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Ensemble learning is a widely used technique to train deep convolutional neural networks (CNNs) for im-

proved robustness and accuracy. While existing algorithms usually first train multiple diversified networks

and then assemble these networks as an aggregated classifier, we propose a novel learning paradigm, namely,

“In-Network Ensemble” (INE) that incorporates the diversity of multiple models through training a SINGLE

deep neural network. Specifically, INE segments the outputs of the CNN into multiple independent classifiers,

where each classifier is further fine-tuned with better accuracy through a so-called diversified knowledge dis-

tillation process. We then aggregate the fine-tuned independent classifiers using an Averaging-and-Softmax

operator to obtain the final ensemble classifier. Note that, in the supervised learning settings, INE starts the

CNN training from random, while, under the transfer learning settings, it also could start with a pre-trained

model to incorporate the knowledge learned from additional datasets. Extensive experiments have been done

using eight large-scale real-world datasets, including CIFAR, ImageNet, and Stanford Cars, among others, as

well as common deep network architectures such as VGG, ResNet, and Wide ResNet. We have evaluated the

method under two tasks: supervised learning and transfer learning. The results show that INE outperforms

the state-of-the-art algorithms for deep ensemble learning with improved accuracy.
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1 INTRODUCTION

Deep neural networks are frequently trained with large variance [11], where such networks over-
fit to the noise in the training dataset and produce low generalizability in reality. To reduce the
variance, ensemble learning that aggregates the power of multiple “base” models has been widely
used to improve the performance of deep learning with enhanced generalizability [12, 26]. Due
to the time-consuming training of deep neural networks, training multiple deep models indepen-
dently may take a prohibitively large amount of time and/or computational resources and hence
hinders the wide application of deep ensemble learning. There is a pressing need to produce the
ensemble of multiple deep models efficiently (e.g., there is an upper-limit of computational time
or resource of training) as argued in a few very recent studies [8, 10, 19, 21, 43].

Recent studies, including Snapshot Ensemble [19], Temporal Ensemble [27], and Mean
Teacher [45], also propose to ensemble multiple models sampled from the training trajectory of
a single deep neural network. Similarly, researchers in Reference [10] propose Fast Geometric

Ensemble (FGE), which utilizes the geometry of landscape near the local minima and improves
the model sampling over the training trajectories. The authors in Reference [21] further improve
FGE using the Stochastic Weight Averaging algorithm (SWA), which aggregates the weights
of multiple snapshots through a Bayesian parameter averaging (BPA) scheme. Although these
methods are capable of obtaining diverse models efficiently, most of them (except for SWA) require
much more storage and calculation when performing prediction, as the multiple models are used
for the inference.
Different from existing methods rather than considering snapshots from the training trajectory,

our work is motivated by the fact that deep neural networks are highly over-parameterized while
parameters in many neurons are redundant [1, 34]. Many studies have shown that a large pro-
portion of the DNN’s parameters can be pruned without significant performance reduction, such
as References [7, 29]. In this way, we tend to improve the performance of a DNN model by further
developing the redundant parts of DNN beyond the convergence of empirical risk minimiza-

tion (ERM). Though fewer parameters are incorporated, the student learners are still capable of
achieving comparable accuracy, due to the excellent representations learned through knowledge
distillation from the teacher model. Specifically, we propose a spatial-temporal ensemble para-
digm, “In-Network Ensemble” (INE), that spatially subdivides a trained classifier into multiple
parts, trains each part with a knowledge distillation method [17], and aggregates the base classi-
fiers from the spatial domain. The paradigm is uniquely designed to encourage diversity among
temporal classifiers and to facilitate the fine-tuning of each individual classifier for the better clas-
sification accuracy.
Specifically, given a deep network architecture (e.g., VGGs or ResNets) and a training dataset,

INE first trains a network using the dataset based on the architecture. Note that, in this period, the
network can be trained using either common optimizers such as Stochastic Gradient Descent
(SGD) [28], or other ensemble trainers [10, 21] or even transfer learning trainer [31, 49]. With the
pre-trained model as the teacher network, the algorithm duplicates the weights of teacher network
as the initialization of a student network. Then, INE segments the fully connected layers of the
student network into multiple individual classifiers, where each individual classifier outputs the
classification results using the shared convolutional layers and its own part of fully connected
layers. With INE, every individual classifier in the student network is further fine-tuned for better
classification accuracy while preserving the diversity. To accelerate the fine-tuning procedure with
better accuracy, knowledge distillation via Teacher-Student training [17] has been used to align
the output vector between the teacher network (i.e., pre-trained model) and the fined-tuning one.
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To the end, these fine-tuned classifiers in the same network are aggregated using an Averaging-
and-Softmax operator (such as Reference [19]) as an ensemble classifier.

Our Contributions. To enable computation-efficient deep ensemble learning, the proposed
INE made contributions in both neural architectures and training algorithms as detailed below.
First, in terms of architecture, compared to traditional approaches [8, 10, 19, 43], which either ag-
gregate multiple models of different architectures or average weights/outputs of a specific model
at different training snapshots, INE “physically” subdivides a pre-trained neural network into mul-
tiple learners for the same task, then averages the prediction these learners as the overall classifier.
Second, in terms of training algorithms, INE is the first to leverage knowledge distillation [17] to
improve the training of individual learners to boost the overall ensemble performance. To increase
the diversity among base learners, we have designed a novel diversified Teacher-Student training
algorithm, which significantly improves the performance of ensemble learning. Third, we find that
INE has a natural application in deep transfer learning with additional performance boost caused
by ensemble learning. To the best of our knowledge, this work is the first study to address the
neural architectures, knowledge distillation via teacher-student training, ensemble of multiple in-
dividual classifiers with shared convolutional layers, the number of parameters, and computational
time/resource budget issues in deep ensemble learning research.
We have performed extensive experiments using eight large-scale real-world datasets, including

ImageNet and Stanford Cars, among others, as well as the common deep network architectures
such as VGG, ResNet, andWide ResNet, in both supervised learning and transfer learning settings.
The results show INE outperforms the state-of-the-art algorithms for deep ensemble learning with
higher accuracy. Furthermore, under transfer learning settings, we find that INE leads to additional
performance boosts on top of the state-of-the-art transfer learning algorithms [31].
Organization of the Article. The rest of this article is organized as follows: Section 2 briefs

the preliminary work and the technical backgrounds of our work, where the state-of-the-art algo-
rithms for the deep ensemble learning are introduced with details. Section 3 presents the design of
the proposed algorithm INE, where we first propose overall framework, then present the detailed
algorithm design. In Section 4, we report the experiments that we conducted to evaluate INE,
where we first present the experiment setups and datasets used, then introduce the main results
with the accuracy comparisons between INE and the existing deep ensemble learning algorithms;
further, we provide a case study where we evaluate the performance of INE under the transfer
learning settings. Finally, we review the related work, discuss open issues, and conclude this work
in Sections 5 and 6.

2 NOTATIONS AND PRELIMINARIES

In this section, we review the existing algorithms for ensemble learning and knowledge distillation,
where we specify the notations and the design of algorithms and their connections to INE. The
notations used in the manuscript have been listed in Table 1 for clear demonstration.

2.1 Ensemble Learning via Model Averaging

Averaging multiple models as an ensemble classifier was originally used in statistical learning
paradigms [9]. Given a dataset D = {(x1,y1), (x2,y2), . . . , (xn ,yn )} for supervised learning and a
classification model f (x |θ ) → y that maps input x to label y based on the parameter θ ∈ Θ ⊆ Rk
(the integer k has been already defined in Section 1 as the number of parameters in a neural net-
work), ensemble learning algorithms usually first learn a set ofM parameters {θ1,θ2, . . . ,θM } ⊆ Θ,
then aggregate these parameters as an overall model. Basically, we summarize model aggregation
mechanisms as follows:
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Table 1. List of Symbols

Symbol Description

D The training dataset for supervised learning. For transfer learning it
refers in particular to the target dataset.

x The input of an example.
y The label of an example.
f The function of the deep neural network.
θ The parameter of the deep neural network.
Θ Domain of the parameter θ .
k The dimension of the parameter θ .
M The number of ensembled parameters or models.
L The loss function corresponding to Empirical Risk Minimization.
Ω The regularization function.
λ The coefficient of the regularization function Ω.

• Parameter Averaging. The most recent work SWA [21] proposed to use the classifier f (x |̂θ )
with an averaged parameter ̂θ , where

̂θ ← 1

M

M∑

j=1

ωj · θ j , (1)

and ω1,ω2, . . . ,ωM refer to a set of weights (obtained through an adaptive scheme [21] dur-
ing an SGD procedure) for parameter averaging. As was mentioned, above method provides
a ensemble classifier with k-parameters based onM models (each with k-parameters).
• Prediction Average. The earlier work including snapshots ensemble [19], temporal ensem-

bling [8, 27], and FGE [10] proposed to use an averaged classifier ̂f (x |θ1,θ2, . . . ,θM ) → y,
such that

̂f (x |θ1,θ2, . . . ,θM ) ← 1

M

M∑

j=1

ωj · f (x |θ j ), (2)

andω1,ω2, . . . ,ωM refer to a set of weights for prediction results averaging. Compared to pa-
rameter averaging, above algorithms [8, 10, 19, 27] obtain an ensemble classifier with totally
(kM )-parameters.

In our research, we adopt the prediction averaging strategy to aggregate classifiers. Compared to
existing prediction averaging classifiers using kM parameters, we aim at providing a novel model
with k-parameters but enjoying higher accuracy than parameter averaging model, i.e., SWA [21].

2.2 Knowledge Distillation

As was introduced in Section 1, knowledge distillation is a key technique used in our article. Given
a pre-trained model f ∗ (x ) and the training dataset D, knowledge distillation [17] technique aims
at improving the training of a neural network with respect to the Logit output of f ∗ (x ) (denoted
as f ∗Logit (x )) over the input space ofD. Specifically, with a empirical loss function L(θ ), knowledge

distillation employs a regularized loss function such that

̂θ ∗ ← argmin
θ ∈Θ

L(θ ) + λΩ(θ ), (3)
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Fig. 1. The overall framework design of INE: Step (1). Pre-training a neural network (optionally using the
dataset D) as the teacher network and duplicating the pre-trained weights as the initialization of the stu-
dent network; Step (2). Dividing the weights of fully connected layers of the student network into multiple
individual classifiers and fine-tuning every individual classifier with the training dataset D; and Step (3.)
Averaging the logit outputs of all individual classifiers as the ensemble classifier through softmax. Note that,
when using amuch larger dataset thanD to pre-train the teacher network, INE enables the transfer learning.

where λ refers to the coefficient of regularization and the regularization term Ω(θ ) is defined as

Ω(θ ) =
1

n

n∑

i=1

‖ f ∗logit (xi ) − flogit (xi |θ )‖22 . (4)

Note that we define flogit and f ∗
logit

as the logit outputs of the two neural networks, respectively,

where Reference [17] assumed these outputs are with equal width. This mechanism was originally
proposed to transfer knowledge learned in f ∗ to the parameter θ .

Specifically, f ∗ is not necessary to be trained using D. In transfer learning set, the size of D
was assumed to be small, Reference [49] proposed to use the pre-train mode f ∗ that has been
pre-trained with a large dataset (such as ImageNet). This work uses knowledge distillation that
transfers the knowledge learned by the pre-trained model to fine-tune every individual classifier
and enable transfer learning (as a by-product) with INE.

3 INE: FRAMEWORK AND ALGORITHM DESIGN

We first present the overall framework design for INEand then discuss key algorithm components.

3.1 INE Overall Framework: Neural Architectures and Training Procedure

We illustrate the overall framework of “In-Network Ensemble” training with three steps in Figure 1
and provide the detailed description below.

• Step (1). Given the training dataset D and a specific neural network architecture, INE uses
D to train a model based on the architecture.
• Step (2). With the pair of Teacher/Student networks, INE segments the fully connected
layer of the Student network into M individual classifiers, where each classifier is based
on the independent fully connected layer with shared convolutional layers (shown in Fig-
ure 1(b)). Supposing we have N channels in the last convolutional layer, corresponding to
a N -dimensional feature vector Fv after the average pooling operator, we physically divide
these N elements intoM groups by their storage order. Specifically, the part Fv [0 : N /M] is
connected to the first base learner, Fv [N /M : 2N /M]is connected to the second base learner,
and so on. Each individual classifier is randomly initialized using different seeds.
• Step (3). INE fine-tunes each of M classifiers using the training dataset D and the Teacher
network. More specific, through knowledge distillation [17], INE performs a tight alignment
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of the Logit outputs between the Teacher network and every individual classifier for per-
formance boosts. Note that, to preserve the diversity among the classifiers, INE starts the
training of every individual classifier from random scratch [10].
• Step (4). To aggregate the M individual classifiers as an ensemble classifier, INE adopts a
simple “Average-and-Softmax” operator that averages the Logit outputs of theM individual
classifiers and outputs the final classification result through softmax. In this way, INE obtains
an ensemble classifier with k-parameters based on M models. Please refer to References
[3, 9, 42] to understand the theoretical properties and generalization power of such averaging
classifiers.

The overall computational time and resources used for INE can be broken down into two parts:
the pre-training and fine-tuning procedures. To simplify the calculation, we estimate the overall
complexity as the total number of epochs used by the two procedures, (the proportion of epochs
spent for the first procedure is denoted asα , where the second procedure consumes 1−α proportion
of epochs). We would evaluate INE using various settings of α in Section 4.2.

In summary, we have demonstrated the overall framework design of INE, where the key al-
gorithms specified for Teacher-Student training have not been well stated. We now proceed to
present key algorithmic components in following section.

3.2 INE Training Algorithms

In this section, we introduce the Teacher-Student training algorithms design (Step (2)) for INE,
where we first introduce the fine-tuning procedure given the pre-trained model, present the loss
function designed for Teacher-Student training. We later show how INE works with the budgeted
computational complexity and the fixed size of parameters. The key to the training dataset is
a procedure for increasing the diversity of base learners, which we call the diversified Teacher-
Student Training, detailed in this section as well.

ALGORITHM 1: INE: Training Algorithms

1: procedure INE(D)
2: /*Obtain a Pre-trained Model*/
3: θpre ← Obtain the weights through training with the dataset D (for supervised learning)

or from other pre-trained models (for transfer learning)
4: /*Initialize Fine-Tuning with Randomness*/
5: θ0 ← θpre and Set the weights of fully connected layers with Gaussian random noise
6: /*Fine-Tuning Procedure via (perturbed) Teacher-Student Training*/

7: ̂θM ← Run SGD to minimize the Loss function listed in Equation (5) from the starting
point θ0

8: return ̂θM

9: end procedure

Fine-tuning Procedure via Diversified Teacher-Student Training. Given a pre-trained neural net-
work f (x |θpre ) with parameters θpre , INE assumes the Logit output of f (x |θpre ) (denoted as
flogit (xi |θpre )) is with equal width to the Logit output of each individual classifier (denoted as

f j
logit

(xi |θ ) for the jth individual classifier based on parameters θ ∈ Θ). Then, INE fine-tunes the

network with θpre using the algorithm listed in 1. Note that two mechanisms are employed to
implement diversified Teacher-Student training. The first is to perform random initialization of
different individual learners, which straightforwardly leads to diverse solutions. The second is

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 5, Article 63. Publication date: December 2021.



“In-Network Ensemble”: Deep Ensemble Learning with Diversified Knowledge Distillation 63:7

to incorporate random perturbations in Teacher network’s Logit outputs to promote the diver-
gence/diversity between classifiers.
Loss Function for Diversified Teacher-Student Training. Compared to knowledge distillation, INE

employs a loss function with slightly different regularization. INE defines an operator f j
logit

(xi |θ )
refers to the Logit output of the jth individual classifier in the neural network based on the param-
eters θ and input xi . On top of a common empirical loss function based on the training dataset D
and a pre-trained model (obtained by Step (1)), INE employs a loss function such that

̂θM ← argmin
θ ∈Θ

L(θ ) +
λ

M

M∑

j=1

˜Ωj (θ ), (5)

where λ is the coefficient and the regularization term ˜Ω(jθ ) for 1 ≤ j ≤ M is defined as

˜Ωj (θ ) =
1

n

n∑

i=1

‖˜flogit (xi |θpre ) − f j
logit

(xi |θ )‖22 . (6)

Note that certain Squared-Euclidean distance regularizer is used in INE to constrain the search

space of parameters from its starting point. Further, the parameterŝθM are used as the final training

result. Specifically, ˜flogit (xi |θpre ) refers to the (noisy) Logit outputs of the Teacher network based
on parameter θpre and input xi . We define it as

˜flogit (xi |θpre ) = flogit (xi |θpre ) +N (0,δ 2I). (7)

When δ = 0, the term ˜flogit (xi |θpre ) refers to the noiseless Logit outputs (i.e., the algorithm per-
forms as the vanilla Teacher-Student networks training). When δ > 0 the term provides Logit
outputs with unbiased noise (i.e., the algorithm performs knowledge distillation from a perturbed
teacher model).
We would like to point out that the perturbation added on the teacher model is optional, as

the diversity among students learners naturally exists due to the random initialization. Our ex-
periments found that the incorporation of unbiased noise in Logit outputs improves the perfor-
mance for “wider” network training (such as WideResNet), where the total number of individual
classifiers is relatively large and the diversity between classifiers should be concreted. To enable
ensemble learning with a relatively “narrow” CNN, such as ResNet, the inclusion of noise may hurt
the convergence of training procedure under the budgeted computational time without significant
accuracy improvement.

4 EXPERIMENTS

In this section, we present the experimental results of INE for two groups of tasks: supervised learn-
ing tasks (pre-trained from the target training datasets) and transfer learning tasks (pre-trained
from other datasets).

4.1 Datasets and Experiment Setups

We used a wide range of datasets summarized in Table 2 to evaluate the proposed algorithms.
Specifically, we used CIFAR 10 and CIFAR 100 datasets for the experiments under ensemble learn-
ing settings. We had ImageNet as source dataset while using FGVC-Aircraft, Flowers 102, DTD
and Stanford Cars datasets as targets for transfer learning settings. Following convention, we used
fixed training and testing datasets, and the sizes of the datasets were provided in Table 2.
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Table 2. Statistics on Datasets

Datasets Domains # Train/Test

FGVC_Aircraft Aircraft 3.3K/3.3K
Stanford Cars Cars 12K/8.5K
ImageNet Ubiquitous Objects 1,419K+/100K
CIFAR 10 Ubiquitous Objects 50K/10K
CIFAR 100 Ubiquitous Objects 50K/10K

DTD Describable Textures 1.8K/1.8K
Flowers 102 Flowers 1K+/6K+

4.1.1 Networks and Algorithms Settings. We evaluated our algorithms with three popular net-
work architectures: VGG-16, ResNet-164, and WResNet-28-10 for ensemble learning tasks, where
we compared INE with vanilla SGD, SWA [21], and FGE [10]. To perform a fair comparison, we
focused on the classification accuracy improvement made by INE beyond each of these baselines
with the same or even fewer number of parameters.

For transfer learning settings, we evaluated INE using ResNet-101 and Inception-V3, which are
popular networks for transfer learning benchmarks. Furthermore, we compared INEwith the state-
of-the-art algorithms for deep transfer learning, such as L2 [35] and L2-SP [31], where we provided
a fair evaluation of the performance of INE through comparison.
Hyperparameter choices. To perform fair comparison, we use the same setting of common

hyperparameters such as weight decay and learning rate across all experiments according to base-
line work [21]. For those hyperparameters specific to SWA [21] and FGE [10], we use exactly the
same choice recommended in their papers. The only additional hyperparameter for INE is the co-
efficient λ, corresponding to the weight of regularization. We simply use the default value 1 for λ
in all experiments involved INE.
SGD and SWA Settings. For vanilla SGD, we used the initial learning rate of 0.05 for VGG-16

and 0.1 for other architectures. The momentum of 0.9 is used for all architectures. We used the
same learning rate schedule for all architectures described as the following: the learning rate is
fixed to the initialization lr0 for the first 50% of epochs, linearly decreased to lr0/10 for the next
40% of epochs, and fixed to lr0/100 for the remaining epochs. The Weight decay is set to 3e−4 for
ResNet-164 and 5e−4 to other architectures. In SWA experiments, we used the constant learning
rate 0.01 for VGG-16 and WResNet-28-10. For ResNet-164, we use the learning rate 0.01 on CIFAR-
10 and 0.05 on CIFAR-100.

FGE Settings. In this work, we directly used the results of FGE method reported in Reference
[10], where FGE is set to incorporateM = 6 ∼ 12 snapshots (classifiers) as the ensemble classifier.
As FGE leverages predictions averaging pattern, the parameter complexity is kM , i.e., with 6K ∼
12K parameters.

INE Settings. For ensemble learning tasks, we setM = 2—training the classifier that assembles
two learners. Based on different pre-trained algorithms and budgets of parameter size, we validated
three versions of INE comparing with the corresponding baseline algorithms.

• INE:Given certain computational budget for ensemble learning, this strategy first used SGD
to pre-train the model with α (usually set to 0.8 to 0.9) budget, then spent the rest (1 − α )
budget using INE to fine-tune the model.
• INE+: Given certain computational budget for ensemble learning, this strategy first used
SWA to pre-train the model for α (usually set to 0.8 to 0.9) budget, then replaced the last
(1−α ) budget using INE to fine-tune the model. Compared to INE, INE+ enjoyed additional
performance boosts with ensemble learner based on pre-training. Note that for the SWA and
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Table 3. Performance Comparison on Different Datasets

CIFAR100 CIFAR10

VGG ResNet WResNet VGG ResNet WResNet

SGD [21] 72.55 ± 0.10 78.49 ± 0.36 80.82 ± 0.23 93.25 ± 0.16 95.28 ± 0.10 96.18 ± 0.11

INE 73.46 ± 0.20 79.26 ± 0.22 82.17 ± 0.03 93.29 ± 0.05 95.49 ± 0.06 96.54 ± 0.05

SWA [21] 74.27 ± 0.12 80.35 ± 0.16 82.15 ± 0.27 93.64 ± 0.18 95.83 ± 0.03 96.79 ± 0.05

INE+ 74.39 ± 0.29 80.55 ± 0.23 82.37 ± 0.04 93.71 ± 0.15 95.84 ± 0.06 96.65 ± 0.08

FGE [10] 74.26 79.84 82.27 93.52 95.45 96.36

INE++ 74.65 ± 0.18 80.81 ± 0.26 82.44 ± 0.10 93.73 ± 0.15 95.89 ± 0.05 96.66 ± 0.12

VGG: VGG-16, ResNet: ResNet-164, WResNet: WResNet-28-10.

INE+ algorithm, the parameter size is still equivalent to the SGD and INE implementation,
blessed by the parameter averaging mechanisms.
• INE++: This strategy used the same strategy with INE+ to pre-train and fine-tune the model,
while saving a duplication of the intermediate weights pre-trained by SWA. Through aver-
aging the prediction results of INE+ with the prediction results of SWA, this strategy per-
formed as an ensemble classifier fusing both parameter averaging and prediction averaging
mechanisms. Thus, INE++ had 2K parameters.

Again, for a fair comparison, we primarily focused on the comparison of INE vs. SGD and INE+
vs. SWA. Taking its advantage in parameter size, we further compared INE++ and FGE.

4.1.2 Computational Budgets. Aswasmentioned before, we fixed the total number of iterations
or epochs used in training procedure as the computational budget, since each epoch consumes
the same number of gradient estimation computation (i.e., same gradient complexity). Borrowing
experiences fromReference [21], we budgeted the computational budget for VGG-16 andWResNet-
28-10 as 300 epochs in all experiments, while the budget for ResNet-164 training was set to 225
epochs.

4.2 Comparison under Supervised Learning Settings

Here, we report the performance comparison of INE and baseline algorithms. Table 3 presents the
performance comparison of supervised learning tasks, where we use performance results of SGD,
SWA, and FGE reported in the most recent work [10, 21]. Specifically, we use α of 0.9, 0.8, and 0.8
for PreResNet-164, VGG-16, and WideResNet-28-10, respectively, according to the computational
budgets on these architectures. All these models are trained and compared with the same budget
settings.

• Comparisons on k-Parameters Models. Among all k-parameters models, INE+ achieves
the best performance in the most cases, while SWA and INE deliver comparable results.
• Comparisons on kM-Parameters Models. Between the two kM-parameters models,
INE++ always outperforms FGE, though FGE uses 3 ∼ 6× more parameters than INE++.

In summary, we observe a significant performance improvement caused by INE and its potential
to be incorporated with the state-of-the-art algorithms. As a reference, to understand the power
of Teacher-Student training, we also evaluate INE without Teacher-Student training (knowledge
distillation), where the accuracy of INE on VGG-16 is reduced to 72.16 ± 0.19 for CIFAR 100 and
92.89 ± 0.04 for CIFAR 10.

We also compare the total training time for these three architectures on CIFAR-100. As shown in
Table 4, the training time does not increase significantly by imposing INE, i.e., the additional cost
is less than 6% compared with vanilla SGD, even when combined with SWA. However, traditional
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Table 4. Training Time (in Seconds) Comparison
on CIFAR-100

VGG ResNet WResNet

SGD 7,390 15,116 22,615
SWA 7,497(+1.4%) 15,405(+1.9%) 22,981(+1.6%)
INE 7,458(+0.9%) 15,744(+4.1%) 23,701(+4.8%)
INE+ 7,526(+1.8%) 15,909(+5.2%) 23,924(+5.8%)

We perform all experiments on NVIDIA Tesla V100 GPUs and

Pytorch1.1. VGG: VGG-16, ResNet: ResNet-164, WResNet:

WResNet-28-10.

ensemble learning takes multiple times as training a single model, directly proportional to the
number of ensembled models. Therefore, INE is efficient in training. Besides, INE also reduces the
runtime cost, as it only requires a one-shot forward calculation. This advantage is crucial in online
services. Compared with SWA, there is a slight increase in training time, because the teacher-
student learning operation in INE is more time-consuming than weight averaging in SWA.

4.3 Comparison under Transfer Learning Settings

In this section, we report the performance comparison of INE and baseline algorithms under trans-
fer learning settings.

4.3.1 Datasets and Algorithm Setups. Several popular transfer learning datasets are used for
validation.

• FGVC-Aircraft is a challenging benchmark [37] that contains 100 different aircraft model
variants with 100 examples per category. They are divided into three equally sized training,
validation, and test subsets. Training and test subset are used for the experiment, since we
do not perform cross-validation to select hyperparameters.
• Oxford Flowers 102 [40] consists of 102 flower categories. The chosen flowers are com-
monly occurring in the United Kingdom; 1020 images are used for training, about only 10
per category, and 6,149 are used for testing.
• Describable Texture Dataset (DTD) [4] is a texture database, containing 47 textural cate-
gories such as bubbly, cracked, marbled. As studied in Reference [50], textural images usually
have quite different high-level representations comparing to images of natural objects. Fol-
lowing Reference [4], we use the training and test subsets with both 1,880 examples for our
experiments.
• Stanford Cars [24] contains 16,185 images of 196 classes of cars, typically at the level of
Make, Model, Year, e.g., 2012 Tesla Model S or 2012 BMW M3 coupe. The data is split into
8,144 training images and 8,041 testing images.

To evaluate the performance in transfer learning settings, we compare INE with the state-of-
the-art algorithm L2-SP most recently appeared [31]. For a fair comparison, we compare L2-SP
with INE (L2-SP), which replaces L(θ ) in Equation (5) using the loss function of L2-SP (i.e., the
empirical loss+squared Euclidean distance of the weights of convolutional layers between Teacher
and Student networks).

4.3.2 Overall Performance and Comparisons. Table 5 presents the performance comparison of
transfer learning tasks, where we compare the performance of INE with L2 and L2-SP in the most
recent work [31]. All algorithms are evaluated using the same settings. To enable transfer learning,
all algorithms are based on a pre-trained model from ImageNet. From the table, we observe the
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Table 5. Performance on Transfer Learning

DTD Aircraft Flower 102 Cars

ResNet-101

L2 0.6553 0.7303 0.8941 0.8903

SWA 0.6677 0.7349 0.9001 0.8889

L2-SP 0.6915 0.7417 0.8997 0.8955

INE (L2-SP) 0.7117 0.7777 0.9200 0.906

Inception_v3

L2 0.6862 0.7987 0.8816 0.8974

SWA 0.6895 0.8026 0.8880 0.8973

L2-SP 0.7043 0.8176 0.8834 0.8935

INE (L2-SP) 0.7128 0.8244 0.9185 0.9129

significant performance improvement using INE, compared to the two baselines. Especially
for DTD cases, INE (L2-SP) achieves around 6% accuracy boosts on top of the state-of-the-art
algorithms. Blessed by the power of ensemble learning with individual classifiers, INE (L2-SP)
outperforms L2 and L2-SP in all of the evaluated cases.

4.4 Case Studies

To further investigate the source of the performance gain achieved by INE, we performed several
case studies. All in all, three questions received major concerns as follows:

4.4.1 Q1. Does diversity between individual classifiers really exist in INE, and if yes,

does the diversity improve the accuracy? One of key assumptions of our research is that the
diversity between the individual classifiers could enjoy significant accuracy improvement through
ensemble learning. However, all individual classifiers are trained as Student Networks with same
Teacher network using the same regularization term. It is reasonable to suspect that every individ-
ual classifier converge to the similar points after epochs of iterations.
Q1.1. Though the using random starting points and diversified Teacher-Student training options

could bring certain diversity into the learning procedure, we still need direct evidence to support
the existence of diversity. Q1.2 Further, we would like to obtain direct evidence supporting the
statement that diversity (as defined in our approach) improves accuracy.
Answer to Q1.1. To characterize the diversity, we measured the Kullback-Leibler (KL) diver-

gence divergence between the Logit outputs of every individual classifier. Figure 2 illustrates the
averaged KL divergence between every two individual classifiers and KL divergence between every
individual classifier and the teacher networks. The results were obtained from the experimental
traces based on VGG-16 network and CIFAR-100 datasets with diversified Teacher-Student train-
ing options. From the figures, we observe that both divergence are with the decreasing trends
(with asymptotic convergence) versus the number of epochs, while both divergences did not con-
verge to zero or small values (the averaged divergence between Teacher and every individual
classifier/student converges a number around 1.0, while the divergence between individual classi-
fiers/students reaches to 0.4.). It indicates the obvious diversity exists between the Logit outputs
of every individual classifier (i.e., between students) and the one between Teacher and individual
classifiers (i.e., between Teacher and every student). In other words, every individual classifier be-
haves differently, though they are trained using the same Teacher network and the same training
datasets.
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Fig. 2. KL divergence of Logit outputs between individual classifiers (entitled as “between-students”), and
between the individual classifiers and the Teacher network (entitled as “teacher-students”).

Note that one can prove the existence of diversity through directly measuring the divergence
between the weights learned [30]. However, the cases in deep learning are more complicated. Neu-
ral networks with different weights can still behave as the same due to the over-parameterization.
In this way, our experiments measured the divergences of outputs rather than the weights.
Answer to Q1.2. To validate the contribution of diversity between the crowds of individual classi-

fiers, we designed a new set of experiments. We divided a VGG16 network intoM = 1, 2, 4, . . . , 16
individual classifiers for CIFAR-100 datasets training. We specifically focus on the comparison be-
tween the testing accuracy of INE+ as an ensemble classifier versus the averaged testing accuracy
of every individual classifier in INE+. Figure 3 demonstrates the comparison results. Obviously,
INE+ outperforms its individual classifiers (on average) with significant accuracy improvement
from 0.1% to 1.7% in Figure 3.
Note that the best performance of INE+ (74.39%) can be achieved by M = 2, while such im-

provement made by diversity (i.e., the gap of accuracy) still increases with M the number of indi-
vidual classifiers divided from the VGG-16. More specifically, we also tested the performance of
INE+ with M = 32 (totally with 32 individual classifiers), where the testing accuracy was 73.18%
and the averaged accuracy of individual classifiers fell to 68.31%. The gap was around 4%, though
overall testing accuracy is not high due to the poor individual classifiers. It is clear that with the
number of increasing M , the number of parameters used by every individual classifier becomes
less and less while the performance of every individual classifier would be degraded. It is our
great honor to re-investigate the insight of statistical ensemble learning—using a large number
of (relatively) weak learners with diversity through ensemble learning can achieve better perfor-
mance [26]—in deep learning settings, which is different and new. Further, every individual clas-
sifier that INE ensembles is highly accurate: All of them achieved decent accuracy on CFIAR-100
datasets. It further shows that even strong models (such as well-trained CNNs) are given, certain
performance improvement can still be made by INE through incorporating diversity and ensemble
learning.

4.4.2 Q2. How does INE improve the performance when the two methods INE+ are

combined? Yet another major concern on the experiment results listed in Table 3 is that INE
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Fig. 3. Comparison between testing accuracy of INE versus averaged testing accuracy of every individual
classifier with varyingM .

Fig. 4. Comparison between testing accuracy of SWA versus INE+ over number of epochs.

standalone cannot always outperform SWA in all cases, while the combined methods INE+ could
bring significant accuracy boosts in the same computational budget constraints. We are wondering
inwhichway INE improves SWA. Specifically, it is our goal in this section to breakdown the overall
performance improvement made by INE+, i.e., to attribute the performance gain to each part.
Answer to Q2. To answer this question, we measure the testing accuracy of models obtained by

SWA and INE+ during every epoch of the training procedure. Figure 4 demonstrates the testing
accuracy of the two models from the 200th to 250th epochs, when using CIFAR100 datasets and
VGG16 network. The two models delivered the same testing accuracy before the 210th epoch, as
both of them were trained using SWA before such time-point. Then, INE+ suffered a significant
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accuracy reduction, since the training algorithm switches to INE for training where certain
randomization is given to the weights of fully connected layers to initialize individual classifiers
(for diversity pursue). Later the testing accuracy of INE+ has been quickly recovered with INE

(diversified Teacher-Student training) algorithm. Finally, INE+ outperforms SWA in the budgeted
computational time (i.e., the same number of epochs in training procedure) with significant
performance improvement.
Note that INE+ outperforms SWA at the end of training (i.e., the 250th epoch of the training

procedure), while the peak testing accuracy of INE+(74.55% achieved at the 242th epoch) is still
much higher than the one obtained by SWA (74.36% achieved at the 219th epoch). The performance
of SWAwould be unstable after the 220th epochwith potential accuracy loss, while INE can further
improve the accuracy.

4.4.3 Q3. Can INE ensure the semantic consistency between the individual classifiers

and the initial classifier? As each individual classifier only utilizies a subset of features, it im-
plies that these weak learners may degenerate to the role of attribute recognition that causes the
inconsistency between the teacher and students in knowledge distillation.
Answer to Q3. Intuitively, the semantic consistency between the weak learner and the initial

task can be almost ensured through “implicitly” incorporating the redundancy in DNN’s repre-
sentations. To test our hypothesis, we adopt the method of visualizing the feature maps [50] of
input images based on DNN models, and the results demonstrate that the feature maps extracted
from the layers close to the DNN output are capable of representing very high-level semantic in-
formation such as a complete object or a part of the animal. The semantic of these visual concepts
is usually much broader than an attribute. The fact suggests that features extracted by DNN are
much more discriminative than original attributes. In this way, classifiers given a subset of such
features as input actually play almost the same role as the initial classification task.
In addition to above explanation, we provide extensive empirical studies with supporting evi-

dences. First, we have shown in Figure 3 that the accuracy of each individual classifier is marginally
lower than the initial classifier (corresponding to the case with M = 1) as the number of individual
classifiers increases. Second, we demonstrate the behaviors of each weak classifier by visualiz-
ing the activation maps of the last representation layer that is closest to the output in Figure 5.
We employ INE with eight individual classifiers to train ResNet-101 on Stanford Cars. Results are
compared with the initial classification task for clear demonstration. From the images in Figure 5,
we can observe that the initial task (the left-most column) utilizes most of important attributes
to recognize a car, while weak classifiers have different weights on these attributes, for example,
the classifier #4 usually pays more attention to car windows than other weak classifiers. These
examples provide the direct measurement and evidence to the diversity between classifiers.

5 RELATEDWORKS AND DISCUSSION

Ensemble learning [6] is a widely used learning technique, where multiple base classifiers are first
trained and then aggregated to improve learning accuracy [26]. In traditional statistical learning
settings, the base classifiers trained with the convex losses could be improved with lower variance
and bounded bias through simple model averaging [9]. Recent studies [8, 10, 19, 21, 27] demon-
strated amazing insights that model averaging still works in deep ensemble learning, where the
loss is believed to be strongly nonconvex.
In this section, we categorize and review the current deep ensemble learning methods in three

folders—implicit ensemble learning, explicit ensemble learning, and auto-ensemble learning for deep
neural networks.
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Fig. 5. Comparisons on the behaviors of the initial task and weak classifiers by visualizing their activation
maps of the last representation layer. The model is trained on ResNet-101 over the Stanford Cars dataset.
Due to space limitation, we only show the activation maps of the first five among the entire collection of
eight weak classifiers.

5.1 Implicit Ensemble Learning for Deep Neural Networks

There is a group of stochastic regularization techniques that can be viewed as discovering base
models and performing model averaging implicitly. For example Dropout [18] works by randomly
selecting a subset of hidden units in the learning process and averages over the units during in-
ference time. It can be viewed as an economical approximation to train a very large ensemble of
neural networks [2, 16]. Swapout [43] extends the idea of dropout and samples from a richer set of
architectures, which includes stochastic depth and residual architectures as special cases. Shakeout
[22] chooses to enhance or reverse the contribution of a hidden unit, instead of simply dropping it.
Branchout [14] utilizes the multi-branch structure in convolutional networks and randomly drops
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an entire path. Other techniques falling in this category include dropconnect [46], bridgeout [23],
and blockout [39].

5.2 Explicit Ensemble Learning for Deep Neural Networks

Different from implicitly aggregating a group of base models, recently there is a new thread of
research for first explicitly identifying such models and then aggregating them [15, 25, 41]. For
example, Huang et al. [19] propose snapshot ensembles, a framework of training a single neu-
ral network, taking snapshots along its optimization path, and hence obtaining an ensemble of
networks at NO additional cost of training one model. Snapshot adopts Cyclic Cosine Annealing
strategy [36] to warmly restart the training procedure periodically and picks up the snapshot per
the training procedure converging (to some local minimums). Extending the idea of snapshot en-
sembling, Laine & Aila proposed “temporal ensembling,” where similar “snapshots” models were
obtained from the “network-in-training” and the final results are given by the majority voting of
the prediction results based on the snapshots [27]. To encourage diversity among snapshots, the au-
thors adopted various data augmentation and training settings per epoch. Moreover, Reference [8]
extended the temporal ensemble strategy [27] with a “mean teacher” [45] for ensemble transfer
learning under domain adaption settings. Xie et al. [48] propose horizontal voting, vertical vot-
ing, and horizontal stacked ensemble methods to improve the classification accuracy. Mosca and
Magoulas [38] propose deep incremental boosting that uses internal knowledge of convolutional
nets to generate ensembles quickly.

5.3 Auto-ensemble Learning for Deep Neural Networks

Auto-ensemble utilizes neural architecture search (NAS) for automated base model discovery.
For example, in contrast to aggregating networks of predetermined architectures, AdaNet adap-
tively learns the network structure and weights at the same time [5]. It starts from a simple linear
model and gradually adds hidden units and layers based on theoretical estimates of generaliza-
tion errors. It produces competitive performance on several binary classification tasks taken from
CIFAR-10 dataset. Due to the high computational cost of NAS, auto-ensemble has not been widely
used yet.

5.4 Discussion on the Most Relevant Works

Our work falls into the category of explicitly deep ensemble learning. The work that is highly
related to what we are doing is Stochastic Weight Averaging (SWA) [21]. The authors have
found that the geometry of local minima provides key insights for model ensemble. SWA traverses
the landscape of the loss function and averages the weights of multiple snapshots via a Bayesian
parameter averaging (BPA)method to obtain the final model. Comparing SWA to other explicit
ensemble algorithms [10, 19, 43? ], the advantages of SWA are significant: (1) SWA employs a
smaller number of parameters for inference. Suppose M snapshots were taken from the training
procedure, the number of parameters used in SWA is equal to that of a single snapshot while the
number of parameters used in the many other methods isM fold larger than SWA. (2) SWA enjoys
the state-of-the-art of classification accuracy with a small number of parameters.
Comparing to existing methods [10, 19, 21, 43? ], our method is novel on several counts. First,

we discover base models by splitting one network into multiple subnetworks, rather than con-
sidering the training trajectory. Second, we encourage the diversity of those networks through a
novel knowledge distillation with a method that we call diversified Teacher-Student training. Em-
pirically, our proposed method INE achieves the state-of-the-art performance and delivers better
performance than competing method such as SWA on a number of real-world applications. In our
future work, we plan to improve the performance of INE using advanced knowledge distillation
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regularizers [33, 47], network architectures with multiple parallel sub-networks [13, 51], and noisy
training procedures [20, 32, 44] to further strengthen diversity in models.

6 CONCLUSION

In this article, we proposed a new ensemble deep learning method that discovers its base clas-
sifier explicitly with a budget on computational resources using a small size of parameters. We
do so by first subdividing the classifier of a deep learning model into multiple parts and then us-
ing a diversified knowledge distillation method to train each of them to obtain highly accurate
yet diverse base classifiers. Our extensive experimental study using both supervised learning and
transfer learning has confirmed the advantage of the proposed method on a wide range of popular
network architectures (e.g., ResNet, VGG, and Wide ResNet), benchmark datasets (e.g., ImageNet,
CIFAR-10, CIFAR-100, DTD), and learning tasks.
In our experiments, the proposed method INE can achieve the best of its accuracy when using

the teacher network trained by SWA [21]. We believe the outstanding performance is in part due to
the aggregation of diversity pursued through the so-called stochastic weight averaging scheme. It
thus makes sense for us to incorporate more ensemble trainers to diversify the snapshots obtained
and enhance the overall performance. In the future, we plan to further improve the diversity-
encouraging training and consider training multiple models simultaneously.
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