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Abstract: The goal of this work was to develop and validate a spectrally 
resolved photoacoustic imaging method, namely multi-spectral photoacoustic 
elasticity tomography (PAET) for quantifying the physiological parameters 
and elastic modulus of biological tissues. We theoretically and experimentally 
examined the PAET imaging method using simulations and in vitro 
experimental tests. Our simulation and in vitro experimental results indicated 
that the reconstructions were quantitatively accurate in terms of sizes, the 
physiological and elastic properties of the targets. 
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1. Introduction  

Photoacoustic tomography (PAT) is a robust biomedical imaging method that can offer the 
structural and functional information of biological tissues with excellent resolution and high 
contrast [1-7]. PAT imaging techniques have been successfully applied to the early detection 
of cancer, probing the brain function and examining vascular and skin diseases [8-11]. More 
importantly, recent work also shows that PAT can reconstruct the tissue mechanical properties 
including the acoustic velocity, the elastic modulus and the temperature [12-15], and optical 
and physiological properties such as the optical absorption and scattering coefficients, the 
deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) concentrations by using spectrally 
resolved photoacoustic (PA) measurements [6,16-19]. In particular, the uniqueness regarding 
simultaneous reconstruction of different chromophore concentrations and acoustic velocity 
has been resolved for multi-spectral PAT [18], which can reveal spatially resolved 
quantitative physiological and molecular information by exploiting the known spectral 
characteristics of specific chromophores. The generated physiological properties of biological 
tissues including the concentrations of HbR and HbO2 and water (H2O) content are essential 
for an accurate diagnostic decision-making in lesion detection and image-guided cancer 
treatment. 

Interestingly, the bulk elastic modulus of normal and diseased tissues have been explored 
by ultrasonography, where the ranges of the elastic moduli from soft tissues span over as 
much as four orders of the magnitudes [20,21]. Recently, PAT has been implemented to 
characterize the elastic moduli of phantoms or biological tissues using single-wavelength 
measurements. However, most of work conducted can only reconstruct the elastic moduli-
related parameters, which can not achieve the truly quantitative and spectrally resolved PA 
elasticity tomography (PAET) [14]. In this study, multi-spectral PAET is proposed to directly 
reconstruct the chromophore concentrations and quantitative elastic modulus of biological 
tissues simultaneously. The capability of reconstructing the physiology and elastic properties 
by using multi-spectral PAET, paves a new avenue for better differentiating benign from 
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malignant lesions since the elastic contrast between diseased and healthy tissues is very high 
[21]. 

2. Methods and materials 

2.1 The multi-spectral PAET reconstruction method 

To formulate the reconstruction model for multi-spectral PAET,  the PA wave generation and 
propagation in an acoustic coupling media are described by the basic Newton’s law of motion 
Eq.(1), equation of continuity (2) and the thermal elastic equation (3) in terms of thermal 
confinement [1], 
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where V is particle velocity, vs is the acoustic velocity, t is time, r is the spatial location, ρ  is  
the density of the media, T and p are the temperature and pressure, H is the source term which 
can be written as ( )H I tΨ= , Cp is the specific heat, Ψ  is the light absorbed energy density, 
and I(t)  is the temporal illumination function.  Considering Eqs. (1)-(3) and eliminating V, we 
get 
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If the bulk elastic modulus K is denoted as 2
svK ρ= , Eq. (4) is written, 
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If a homogeneous elastic reference medium is assumed with density 0ρρ = , Eq. (5) is 
written, 
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Denoting the following Fourier transform form for acoustic pressure, 
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And taking the Fourier transform on variable t of Eq. (7), we obtain, 
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where 0 0/k vω=  is the wave number described by the angular frequency ω  and the speed of 
acoustic wave v0 in a reference medium, K0 is the bulk elastic modulus of the reference 
medium and the light absorbed energy density Ψ  is equal to the product of the optical 
absorption coefficient aμ  and photon density Φ . Eq. (8) can be further written as  
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where O is a coefficient that depends on the bulk modulus K and KKO /0=  . 
In multi-spectral PAT, the frequency-domain Helmholtz wave equation is expresses as 
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where λ is the wavelength of the incident light. According to the Beer’s law, the wavelength-
dependent tissue absorption coefficient is written [16,18], 
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in which ic  is the concentration and ( )iε λ is the extinction coefficient of the ith chromophore 

at wavelength λ . Consequently, Eq. (10) is rewritten, 
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Eq. (12) is the forward equation for multi-spectral PAET and the finite element discretization 
form of Eq. (12) is [16,18], 
                                                            BAp =                                                                      (13) 
The inverse solution can be obtained by solving the following inverse equation: 
                                      ( ) ( ).T T o c+ ξ Δ = −J J I χ J p p                                              (14) 
in which ( )Tnnlll OOOccc ΔΔΔΔΔΔχΔ ...... 21,2,1,= is the update vector for l 
chromophores, elasticity modulus-related parameter O and N is the node number of the finite 
element mesh; ξ  is the regularization parameter determined by combined Marquardt and 
Tikhonov regularization schemes [16]; o

ip  and c
ip  are measured and calculated data for 

i=1,2,…M  boundary locations and are written as for each acoustic frequency ω within each 
incident optical wavelength λ, 
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the Jacobian submatrix for the elastic modulus and different chromophores, respectively [15]. 
In consideration of ΦμΨ a=  , the elements in Jacobian matrix , ,ic λ ωJ%  are determined by 
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in which Chrom is the number of chromophores and the derivatives  aμΨ ∂∂ /  in Eq. (3) are 
further denoted as 
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The sensitivity of )(/),( λΨλω ∂∂p  and aμΦ ∂∂ /  in each iteration can be calculated 
from Eq. (10) and the following photon diffusion equation for each wavelength, respectively, 
                           ( )( , ) ( , ) ( , ) , ( , ).aD r r r r S rλ λ μ λ λ λ∇ ⋅ ∇Φ − Φ = −                                       (18) 
in which S(r) is the light source term and D(r) is the optical diffusion coefficient and assumed 
as a constant in this study. 

Likewise, the elements in Jacobian submatrix , ,O λ ω
%J  are determined by [22], 

                                 [ ] ( ) ( ){ },
, .

j j

p AA p
O O
ω λ

ω λ
⎧ ⎫ ⎡ ⎤∂ ∂⎪ ⎪ = − ⎢ ⎥⎨ ⎬

∂ ∂⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦
                                (19) 

Proc. of SPIE Vol. 10494  1049437-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Nd:YAG II GPO Ii

Rotata

PC I

Rotator
controller

BS

Lens

_

Transducer Phantom

 

 

The Jacobian matrix can be calculated through the following steps using the adjoint 
method: 
        First, we define a MxN matrix Ψ , and let Ψ satisfy the following relationship: 
                                            [ ][ ] [ ].dAΨ = Δ                                                                (20) 
where the vector dΔ  has the unit value at the measurement sites/nodes and zero at other 
nodes. Then we left multiply Eq. (19)  by Ψ , which yields  
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Inspecting Eq. (20) into Eq. (21), we can immediately find that the left hand side of Eq. (21) 
actually gives the corresponding elements in the Jacobian submatrix , ,O λ ω

%J .  
As such, in multi-spectral PAET, the image formation task is to update chromophores 

concentration and bulk elastic modulus distributions via the iterative solution of Eqs. (13), 
(14) and (18) so that a weighted sum of the squared difference between computed and 
measured acoustic pressures can be minimized. 

2.2 The multi-spectral PAET imaging systems 

For our home-made PAT imaging system at the Faculty of Health Sciences of the University 
of Macau, a pulsed light from an Nd:YAG laser with OPO based on the multi-wavelength 
excitation (wavelength range from 680 to 1064 nm; pulse duration: 5-10 ns; frequency rate: 
20 Hz; Surelite I-10, Continuum) was used to illuminate the phantom/biological tissues via an 
optical subsystem and generated acoustic signals. A transducer (1MHz central frequency; 
OLYMPUS NDT) and the phantom were immersed into a water tank. A rotary stage rotated 
the transducer relative to the center of the tank as shown in Fig.1. The incident optical fluence 
was controlled at 10 mJ/cm2, and the diameter of the incident laser beam was 2.0 cm. The 
complex wavefield signal was amplified by a Pulser/Receiver (5073R, OLYMPUS). 

 

 
Fig.1. Schematic of the PAT system. BS: beam splitter; PC: personal computer. 

 

2.3 Simulation and in vitro experimental tests 
 
For simulation test 1, a circular background with the diameter of 3cm contained three circular 
targets (2mm in radius each as shown in Fig. 2(a)), where each target had different contrasts 
in physiological properties (Hb, HbO2, and H2O) and bulk elastic modulus (K). The 
chromophore concentrations and K used were provided in Table 1 and six optical wavelengths 
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(633, 670, 723, 805, 854and 896nm) were utilized to generate the measurements for the multi-
spectral PAET. A total of 120 detectors were equally distributed along the boundary of the 
circular background. The extinction coefficient for each chromophore was adopted from the 
website at http://omlc.ogi.edu/spectra/index.html [23].  

In addition, for the first in vitro experiment, we embedded a square chicken breast 
(length: 3mm; width:2mm) into a 3.5-cm-diameter solid cylindrical phantom. We then 
immersed the chicken breast-bearing solid phantom into the water tank. Two optical 
wavelengths (532 and 680nm) were used for the measurements. The phantom materials used 
consisted of Intralipid as scatterer and India ink as absorber with Agar powder (1-2%) for 
solidifying the Intralipid and India ink solution.  

3. Results and discussion 

In the following sections we show the reconstruction results that demonstrate the feasibility of 
the multi-spectral PAET reconstruction method. The multi-spectral PAET approach is 
examined using several simulations and in vitro experiments based on the reconstruction 
model and imaging systems mentioned above.  

Fig. 2 showed the recovered results for simulation case 1, in which the figures on the left 
column of Fig. 2 displayed the exact locations of the targets including HbO2, HbR, H2O and K 
whereas the recovered images were presented in Figs. 2(b)-2(c) corresponding to HbO2, HbR, 
H2O and K, respectively. It was discovered from the recovered results in Fig. 2 that the 
crosstalk errors between the chromophore concentrations and bulk elastic modulus were 
effectively resolved by using our multi-spectral PAET reconstruction method.  

 
 

Table 1. Chromophore Concentrations and K for the targets in simulation test 1 

     Objects position      HbO2      HbR   H2O                 K 
        (μM)  (μM)  (%)              (GPa) 
 
     Background         6      2  20                 2.2 
        Top right         6      10  20                 2.2 
        Top left         6      2  70                 2.8 
    Bottom middle         20      2  20                 2.8 

 
 
 

 
                                                                   (a) 
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provide us a novel tool to quantify physiological function, disease progression, or response to 
intervention. 
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