 .555 .685 .370 .608 .371 .369 370 .373 .130 0 .500 .500 .499 .501 .500 .498 32 

4 

C
a
te

g
o

ry
 

(C
) 

2 .537 .701 .402 .584 .470 .230 .232 .234 .164 0 .500 .500 .401 .598 .597 .596 96 

5 4 .550 .678 .571 .747 .621 .226 .230 .230 .128 0 .250 .250 .142 .573 .571 .571 96 

6 6 .557 .676 .612 .777 .644 .239 .241 .242 .119 0 .167 .167 .087 .562 .561 .561 96 

7 8 .578 .686 .641 .796 .664 .254 .257 .257 .108 0 .125 .125 .062 .564 .563 .562 96 

8 

S
k

e
w

 

(s
k

) 

.50 .550 .688 .560 .732 .592 .370 .372 .374 .138 0 .260 .260 .203 .501 .500 .498 128 

9 .75 .556 .678 .547 .722 .588 .302 .304 .305 .122 0 .260 .260 .186 .545 .543 .543 128 

10 .99 .560 .690 .561 .723 .619 .040 .044 .045 .130 0 .260 .260 .132 .678 .676 .676 128 

11 

D
if

fi
c
u

lt
y

 

(d
f)

 

.000 .824 .844 .782 .884 .810 .482 .484 .485 .020 0 .260 .260 .152 .630 .629 .628 48 

12 .143 .783 .805 .728 .852 .761 .404 .406 .407 .021 0 .260 .260 .158 .616 .615 .615 48 

13 .286 .721 .757 .659 .808 .697 .341 .343 .344 .036 0 .260 .260 .164 .599 .598 .600 48 

14 .429 .659 .721 .600 .765 .643 .273 .275 .277 .062 0 .260 .260 .169 .591 .589 .588 48 

15 .571 .543 .659 .518 .706 .563 .196 .199 .200 .116 0 .260 .260 .180 .565 .563 .563 48 

16 .714 .439 .606 .444 .647 .495 .117 .121 .121 .168 0 .260 .260 .182 .548 .546 .546 48 

17 .857 .331 .567 .387 .591 .440 .068 .071 .072 .236 0 .260 .260 .189 .534 .533 .532 48 

18 1.00 .142 .523 .332 .552 .389 .018 .022 .022 .380 0 .260 .260 .194 .514 .512 .511 48 

19  Mean .555 .685 .556 .726 .600 .237 .240 .241 .130 0 .260 .260 .173 .575 .573 .572 384 

20  Nd 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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Figure 1 A sample screen seen by some raters (for category = 6, difficulty = 1). 
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Figure 

2 

Accura

cies of 

Interrat

er 

Reliabil

ity 

Indices. 

Notes to Figure 2: 

1. Solid red bars are dr2 between estimated chance agreement & observed chance 

agreement. 

2. Dotted blue bars are dr2 between estimated interrater reliability & observed 

interrater reliability. 

3. Primary benchmark:  dr2>0.8. 

4. Data source: Lines 3 & 8, Table 3. 
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