
Received: 23 June 2021 Revised: 15 October 2021 Accepted: 26 December 2021

DOI: 10.1002/cpe.6996

R E S E A R C H A R T I C L E

Toward fast theta-join: A prefiltering and amalgamated
partitioning approach

Jiashu Wu1,2 Yang Wang1 Xiaopeng Fan1 Kejiang Ye1 Chengzhong Xu3

1Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen, China

2University of Chinese Academy of Sciences,

Beijing, China

3University of Macau, Macau, China

Correspondence

Yang Wang, Shenzhen Institute of Advanced

Technology, Chinese Academy of Sciences,

Shenzhen 518055, China.

Email: yang.wang1@siat.ac.cn

Funding information

Key-Area Research and Development Program

of Guangdong Province, Grant/Award Number:

2020B010164002; Shenzhen Basic Research

Program, Grant/Award Numbers:

JCYJ20170818153016513,

JCYJ20200109115418592

Abstract

As one of the most useful online processing techniques, the theta-join operation has

been utilized by many applications to fully excavate the relationships between data

streams in various scenarios. As such, constant research efforts have been put to opti-

mize its performance in the distributed environment, which is typically characterized

by reducing the number of Cartesian products as much as possible. In this article,

we design and implement a novel fast theta-join algorithm, called Prefap, by develop-

ing two distinct techniques—prefiltering and amalgamated partitioning—based on the

state-of-the-art FastThetaJoin algorithm to optimize the efficiency of the theta-join

operation. Firstly, we develop a prefiltering strategy before data streams are parti-

tioned to reduce the amount of data to be involved and benefit a more fine-grained

partitioning. Secondly, to avoid the data streams being partitioned in a coarse-grained

isolated manner and improve the quality of the partition-level filtering, we intro-

duce an amalgamated partitioning mechanism that can amalgamate the partition-

ing boundaries of two data streams to assist a fine-grained partitioning. With the

integration of these two techniques into the existing FastThetaJoin algorithm, we

design and implement a new framework to achieve a decreased number of Cartesian

products and a higher theta-join efficiency. By comparing with existing algorithms,

FastThetaJoin in particular, we evaluate the performance of Prefap on both syn-

thetic and real data streams from two-way to multiway theta-join to demonstrate its

superiority.

K E Y W O R D S

amalgamated data stream partitioning, cartesian product reduction, online data stream,

prefiltering, theta-join (𝜃-join)

1 INTRODUCTION

As the big data technology becomes more prevalent1,2 and widely deployed,3-6 tremendous amount of online data streams have been generated.7-9

In the financial market,10,11 the price of stocks keeps fluctuating, the currency conversion rates change every few seconds in an online manner. For

the meteorological monitoring services,12 thousands of monitoring stations constantly monitor the meteorological data in real-time,13 such as wind

speed and temperature and so forth. Therefore, how to process these online data streams efficiently and fully excavate the knowledge14,15 behind

them become crucial to explore.

To relate data streams together, the join operation16,17 is one of the vital operations that is capable to detect scenarios that satisfy certain con-

ditions. To find out data elements in two data streams that are equal, equi-join18-20 should be used. As for nonequal relationships between data

Concurrency Computat Pract Exper. 2022;34:e6996. wileyonlinelibrary.com/journal/cpe © 2022 John Wiley & Sons, Ltd. 1 of 19
https://doi.org/10.1002/cpe.6996

https://orcid.org/0000-0001-9438-6060
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6996&domain=pdf&date_stamp=2022-04-11

2 of 19 WU ET AL.

streams, the theta-join21,22 comes to help. Theta-join, denoted as follows

 ⋈ (A 𝜃 B), (1)

serves as a special kind of join operation that relates the attribute A of the data stream  and the attribute B of the data stream  using a

nonequal theta condition among one of the following {<,≤, >,≥}. Cartesian products23,24 between two data streams will be generated and data

element pairs that satisfy the theta condition are picked out to form the theta-join results. For instance, as illustrated in Figure 1, the inputs of this

two-way theta-join operation are data stream phone (Stream) and data stream laptop (Stream ). Under the join predicate⋈  (.B >  .B),

all phone-laptop combinations that satisfy the price of the phone is higher than the price of the laptop will be returned as results. Therefore, four

satisfied combinations are returned as output as shown in Figure 1.

Moreover, the theta-join can also be generalized to work on multiple data streams. For instance, the 3-way theta-join predicate is expressed as

follows

 ⋈  ⋈  (A 𝜃1 B 𝜃2 C) (2)

which exploits all A, B, and C attribute combinations that satisfy the A 𝜃1 B 𝜃2 C condition from three data streams ,  , and  , respectively.

When dealing with data streams that come in an online manner, the theta-join algorithm will receive the data stream in the form of a window,

with the window size w denotes the amount of data consisted in the window. Then, the theta-join operation will be performed between windows

of data streams. As a powerful data analysis and processing tool,25 theta-join can be widely utilized in broad applications, such as discerning on

which day stock  performs worse than stock  in 2019, or whether the wind speed in July is faster than June 2020 in most of the days. The

theta-join operation has also been implemented in popular database management systems such as Oracle database,26 PostgreSql database27 and

so forth.

However, the theta-join’s efficiency is heavily affected by the number of involved time-consuming Cartesian products.17,28 Handling

the theta-join in a careless way can result in the number of Cartesian products grows drastically, and will even lead to an exponen-

tial surge if multiway theta-join is conducted. The unacceptably large number of Cartesian products also become a curse, especially

in distributed environments29-31 where the incurred I/O overhead and the communication cost25 make it an influential factor that dra-

matically compromises the efficiency of the theta-join operation. Therefore, they should be reduced as much as possible. As a result,

numerous efforts have been made by both industry and academia from different aspects to optimize the efficiency of the theta-join

operation.32-35

F I G U R E 1 An illustrative example of a theta-join predicate⋈  (.B>  .B), its input and its corresponding output. In this example, there
are only four phone-laptop combinations that satisfy the price of the phone is more expensive than laptop

WU ET AL. 3 of 19

Although the existing algorithms in the literature exhibited different merits in making the theta-join operation more efficient, they still suf-

fered from some deficiencies in effective Cartesian product reduction and data stream partitioning, which more or less compromised the theta-join

operation efficacy. Therefore, we still have rooms to further improve them in various ways. In this paper, we propose a novel fast online theta-join

algorithm, called Prefap. Instead of performing filtering only after partitioning as in References 32-35, it makes sense to perform a prefiltering based

on the theta condition before the partitioning takes place as it can not only reduce the amount of data involved in the partitioning but also make

the partitioning more fine-grained. Since our partitioning is based on the range boundaries calculated using the minimum and the maximum val-

ues of the data streams, the prefiltering of the data streams is possible to condense the range between the minimum and the maximum value,

hence making the partition more fine-grained. Moreover, this prefiltering mechanism does not suffer from the severe overhead caused by the

time-consuming sorting operation.36,37 As opposed to References 32-34, the proposed algorithm requires neither interpartition nor intrapartition

ordering.

Furthermore, for all the aforementioned algorithms, the partitioning of two data streams are conducted in a coarse-grained isolated manner,

that is, the partitioning of data stream  has no impact on the partitioning of data stream  , which may impair the effectiveness of the filter-

ing mechanism after the partitioning. To overcome the drawback incurred by the isolated coarse-grained partitioning, the proposed algorithm

introduces an amalgamated partitioning mechanism. With this mechanism, the data stream will be partitioned based on the amalgamated par-

titioning boundary that fuses the partitioning information of data streams. Hence, worthless Cartesian products between partitions that are

deemed impossible to possess valid theta-join results will be avoided, and hence making the algorithm more efficient, which is an improvement

to References 32-35.

To validate the effectiveness of the proposed method and to make it applicable, we integrate the prefiltering strategy and the amalgamated

partitioning mechanism to form a new theta-join processing framework. The framework uses FastThetaJoin35 as a basis. However, the proposed

Prefap framework makes contributions by performing prefiltering and avoiding the isolated partitioning. With the Prefap framework, we can sub-

stantially boost the efficiency of the theta-join operation. The proposed Prefap framework is comprehensively evaluated on both synthetic and real

data streams in distributed environments and compared with other algorithms, demonstrating its superior performance.

Therefore, in summary, the article makes the following contributions:

• We propose a prefiltering strategy that can not only reduce the amount of data involved in the partitioning but also make the partitioning more

fine-grained.

• We introduce the amalgamated partitioning mechanism that avoids the coarse-grained isolated partitioning and hence benefits the reduction of

Cartesian products and makes the algorithm more efficient.

• We unify the proposed prefiltering strategy and the amalgamated partitioning mechanism to form a holistic framework, called Prefap, that can

boost the effectiveness of theta-join operations while avoiding the time-consuming burdens such as sorting.

• The Prefap framework is implemented and comprehensive empirical evaluations on both synthetic and real data streams are conducted to testify

the superiority.

The remainders of the article are organized as follows. Section 2 overviews some related works to show the distinct features of the proposed

algorithm. The Prefap algorithm is introduced in Section 3. Section 4 presents the experimental results, which are also comprehensively analyzed

and discussed. The last section concludes the article.

2 RELATED WORK AND RESEARCH OPPORTUNITY

As the scale of data streams keeps growing rapidly,7-9 how to efficiently utilize the theta-join to process data streams becomes a cru-

cial problem, and thereby attracting numerous attentions from both industry and academic communities. In this section, we first overview

some past research efforts on improving the efficiency of the theta-join operation, and then identify their deficiencies to show our research

opportunities.

2.1 Range-based method

Dewitt et al.,32 proposed a range-based method (RBM) to carry out the theta-join operation in distributed environments. The joint attributes in data

streams were firstly sorted, then two data streams were partitioned where the partitioning boundaries were characterized by sampled ranges, and

Cartesian products were performed without any filtering being performed.

4 of 19 WU ET AL.

F I G U R E 2 Illustration of the number of Cartesian products involved in each algorithm. The theta condition in this example is >  . The data
stream is placed vertically and the data stream  is placed horizontally. The thick colored border indicates the boundary of Cartesian products

that need to be performed, while the thin colored border indicates the partitioning boundary

For example, in Figure 2A, if we set the number of partitions to three, the range-based method will sample the fourth and the seventh value from

the sorted data stream, which are 3 and 6, respectively. Then the data stream is partitioned based on the ranges as follows: (−∞,3), [3,6),

and [6,+∞). The same partitioning is applied for data stream  as well.

However, the range-based method suffered from several disadvantages, which made it extremely time-consuming. Firstly, sorting data streams

is very inefficient,36,37 especially when the size of the data stream is large. Secondly, the range-based method does not apply any kind of filtering,

hence, entire data streams will participate in the Cartesian products, resulting in a huge number of Cartesian products being performed. Finally,

the range-based method suffers a lot from data skewness. For instance, [1,1,1,1,1,1,2,2,3] will be partitioned into (−∞,1), [1,2), and

[2,+∞), which could lead to severely imbalanced workloads between partitions, and is especially hurtful in distributed environments.

2.2 Randomized method

To address the issues faced by the Range-based method, Okcan et al.,33 put forward an algorithm, called one-bucket-theta (OBT), which partitioned

the data stream as evenly as possible, and then randomly distributed the partitioned blocks in the distributed environment.

For instance, in Figure 2B, the one-bucket-theta algorithm first sorts the data streams. Then, take the number of partitions to be three as an

example, instead of partitioning the data stream based on ranges, the one-bucket-theta partitions the first → third, fourth → sixth, and seventh →

ninth data elements into three partitions, respectively, resulting in a relatively more even partitioning scheme in practice.

Furthermore, the randomized distribution of partitions to processes in the distributed environment further balances the workloads among pro-

cesses and avoids the severe load imbalance. However, the one-bucket-theta still suffers from the time complexity brought by its sorting operation.

Also, the lack of filtering strategy makes entire data streams being involved when performing the Cartesian products, which significantly impairs its

efficiency.

2.3 Filtering method

In order to improve the efficiency of the theta-join by reducing the number of Cartesian products, the cross filter strategy (CFS) proposed by Liu

et al.,34 performed stream-level filtering after the data stream partitioning to eliminate data elements that are unlikely to form valid theta-join

results based on the theta condition.

WU ET AL. 5 of 19

As shown in Figure 2C, under the “>” theta condition, the Cartesian products will not be performed between the entire data stream  and

partition[9,12]of data stream . Since the maximum value 9 of data streamequals to the minimum value 9 in partition[9,12]of data stream ,

hence there is no way for the Cartesian products between data stream and range[9,12] of data stream to possess valid “>” theta-join results,

and hence partition [9,12] of data stream  is eliminated by the stream-level filtering strategy. Following the same principle, the stream-level

filtering can also be applied to other similar theta conditions as in {≥, <,≤}.

However, this stream-level filtering is coarse-grained and fails to remove unnecessary Cartesian products as much as possible. The

stream-level filtering finds out that partition [0,3) of data stream  can form valid theta-join results with partition [0,4) of data stream

 under the “>” theta condition, and hence partition [0,3) of data stream  could not be eliminated and the Cartesian products between

it and the entire filtered data stream  will be performed, even though the Cartesian products between [0,3) and [4,9) are totally

redundant.

To further improve the efficiency of the theta-join operation in terms of reducing the number of Cartesian products, Hu et al.,35 presented

the FastThetaJoin (FTJ) algorithm. In contrast to performing filtering at the stream-level, the FastThetaJoin algorithm utilized the partition-level

filtering strategy, which compared all the partition pairs from both data streams and avoided performing the Cartesian products between the

partitions that are unable to form any valid theta-join results based on the theta condition as shown in Figure 2D. However, the lack of the prefilter-

ing mechanism before partitioning not only incurred all data elements in two data streams to be involved in partitioning, irrespective of whether

they are able to form valid theta-join results or not, but also made the partitioning more coarse-grained, and hence compromised the overall

performance.

Furthermore, in the FastThetaJoin algorithm, the partitioning of data streams was conducted in an isolated manner. Failing to partition the data

streams collaboratively made the FastThetaJoin highly laborious as the coarse-grained isolated data stream partitioning is incapable to remove

some worthless data elements in some partitions. In terms of auxiliary procedures, the FastThetaJoin algorithm adopted the repartitioning on

oversized partitions so that the workloads would be well-balanced and the method will be more distributed-environment-friendly. The Cartesian

products were performed between the remaining partitions of two data streams.

2.4 Research opportunity

Despite constant optimization efforts being made, there is still room to extend and improve the efficiency of the theta-join operation, hence it

brings us the motivation of the proposed framework. As shown in Figure 2D, performing the filtering strategy after partitioning ends up with

performing the Cartesian products between 0 in data stream  and the partition [0,4) of data stream  , which is unnecessary under the “>”

theta condition. Hence, a prefiltering strategy that filters the data streams before the partitioning will be beneficial to reduce the amount of

data that needs to be partitioned, and it can also make the partitioning become more fine-grained as the prefiltering shortens the ranges of the

data streams.

Moreover, the isolated partitioning of data streams can be substituted with the amalgamated partitioning mechanism. Under the isolated man-

ner with the theta condition as “>”, the Cartesian products between partition [3,6) and [4,8) will be conducted simply because of a single

valid theta-join result which is 5 > 4, but the Cartesian products between [3,4] and [4,8) are completely unnecessary. To avoid these point-

less Cartesian products incurred by the isolated partitioning, the partitioning information of two data streams will be amalgamated to form an

amalgamated partitioning scheme so that the partition [3,6) will be split to filter more unnecessary Cartesian products that possess no valid

theta-join result.

Hence, by introducing the prefiltering strategy and the amalgamated partitioning mechanism, we can integrate them into a unified framework

to effectively reduce the amount of unnecessary Cartesian products while balancing the workload in the distributed environment and avoiding the

time-consuming sorting operation. Therefore, we can substantially boost the efficiency of the theta-join operation.

As illustrated in Figure 3, the bar chart presents the number of Cartesian products that are performed by each algorithm in the example in

Figure 2. The rightmost red bar, as well as the red dotted line, indicate the number of theta-join results, that is, no matter how the theta-join algorithm

is optimized, it is the lower bound of the number of Cartesian products that needs to be performed. The proposed Prefap algorithm achieves the

lowest number of Cartesian products in this example and is very close to the optimal lower bound, which indicates that the research direction of the

Prefap algorithm is promising.

3 PREFAP FRAMEWORK

In this section, we will introduce the proposed Prefap approach in terms of its framework and workflow, followed by a detailed explanation of each

constituting component, that is, the prefiltering strategy, the amalgamated partitioning scheme, as well as some auxiliary steps to complete the

theta-join operation. Note that in this section and the corresponding pseudocode, we explain the theta-join operation on two data streams for the

6 of 19 WU ET AL.

F I G U R E 3 The bar chart presents the number of Cartesian products performed by each algorithm in the example in Figure 2. The rightmost
red bar, as well as the red dotted line, indicate the number of theta-join results, that is, no matter how the theta-join algorithm is optimized, this is
the lower bound of the number of Cartesian products that the algorithm needs to perform and the algorithm cannot perform better than this

TA B L E 1 Interpretation of symbols and acronyms

Symbol / acronym Interpretation

𝜽 (⋆) The 𝜽 operator, 𝜽 ∈ {<,≤, >,≥}

, ,  (⋆) Data stream R, S, T

D A variable which stands for data stream, D ∈ {, ,  , … }

Dmin The minimum value of entire data stream D

spD The span of each partition of data stream D

p (⋆) Number of partitions

PBD Partitioning boundary of data stream D before being amalgamated

APB Amalgamated partitioning boundary

PD Partitions of data stream D

Pi
D

The ith partition of data stream D

rni
D

The repartitioning number of Pi
D

ASD The average partition size of data stream D

spi′
D

The repartitioning span of the ith partition of data stream D

w (⋆) The window size

Note: Input parameters are marked with (⋆).

sake of simplicity. However, it is not difficult to extend our approach to multiway theta-joins. The symbols and acronyms used and their corresponding

interpretations are given in Table 1.

3.1 Prefap workflow

The framework of the proposed Prefap is illustrated in Figure 4, together with its workflow as follows:

WU ET AL. 7 of 19

F I G U R E 4 The Prefap framework. In the filtering unit of the Prefap framework, the data streams will firstly be prefiltered based on the theta
condition to get rid of unnecessary data elements that are deemed not possible to form any valid theta-join results. Then, their corresponding

partitioning boundaries will be calculated by the partitioning unit, followed by the amalgamated partitioning procedure, in which the partitioning
boundaries are amalgamated. The resulted data streams are partitioned based on the amalgamated partitioning boundaries, and those oversized
partitions are repartitioned to achieve load balancing in the distributed environment. After that, the partitions will be handled by the filtering Unit
and the partition-level filtering is performed. Finally, Cartesian products are conducted and the theta-join results are retrieved based on the theta

condition. Note that the diagram shows how two data streams are processed by the Prefap framework for the purpose of illustration only, the
framework can be extended to work on multiway data stream theta-join as well. For three-way theta-join, two data streams will firstly be
processed by the Prefap framework, the result produced will then be joined with the third data stream to yield the final result

Step 1–prefiltering strategy: Firstly, the proposed prefiltering strategy will be employed to filter out data elements in two data streams based

on the theta condition, so that the workloads in later steps can be lowered and the partitioning will be more fine-grained (as in Section 3.2 and

Algorithm 1). This step will be completed by the Filtering Unit of the Prefap framework.

Step 2–amalgamated partitioning mechanism: Then, it comes to the amalgamated partitioning mechanism. The partitioning boundaries

of data streams are calculated, amalgamated, and the amalgamated partitioning boundaries will be used to produce fine-grained parti-

tions to benefit the partition-level filtering (as in Section 3.3 and Algorithm 2). This step will be completed by the partitioning unit of the

Prefap framework.

Step 3–auxiliary procedures: Finally, after completing the developed prefiltering strategy and the amalgamated partitioning mechanism, some

auxiliary procedures adopted in FastThetaJoin are followed to complete the theta-join operation for the final output results:

1. Step 3.1–oversized partition repartitioning: To balance the workload among processes under the distributed environment, oversized partitions will

be repartitioned to balance the workload as much as possible. This step will be completed by the Partitioning Unit of the Prefap framework.

2. Step 3.2–partition-level filtering: The partitions will then be filtered again based on the theta condition to avoid unnecessary Cartesian products.

This step will be completed by the filtering unit of the Prefap framework.

3. Step 3.3–cartesian products and theta-join results: Finally, the Cartesian products are performed and the theta-join results are retrieved based on

the theta condition. All auxiliary procedures will be presented in Section 3.4 and Algorithm 3.

3.2 Prefiltering strategy

As opposed to all the aforementioned algorithms that directly perform the partitioning without any prefiltering, a prefiltering strategy is

applied in the Prefap framework to eliminate certain amounts of unnecessary data involved in the operation. This is performed in the Par-

titioning Unit and the pseudocode of this step is given in Algorithm 1. Specifically, the prefiltering strategy scans and filters the two data

8 of 19 WU ET AL.

Algorithm 1. The Prefap algorithm—stream-level prefiltering strategy (Step 1)

Input:

𝜽 operator, 𝜽∈ {<,≤, >,≥},

Data streams and  , attribute.A and  .B

Output: Pre-filtered data streams at the stream-level.

1: if 𝜃 is “>” then

2: ←.remove(≤ min)

3: ←  .remove(≥ max)

4: else if 𝜃 is “≥” then

5: ←.remove(<min)

6: ←  .remove(>max)

7: else if 𝜃 is “<” then

8: ←.remove(≥ max)

9: ←  .remove(≤ min)

10: else

11: ←.remove(>max)

12: ←  .remove(<min)

13: end if

14: return,

streams according to the theta condition to eliminate the data elements that are deemed impossible to produce valid theta-join results before

the partitioning is performed. Also, unlike some previous methods, the proposed prefiltering strategy does not require data stream sorting,

which severely hurts the efficiency of the theta-join operation. For example, as illustrated in Figure 2E, given the theta condition is “>”, any

value in data stream  that is less than or equal to the minimum value of data stream  is safe to be removed as it is not possible to

form valid theta-join results with any value in data stream  . The similar mechanism applies for data stream  as well. Therefore, we can

safely eliminate any value in data stream  that is greater than or equal to the maximum value of data stream , as is shown in line 2–3

in Algorithm 1. The prefiltering mechanism works similarly for other theta conditions as presented in Algorithm 1. As indicated in Figure 2E,

upon applying the prefiltering strategy, the first row and the last three columns will be directly filtered out and not involved in later process-

ing steps. Hence the prefiltering strategy can greatly reduce the amount of data that needs to be processed and improve the efficiency of the

theta-join operation.

Meanwhile, since the partitioning boundaries being used in the subsequent processing are calculated based on the minimum and maximum

values of data streams, the use of the prefiltering strategy to filter useless data is likely to reduce the span between the maximum and the minimum

values, and therefore making the partitioning more fine-grained and benefiting the partition-level filtering performed later.

3.3 Amalgamated partitioning mechanism

The data streams are partitioned in the Partitioning Unit based on the range defined by the partitioning boundaries in the course of the theta-join

operation as shown in line 3 in Algorithm 2. The partitioning boundaries of data streams will be calculated after the prefiltering strategy is executed

with each partition having a span, which is denoted as sp and is calculated as follows:

spD =
Dmax − Dmin

p
,D ∈ {,}, (3)

where p denotes the number of partitions.

As such, in the example as shown in Figure 2E, given that data streams are partitioned into three partitions, data stream has a partition span

equal to 8

3
and will be partitioned into the following three partitions:[1,3.67),[3.67,6.33)and[6.33,9], and the same partitioning boundary

calculations can also be applied to data stream  as indicated in lines 2–3 in Algorithm 2.

For all aforementioned algorithms, two data streams are partitioned separately based on their respective partitioning boundaries after they are

obtained. As such there is no interference between the partitions of each stream, which implies the partitioning is accomplished in an isolated man-

ner. Clearly, the isolated partitioning lacks the notion of collaborative partitioning information of the data streams, and thus damages the efficacy

WU ET AL. 9 of 19

Algorithm 2. The Prefap algorithm—amalgamated partitioning mechanism (Step 2)

Input:

𝜽 operator, 𝜽∈ {<,≤, >,≥},

number of partitions p,

Data streams D after stream-level pre-filtering, D ∈ {,}
Output: Amalgamated partitioned data streams

1: // Amalgamated Partitioning Mechanism

2: Calculate spD based on Equation (3)

3: PBD ← [Dmin, Dmin + 1 × spD),

[Dmin + 1 × spD, Dmin + 2 × spD),

⋮

[Dmin + (p − 1) × spD, Dmax]

4: // Generate amalgamated partitioning boundary

5: APB← PB.append(PB).sort()

6: // Partition data streams using the amalgamated partitioning boundary

7: PD ← Partition D based on APB

8: PD ← PD.filter(Pi
D

.size() != 0)

9: return PD, D ∈ {,}

of the partition-level filtering. Take Figure 2E as an example, for the coarse-grained partitioning, partition [1,3.67) of data stream and parti-

tion [2.67, 5.33) of data stream  will be produced separately and the Cartesian products are performed between them under the “>” theta

condition since valid theta-join results can be available between these two partitions. However, not all Cartesian products between these two parti-

tions are necessary, say, the Cartesian products between [1,2.67] and [3.67,5.33) are completely useless as they are judged to be impossible

to possess any valid theta-join results based on the “>” theta condition. Therefore, the coarse partitions produced by the coarse-grained isolated

partitioning strategy will impair the efficacy of the partition-level filtering, which could result in more Cartesian products than necessary, and thus

seriously hinder the efficiency of the theta-join operation.

Given the drawback caused by this isolated coarse-grained partitioning strategy, we consider an amalgamated partitioning mechanism as shown

in Algorithm 2, which is useful to address this issue. To make the partitioning more fine-grained, after calculating the partitioning boundaries, we

amalgamate the partitioning boundaries of data streams to form the amalgamated partitioning boundaries as presented in line 5 in Algorithm 2.

By fusing the partitioning information of data streams, the aforementioned drawback can be circumvented. Therefore, the effectiveness of the

partition-level filtering is improved, which would lead to the reduction of the number of Cartesian products to be conducted.

In the example of Figure 2E, given the partitioning boundaries of data stream  are [1,3.67), [3.67,6.33) and [6.33,9], and the

partitioning boundaries of data stream  are [0,2.67), [2.67,5.33) and [5.33,8], lines 4–5 of Algorithm 2 will amalgamate these two par-

titioning boundaries together and the amalgamated partitioning boundaries produced in this case would be [0,1), [1,2.67), [2.67,3.67),

[3.67,5.33), [5.33,6.33), [6.33,8), and [8,9]. After applying the amalgamated partitioning scheme to both data streams, the Carte-

sian products in the above case between [2.67,3.67) from data stream and [2.67,3.67) from data stream  will be conducted as usual,

while the unnecessary Cartesian products between [1,2.67] from data stream and [3.67,5.33) from data stream  will be avoided by the

partition-level filtering thanks to the fine-grained amalgamated partitioning strategy. This significantly decreases the number of useless Cartesian

products, and hence benefits the efficiency of the algorithm.

3.4 Auxiliary procedures

To obtain the theta-join results, some auxiliary procedures as shown in Algorithm 3 that are adopted in the FastThetaJoin algorithm are exploited

to follow up the proposed approaches in the Prefap framework, which are detailed as follows:

(1) Oversized partition repartitioning: By following the common design scheme in Reference 35, we design the framework that can repartition any

oversized partitions to balance the workload as much as possible in the distributed environment as shown in lines 2–9 in Algorithm 3. Specifically,

any partition with its size larger than the average partition size is regarded as an oversized partition. Once a partition is judged as an oversized

partition, it will be repartitioned into a number of subpartitions defined as:

rni
D =

⌈
Pi

D
.size()
ASD

⌉
=

⌈
Pi

D
.size()

w
PD .size()

⌉
,D ∈ {,} (4)

10 of 19 WU ET AL.

Algorithm 3. The Prefap algorithm–auxiliary procedures (Step 3)

Input:

𝜽 operator, 𝜽∈ {<,≤, >,≥},

window size w,

Amalgamated partitioned data stream PD,D ∈ {,}
Output: 𝜽-join results of two input data streams.

1: // Step 3.1: Oversized Partition Re-partitioning

2: ASD ←
w

PD .size()

3: for each Pi
D

of D do

4: if Pi
D

.size()> ASD then

5: spi′

D
← ⌈ PD

i
max−PD

i
min

rni
D

⌉
6: Repartition Pi

D
as follows

[Pi
Dmin

, Pi
Dmin

+ 1 × spi′

D
),

[Pi
Dmin

+ 1 × spi′

D
, Pi

Dmin
+ 2 × spi′

D
),

⋮

[Pi
Dmin

+ (rni
D
− 1) × spi′

D
, Pi

Dmax
]

7: end if

8: end for

9: PD ← PD.filter(Pi
D

.size() != 0)

10: // Step 3.2: Partition-level Filtering

11: for each Pi


of P do

12: for each Pj


of P do

13: if 𝜽 is “>" and Pi
max

>Pj
min then

14: Distribute Cartesian_product(Pi


, Pj


) to processors

15: else if 𝜽 is “≥" and Pi
max

≥ Pj
min then

16: Distribute Cartesian_product(Pi


, Pj


) to processors

17: else if 𝜽 is “<" and Pi
min

<Pj
max then

18: Distribute Cartesian_product(Pi


, Pj


) to processors

19: else if 𝜽 is “≤" and Pi
min

≤ Pj
max then

20: Distribute Cartesian_product(Pi


, Pj


) to processors

21: end if

22: end for

23: end for

24: // Step 3.3: Cartesian Products and Theta-join Results

25: for all Cartesian products generated do

26: Only keep those that satisfy the 𝜽 condition

27: end for

28: return 𝜽-join results

and the pseudocode of this process is shown in lines 3–8 in Algorithm 3. The oversized partition repartitioning is completed by the parti-

tioning unit of the Prefap framework. Together with the fine-grained amalgamated partitioning, the load balancing of the framework can be

improved.

(2) Partition-level filtering: Once both data streams are partitioned, the partitioning unit of the Prefap framework will filter the partitions based

on the theta condition as is presented in lines 11–23 in Algorithm 3, so that the Cartesian products between the partitions that possess no valid

theta-join results will not be performed.

In the example illustrated in Figure 2E, even though partition [1,2.67) from data stream and partition [3.67,5.33) from data stream

 are both produced, the Cartesian products between these two partitions will not be performed under the “>” theta condition, because even the

maximum value in the former partition is smaller than the minimum value in the latter partition, which is exactly lines 13–14 in Algorithm 3. Hence,

by applying the partition-level filtering based on the theta condition, unnecessary Cartesian products are eliminated, leading to a more efficient

algorithm.

WU ET AL. 11 of 19

(3) Cartesian products and theta-join results: After completing the prefiltering, amalgamated partitioning, oversized partition repartitioning, and

the partition-level filtering, the remaining Cartesian products are highly refined, and then the Cartesian products will be distributed to different

processes to output the final theta-join results based on the theta condition as shown in line 24–28 in Algorithm 3.

4 EMPIRICAL STUDIES

To validate the effectiveness of the Prefap algorithm, comprehensive evaluations are performed on both synthetic and real data streams from

two-way to multiway theta-join operations. We compare our algorithm against several theta-join algorithms, including the state-of-the-art

algorithm FastThetaJoin (FTJ)35 and several well-known and widely used algorithms, such as range-based method (RBM),32 one-bucket theta

(OBT),33 and cross filter strategy (CFS).34

4.1 Experimental setup and data streams

We follow the Prefap workflow described in Section 3.1 to conduct the experiments where the number of partitions p is set to be 10 and the win-

dow size w to be 1000. The evaluation metrics we use to evaluate the performance of the algorithms are listed in Table 2 with their corresponding

interpretations. To fully testify the effectiveness of the proposed algorithm, the theta-join on two-way data streams and multiway data streams are

performed to validate that the proposed algorithm scales well. The hypothesis testings are then conducted to demonstrate that the Prefap algorithm

achieves a statistically significant performance improvement compared with FTJ. The ablation studies are also conducted to show the efficacy of the

algorithm and reveal the importance and necessity of each component introduced in the Prefap framework. Finally, the number of partitions and the

window size are adjusted to show the superior performance of the Prefap algorithm in various settings.

We use both synthetic and real data streams to testify the effectiveness of the proposed algorithm. For the synthetic datasets, randomly

generated uniform and normal data streams are exploited to represent some typical nonskewed data streams, while the randomly generated zipf

data stream acts as a representative of a typical skewed data stream. As for the real datasets, by following the method in Reference 34, we use

the Clouds dataset provided by the U.S. Department of Energy in our experiments where the real-time wind speed measured in meter per sec-

ond (m∕s) of different months in 2000 are leveraged to form different data streams. Additionally, the stock market price data streams provided

by Yahoo! Finance38 are also utilized, in which the real-time high price of stocks of different companies between 2010 and 2020 are used to

form different data streams. The detailed parameter settings of different synthetic data streams will be given when they are used in the following

subsections.

In terms of the experimental infrastructure, a server equipped with Intel Core i7 7600U CPU and 32GB of memory is utilized.

The CPU has two cores with four processors, so that the Cartesian products involved in the Prefap framework can be computed in a

distributed manner.

4.2 2-way data stream theta-join

The performances of theta-join algorithms for two-way uniform data streams, zipf data streams, clouds data streams, and stock price data streams

are illustrated in Figures 5–8, respectively. Note that the detailed data stream and distribution configurations (including stream size, distribution

parameters, join attribute used, 𝜃 condition) have been given in the corresponding image captions.

The results show that, in all cases, even for the highly skewed data streams such as the zipf data streams, the Prefap algorithm performs better

than the state-of-the-art method FTJ in terms of efficiency, and significantly outperforms all other algorithms. More specifically, the Prefap algorithm

TA B L E 2 Theta-join performance evaluation metrics and their corresponding interpretation

Metric Interpretation

Number of Cartesian products The number of Cartesian products that the algorithm performs

Elapsed time The total time elapsed, measured in milliseconds (ms)

Load balancing ratio (In) The maximum input load among processes divided by the average input load among processes

Load balancing ratio (Out) The maximum number of theta-join results among processes divided by the average number of theta-join

results among processes

12 of 19 WU ET AL.

(A) (B) (C) (D)

F I G U R E 5 The performance comparisons between algorithms when performing theta-join on synthetic 2-way Uniform data streams. The
theta condition is ≤  . The stream size of both data streams are 1000. The uniform data stream fluctuates in range [20,50], while the

Uniform data stream  is in range [10,40]. (A) depicts the 2-way data streams, (B–D) present the number of Cartesian products, elapsed time and
the in/out load balancing ratio, respectively. The red dotted line in (B) indicates the number of theta-join results, that is, the minimum number of
Cartesian products that need to be performed. The red dotted line in (D) marks 1.0, which indicates perfect load balancing

(A) (B) (C) (D)

F I G U R E 6 The performance comparisons between algorithms when performing theta-join on synthetic 2-way Zipf data streams. The theta
condition is ≤  . The stream size of both data streams are 1000. The shape parameter 𝛼 of Zipf data stream and  are set to be 1.2 and 1.3,
respectively. (A) depicts the 2-way data streams, (B–D) present the number of Cartesian products, elapsed time and the in/out load balancing ratio,
respectively. The red dotted line in (B) indicates the number of theta-join results, that is, the minimum number of Cartesian products that need to
be performed. The red dotted line in (D) marks 1.0, which indicates perfect load balancing

(A) (B) (C) (D)

F I G U R E 7 The performance comparisons between algorithms when performing theta-join on real 2-way Clouds data streams. The theta
condition is ≥  . The stream size of both data streams are 1000. The Clouds data stream and  are the real-time wind speed captured in
every 5 s in June 2000 and October 2000, respectively. Note that these two months are randomly selected as representatives. (A) depicts the
2-way data streams, (B–D) present the number of Cartesian products, elapsed time and the in/out load balancing ratio, respectively. The red dotted

line in (B) indicates the number of theta-join results, that is, the minimum number of Cartesian products that need to be performed. The red dotted
line in (D) marks 1.0, which indicates perfect load balancing

WU ET AL. 13 of 19

(A) (B) (C) (D)

F I G U R E 8 The performance comparisons between algorithms when performing theta-join on real 2-way stock data streams. The theta
condition is ≤  . The stream size of both data streams are 755. The Stock data stream and  are the New York stock exchange (NYSE) stock
high price recorded daily between Jan 3, 2017 and Jan 2, 2020 of company IBM and Microsoft, respectively. Note that there are only 755 stock

exchange open days in this period, and these two companies are randomly selected as representatives. (A) depicts the 2-way data streams, (B–D)
present the number of Cartesian products, elapsed time and the in/out load balancing ratio, respectively. The red dotted line in (B) indicates the
number of theta-join results, that is, the minimum number of Cartesian products that need to be performed. The red dotted line in (D) marks 1.0,
which indicates perfect load balancing

achieves 34.7%, 19.4%, 3.0%, and 37.7% reductions on the number of performed Cartesian products compared with FTJ with respect to four differ-

ent kinds of data streams, respectively. The significant reduction of the number of Cartesian products yields better efficiency, as indicated by the

shortest elapsed time performance in all cases.

The red dotted lines in Figures 5B–8B indicate the number of theta-join results, that is, no matter how the algorithm is optimized, it must perform

at least this number of Cartesian products to yield the complete result. As shown in the results, the Prefap algorithm significantly minimizes the gap

between the number of Cartesian products it performs and the optimal case. Compared with FTJ, it clearly indicates an effective performance boost

and thus demonstrates that the cooperation between the prefiltering strategy and the amalgamated partitioning mechanism contributes positively

toward reducing the redundancy in Cartesian products, which in turn significantly boosts the performance.

In terms of the load balancing as illustrated in Figures 5–8, compared with the FTJ, the Prefap algorithm performs better for both input and output

load balancing ratios, indicated by the red dotted line in subfigure (D). Hence, it justifies that with the collaboration between the fine-grained amalga-

mated partitioning scheme and the oversized partition repartitioning mechanism, the Prefap algorithm performs well in the distributed environment

by distributing workloads in a relatively even way.

4.3 Multiway data stream theta-join

To further verify that the Prefap algorithm scales well when processing multiway data streams, comprehensive experiments are conducted on both

synthetic and real multiway data streams. As shown in Figure 9A, the uniform multiway data streams represent a typical example of the nonskewed

(A) (B) (C) (D) (E)

F I G U R E 9 The performance comparisons between algorithms when performing theta-join on synthetic 3-way Uniform data streams. The

theta condition is <  ≤  . The stream size of all three data streams are 1000. The Uniform data stream,  and  fluctuate in range [20,50],
[10,40] and [0,30], respectively. (A) depicts the 3-way data streams, (B,D) present the number of Cartesian products and the elapsed time,
respectively. To clearly show the performance gain, (C,E) are the zoom-in version of (B,D), respectively. Both RBM and OBT are omitted due to their
worst performances. The red dotted lines in (B,C) indicate the number of theta-join results, that is, the minimum number of Cartesian products
that need to be performed

14 of 19 WU ET AL.

(A) (B) (C) (D) (E)

F I G U R E 10 The performance comparisons between algorithms when performing theta-join on real 3-way stock data streams. The theta
condition is ≥  <  . The stream size of all three data streams are 755. The stock data stream,  and  are the New York Stock Exchange

(NYSE) stock high price recorded daily between Jan 3, 2017 and Jan 2, 2020 of company Facebook, Adobe, and IBM, respectively. Note that there
are only 755 stock exchange open days in this period, and these three companies are randomly selected as representatives. (A) depicts the 3-way
data streams, (B,D) present the number of Cartesian products and the elapsed time, respectively. To clearly show the performance gain, (C,E) are
the zoom-in version of (B,D), respectively. Both RBM and OBT are omitted due to their worst performances. The red dotted lines in (B,C) indicate
the number of theta-join results, that is, the minimum number of Cartesian products that need to be performed

data streams. While as illustrated in Figure 10A, the New York Stock Exchange (NYSE) stock prices of three randomly selected companies between

2017 and 2020 are skewed and are therefore capable of fully testifying the effectiveness of the proposed algorithm. Note that the detailed data

stream configurations have been given in the corresponding image captions.

In Figures 9 and 10, subfigure (B) and (D) present the evaluation results of the number of Cartesian products and the elapsed time, respec-

tively. As the gaps between the Prefap algorithms and other algorithms are so significant, the subfigure (B) and (D) have been zoomed in as

shown in subfigure (C) and (E), respectively. As we can see, under both synthetic and real multiway data streams, the Prefap algorithm outper-

forms the FTJ algorithm by a large margin, achieving a 24.1% and a 7.7% decrease in the number of Cartesian products in two cases, respectively.

Hence, it is also natural to observe that the elapsed time in both cases are reduced accordingly, hence the algorithm becomes more efficient.

Furthermore, the Prefap algorithm attains a near-optimal performance. Given the number of theta-join results, that is, the minimum number

of Cartesian products required to be performed that is indicated by the red dotted line in subfigure (B) and (C) in Figures 9 and 10, the Pre-

fap algorithm only performs 0.026% and 1.7% more Cartesian products compared with the optimal scenario, indicating excellent theta-join

performance.

Therefore, the superior performance of the Prefap algorithm in various cases strongly testifies that the collaboration of the prefiltering strategy

and the amalgamated partitioning mechanism is effective in improving the theta-join performance.

4.4 Significance Tests

To further validate that the improvement achieved by Prefap over the state-of-the-art FTJ algorithm is statistically significant, three representative

data stream settings, that is, theta-join between 2-way zipf data streams, 2-way cloud data streams, and multiway stock price data streams are

performed 30 times and the T-tests are employed to verify the significance of the performance boost using 0.05 as the significance threshold. Note

that the detailed data stream configuration has been given in the image caption.

As shown in Figure 11, four bars I, II, III, IV in subfigure (A) and (B) indicate the− log(p−value)of the one-sided T-test on four different evaluation

metrics as presented in Table 2 for two 2-way theta-join settings. The − log(p−value) results of the multiway theta-join are presented in subfigure

(C), in which the bars correspond to the − log(p−value) results of the differences between Prefap and FTJ on the number of Cartesian products and

the elapsed time, respectively. In Figure 11, the red dotted lines indicate − log(0.05), which is the significance threshold of the one-sided T-test. If

the bar is higher than the red dotted line, it indicates the acceptance of the alternate hypothesis, which is metricPrefap <metricFTJ. And the higher the

bar is, the more significant the performance improvement produced by the Prefap algorithm is.

From Figure 11, we can clearly observe that all bars in all cases are significantly higher than the red dotted line, which indicates that in all data

stream settings, the Prefap algorithm achieves a lower evaluation metric value than the FTJ algorithm, that is, less number of Cartesian products are

performed, less amount of elapsed time is required, and the load balancing ratio of both input and output is closer to one. The heights of the bars are

much higher than the red dotted line, which indicate superior performances with high statistical confidence. Hence, statistically, the T-test results

verify the superiority of the Prefap algorithm, and the performance enhancement is statistically significant. The statistically testifiable superior

performance also demonstrates that the Prefap framework can collaboratively contribute toward better theta-join efficiency and excellent load

balancing in the distributed environment, the benefit brings by the Prefap framework is statistically significant.

WU ET AL. 15 of 19

(A) (B) (C)

F I G U R E 11 The one-sided significance T-tests with 0.05 as the significance level are conducted under three tasks to testify the performance

gains of the Prefap algorithm compared with the best compared method FastThetaJoin (FTJ). The y-axis denotes the−log(p−value), and the red
dotted lines in all three subplots mark the significance threshold, that is,−log(0.05). (a), (b), and (c) are for theta-join on synthetic 2-way Zipf data
streams (stream size= 1000, 𝛼 = 1.2,1.3, 𝜃 ∶  ≤ ), real 2-way clouds data streams (stream size= 1000, 𝜃 ∶  ≥  , data stream and  are the
real-time wind speed captured in every 5 s in June 2000 and October 2000, respectively.), and real 3-way Stock data streams (stream size= 755,

𝜃 ∶  ≥  <  , data stream,  and  are the New York Stock Exchange (NYSE) stock high price recorded daily between Jan 3, 2017 and Jan 2,
2020 of company Facebook, Adobe and IBM, respectively). (I), (II), (III), and (IV) indicates the significance of the number of Cartesian products,
elapsed time, load balancing ratio (in) and load balancing ratio (out). If the bar is higher than the red dotted line, it indicates that the alternate
hypothesis is accepted, that is, the Prefap algorithm outperforms the FastThetaJoin algorithm on that metric. The higher the bar is, the more
significant the performance improvement produced by the Prefap algorithm is

4.5 Ablation study

The ablation study is conducted by evaluating several variants of the Prefap framework: (1) Prefap with the prefiltering being removed; (2)

Prefap with the amalgamated partitioning being turned off; and (3) Prefap with both the prefiltering and the amalgamated partitioning being

ablated.

Two-way and multiway stock price data streams of randomly selected companies are used as the representative tasks on which the theta-join

is performed by using both the full Prefap algorithm and its ablated variants. The results are presented in Table 3 and 4 for two-way and multiway

theta-join tasks, respectively. Note that the detailed data stream configuration is also provided in table captions. We can observe that the full Prefap

algorithm outperforms all its variants by a large margin, which indicates that any one of these components in the Prefap framework plays an indis-

pensable role and brings benefits to reduce the number of Cartesian products being performed and enhance the overall efficiency. Among all these

components, the amalgamated partitioning scheme brings the highest amount of Cartesian product reductions in two tasks, which is 16.8% and

6.3%, respectively. Correspondingly, the elapsed time drops by 17.5% and 6.2%, respectively. This further validates the importance of amalgamating

the partitioning scheme and the benefits of avoiding coarse-grained isolated partitioning. As indicated in Tables 3 and 4, although the prefiltering

strategy attains relatively less amount of performance gain, which is 1.0% and 0.2% in the two-way and multiway task, respectively, however, the

collaboration of both the prefiltering and the amalgamated partitioning yields a tremendous decrease of Cartesian products of 29.1% and 12.9%,

respectively, for these two tasks. Therefore, by collaborating the prefiltering strategy with the amalgamated partitioning mechanism in the Pre-

fap framework, it is highly effective in improving the efficiency of the theta-join operation. As such, the promising results successfully verify the

effectiveness of the Prefap algorithm.

TA B L E 3 Ablation study of the Prefap algorithm performed on real 2-way stock data streams (𝜃 ∶  ≤  ,: 2017–2020
Johnson&Johnson@NYSE,  : 2017–2020 Microsoft@NYSE, stream size= 755, joined attribute: stock high price, symbol ✗ represents
“remove”)

Setting Number of Cartesian products Elapsed time (ms)

Full version 104,138 33.68

✗ Prefiltering 105,132 (1.0% ↑) 33.89 (0.6% ↑)

✗ Amalgamated partitioning 121,647 (16.8% ↑) 39.58 (17.5% ↑)

✗ Prefiltering & ✗ Amalgamated partitioning 134,449 (29.1% ↑) 43.03 (27.8% ↑)

of 𝜃-join results (best performance possible) 92,240 −−

16 of 19 WU ET AL.

TA B L E 4 Ablation study of the Prefap algorithm performed on real 3-way Stock data streams (𝜃 ∶  ≥  <  ,: 2017–2020
Facebook@NYSE, : 2017–2020 Adobe@NYSE,  : 2017–2020 IBM@NYSE, stream size= 755, joined attribute: stock high price, symbol ✗
represents “remove”)

Setting Number of Cartesian products Elapsed time (ms)

Full version 74,923,241 12,087.37

✗ Prefiltering 75,093,479 (0.2% ↑) 12110.81 (0.2% ↑)

✗ Amalgamated partitioning 79,619,026 (6.3% ↑) 12838.10 (6.2% ↑)

✗ Prefiltering & ✗ Amalgamated partitioning 84,558,245 (12.9% ↑) 13,628.14 (12.7% ↑)

of 𝜃-join results (best performance possible) 72,510,414 −−

4.6 Algorithm efficiency

Number of partitions: To verify the effectiveness of the Prefap algorithm when working with different number of partitions, the performance of the

Prefap algorithm with different number of partitions when processing two randomly selected tasks are presented in Figures 12 and 13. The detailed

data stream configuration has been given in the corresponding image caption. For both tasks, the number of Cartesian products decreases with the

increase of the number of partitions, thanks to the more fine-grained partitioning effect brought by a larger number of partitions, as it benefits the

filtering strategy and makes it more effective. In all partition settings, the Prefap algorithm outperforms the FTJ algorithm by significantly reducing

the number of Cartesian products being performed, and the elapsed time is reduced accordingly. This further demonstrates the superiority of the

Prefap algorithm with different number of partitions.

Also, when the number of partitions is raised, the input and output load balancing ratio are improved marginally and are relatively close to 1,

which indicates a relatively even workload distribution in the distributed environment achieved by the Prefap algorithm.

Window sizes: The performance of the Prefap is also evaluated when the window size is varied. The performance on two randomly selected tasks,

that is, 2-way uniform data streams and 2-way stock price data streams, are shown in Figures 14 and 15, respectively. The detailed data stream

configuration has been given in the corresponding image caption.

According to the experimental results, the number of Cartesian products being conducted and the elapsed time grow relatively proportionally

with the increase of the window size, which demonstrates that the Prefap algorithm scales well in terms of window size. In all window size settings,

the Prefap algorithm attains the lowest number of Cartesian products compared with its counterparts, and is relatively close to the optimal case

marked by the red dotted line in subfigure (A). The excellent performance of Cartesian product reduction benefits the efficiency of the algorithm,

as indicated by the lowest elapsed time achieved by the Prefap algorithm.

Meanwhile, from subfigure (C) and (D) of Figures 14 and 15, the Prefap algorithm attains a superior performance, compared with the FTJ

algorithm, on both the input and the output load balancing ratio in all window size settings. Hence, it further validates the excellent scalability of the

Prefap algorithm in terms of window size.

(A) (B) (C) (D)

F I G U R E 12 The performance comparisons between algorithms when performing theta-join on synthetic 2-way normal data streams
(𝜇 = 1.2,1, 𝜎 = 1,1, 𝜃 ∶  >  , stream size= 1000) under different number of partitions (3, 5, 8, and 10). (A–D) present the number of Cartesian
products, elapsed time, load balancing ratio (in) and load balancing ratio (out), respectively. The red dotted line in (A) indicates the number of

theta-join results, that is, the minimum number of Cartesian products that need to be performed. The red dotted lines in (C,D) mark 1.0, which
indicates perfect load balancing

WU ET AL. 17 of 19

(A) (B) (C) (D)

F I G U R E 13 The performance comparisons between algorithms when performing theta-join on real 2-way clouds data streams (𝜃 ∶  ≤  ,

stream size= 1000. The Clouds data stream and  are the real-time wind speed captured in every 5 s in June 2000 and October 2000,
respectively.) under different number of partitions (3, 5, 8, and 10). (A–D) present the number of Cartesian products, elapsed time, load balancing
ratio (in) and load balancing ratio (out), respectively. The red dotted line in (A) indicates the number of theta-join results, that is, the minimum
number of Cartesian products that need to be performed. The red dotted lines in (C,D) mark 1.0, which indicates perfect load balancing

(A) (B) (C) (D)

F I G U R E 14 The performance comparisons between algorithms when performing theta-join on synthetic 2-way uniform data streams
(range ∈ [0,15], [5,20], 𝜃 ∶  > ) in different window sizes (1000, 2000, 5000, and 10,000). (A–D) present the number of Cartesian products,
elapsed time, load balancing ratio (in) and load balancing ratio (out), respectively. The red dotted line in (A) indicates the number of theta-join
results, that is, the minimum number of Cartesian products that need to be performed. The red dotted lines in (C,D) mark 1.0, which indicates
perfect load balancing

(A) (B) (C) (D)

F I G U R E 15 The performance comparisons between algorithms when performing theta-join on real 2-way stock data streams (𝜃 ∶  >  ,:
2010–2020 FedExpress@NYSE,  : 2010–2020 Adobe@NYSE) in different window sizes (1000, 2000, 5000, and 10,000). (A–D) present the

number of Cartesian products, elapsed time, load balancing ratio (in) and load balancing ratio (out), respectively. The red dotted line in (A) indicates
the number of theta-join results, that is, the minimum number of Cartesian products that need to be performed. The red dotted lines in (C,D) mark
1.0, which indicates perfect load balancing

18 of 19 WU ET AL.

5 CONCLUSION

In this article, we propose the Prefap algorithm to enhance the performance of the theta-join operation. Compared with the FastThetaJoin algorithm,

the prefiltering strategy is applied to filter data elements in data streams that are deemed not possible to produce any valid theta-join results. The

prefiltering not only reduces the amount of data and hence lessens the workload, but also makes the partitioning more fine-grained to benefit further

filtering. Then, during partitioning, the amalgamated partitioning scheme is employed to amalgamate the partitioning of two data streams, so that

the performance degradation of the partition-level filtering caused by the coarse-grained isolated partitioning is avoided. By collaborating these

mechanisms with the oversized partition repartitioning strategy, as well as the partition-level filtering mechanism based on the theta condition, it

forms our proposed Prefap framework and it becomes more efficient when performing the theta-join operation. Comprehensive experiments and

analyses are conducted to demonstrate the superiority of the performance against the recently published FastThetaJoin and several well-known

theta-join algorithms.

ACKNOWLEDGMENT

This work is supported in part by Key-Area Research and Development Program of Guangdong Province (2020B010164002) and Shenzhen Basic

Research Program (Nos. JCYJ20170818153016513 and JCYJ20200109115418592).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Yang Wang https://orcid.org/0000-0001-9438-6060

REFERENCES

1. Buckee C. Improving epidemic surveillance and response: big data is dead, long live big data. Lancet Dig Health. 2020;2(5):e218-e220.

2. Tsai CW, Lai CF, Chao HC, Vasilakos AV. Big data analytics: a survey. J Big Data. 2015;2(1):1-32.

3. Deng F, Lv Z, Qi L, Wang X, Shi M, Liu H. A big data approach to improving the vehicle emission inventory in China. Nat Commun. 2020;11(1):1-12.

4. Wang J, Yang Y, Wang T, Sherratt RS, Zhang J. Big data service architecture: a survey. J Internet Technol. 2020;21(2):393-405.

5. Marjani M, Nasaruddin F, Gani A, et al. Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access. 2017;5:5247-5261.

6. Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights.

2016;8:BII–S31559.

7. Din SU, Shao J, Kumar J, Ali W, Liu J, Ye Y. Online reliable semi-supervised learning on evolving data streams. Inf Sci. 2020;525:153-171.

8. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533-534.

9. Bifet A, de Francisci Morales G, Read J, Holmes G, Pfahringer B. Efficient online evaluation of big data stream classifiers. Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining; August 10, 2015:59-68.

10. Rezaei H, Faaljou H, Mansourfar G. Stock price prediction using deep learning and frequency decomposition. Expert Syst Appl. 2021;169:114332.

11. Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho AC, Gama J. Data stream clustering: a survey. ACM Comput Surv (CSUR). 2013;46(1):1-31.

12. Hahn C, Warren S, Eastman R. Extended edited synoptic cloud reports from ships and land stations over the globe, 1952-2009 (NDP-026C). Technical

report, Environmental System Science Data Infrastructure for a Virtual Ecosystem; 1999.

13. Väänänen O, Hämäläinen T. Sensor data stream on-line compression with linearity-based methods. Proceedings of the 2020 IEEE International

Conference on Smart Computing (SMARTCOMP); September 14, 2020:220-225; IEEE.

14. Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: a review. ACM SIGMOD Rec. 2005;34(2):18-26.

15. Gama J. Knowledge Discovery from Data Streams. CRC Press; 2010.

16. Garcia-Molina H. Database Systems: The Complete Book. Pearson Education India; 2008.

17. Mishra P, Eich MH. Join processing in relational databases. ACM Comput Surv (CSUR). 1992;24(1):63-113.

18. Lee T, Kim K, Kim HJ. Join processing using bloom filter in mapreduce. Proceedings of the 2012 ACM Research in Applied Computation Symposium;

October 23, 2012:100-105.

19. Rui R, Tu YC. Fast equi-join algorithms on gpus: design and implementation. Proceedings of the 29th International Conference on Scientific and Statistical

Database Management; June 27, 2017:1-12.

20. Chen R, Prasanna VK. Accelerating equi-join on a CPU-FPGA heterogeneous platform. Proceedings of the 2016 IEEE 24th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM); May 1, 2016:212-219; IEEE.

21. Wilschut AN, Apers PM. Pipelining in query execution. PARBASE-90: International Conference on Databases, Parallel Architectures, and Their Applica-

tions; March 7, 1990:562; IEEE.

22. Penar M, Wilczek A. The evaluation of map-reduce join algorithms. Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining
and Knowledge Discovery. Springer; 2015:192-203. doi:10.1007/978-3-319-34099-9_14

23. Koumarelas IK, Naskos A, Gounaris A. Binary theta-joins using mapreduce: efficiency analysis and improvements. EDBT/ICDT Workshops; 2014:6-9.

24. Bellas C, Gounaris A. GPU processing of theta-joins. Concurr Comput Pract Exp. 2017;29(18):e4194.

25. Cao S, Haihong E, Song M, Zhang K. Optimization of data distribution strategy in theta-join process based on spark. Proceedings of the 2018 2nd

International Conference on Algorithms, Computing and Systems; July 27, 2018:71-75.

26. Oracle O. Oracle Sql documentation: creating and maintaining joins; 2021 [Online]. Accessed May 20, 2021. https://docs.oracle.com/cd/B25016_08/

doc/dl/bi/B13916_04/joins.htm

https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
info:doi/10.1007/978-3-319-34099-9_14
https://docs.oracle.com/cd/B25016_08/doc/dl/bi/B13916_04/joins.htm
https://docs.oracle.com/cd/B25016_08/doc/dl/bi/B13916_04/joins.htm

WU ET AL. 19 of 19

27. PostgreSql P. PostgreSql documentation 8.3: joins between tables; 2021. Accessed May 20, 2021. https://www.postgresql.org/docs/8.3/tutorial-join.

html

28. Sviridov A, Grishchenko A, Belousova S. Performance estimation of selecting and inserting procedures in the structure-independent database. Pro-

ceedings of the 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT); October 15, 2014:1-5;

IEEE.

29. Del Monte B, Zeuch S, Rabl T, Markl V. Rhino: efficient management of very large distributed state for stream processing engines. Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data; June 11, 2020:2471-2486.

30. Rodrigues ER, Madruga FL, Navaux PO, Panetta J. Multi-core aware process mapping and its impact on communication overhead of parallel applications.

Proceedings of the 2009 IEEE Symposium on Computers and Communications; 2009:811-817; IEEE.

31. Liew CS, Abbas A, Jayaraman PP, Wah TY, Khan SU. Big data reduction methods: a survey. Data Sci Eng. 2016;1(4):265-284.

32. DeWitt DJ, Naughton JF, Schneider DA, Seshadri S. Practical skew handling in parallel joins. Technical report, University of Wisconsin-Madison Depart-

ment of Computer Sciences; 1992.

33. Okcan A, Riedewald M. Processing theta-joins using MapReduce. Proceedings of the 2011 ACM SIGMOD International Conference on Management of

Data; June 21, 2011:949-960; ACM, New York, NY.

34. Liu W, Li Z, Zhou Y. An efficient filter strategy for theta-join query in distributed environment. Proceedings of the 2017 46th International Conference

on Parallel Processing Workshops (ICPPW); August 14, 2017:77-84; IEEE.

35. Hu Z, Fan X, Wang Y, Xu C. FastThetaJoin: an optimization on multi-way data stream theta-join with range constraints. Proceedings of the International

Conference on Algorithms and Architectures for Parallel Processing; October 2, 2020:174-189; Springer, Cham.

36. Aliyu AM, Zirra P. A comparative analysis of sorting algorithms on integer and character arrays. Int J Eng Sci. 2013;25-30. doi:10.1145/1989323.1989423

37. Al-Kharabsheh KS, AlTurani IM, AlTurani AMI, Zanoon NI. Review on sorting algorithms a comparative study. Int J Comput Sci Secur (IJCSS).
2013;7(3):120-126.

38. Yahoo F. Yahoo! finance; 2021 [Online]. Accessed May 20, 2021. https://finance.yahoo.com/

How to cite this article: Wu J, Wang Y, Fan X, Ye K, Xu C. Toward fast theta-join: A prefiltering and amalgamated partitioning approach.

Concurrency Computat Pract Exper. 2022;34(17):e6996. doi: 10.1002/cpe.6996

https://www.postgresql.org/docs/8.3/tutorial-join.html
https://www.postgresql.org/docs/8.3/tutorial-join.html
info:doi/10.1145/1989323.1989423
https://finance.yahoo.com/

	Toward fast theta-join: A prefiltering and amalgamated partitioning approach
	1 INTRODUCTION
	2 RELATED WORK AND RESEARCH OPPORTUNITY
	2.1 Range-based method
	2.2 Randomized method
	2.3 Filtering method
	2.4 Research opportunity

	3 PREFAP FRAMEWORK
	3.1 Prefap workflow
	3.2 Prefiltering strategy
	3.3 Amalgamated partitioning mechanism
	3.4 Auxiliary procedures

	4 EMPIRICAL STUDIES
	4.1 Experimental setup and data streams
	4.2 2-way data stream theta-join
	4.3 Multiway data stream theta-join
	4.4 Significance Tests
	4.5 Ablation study
	4.6 Algorithm efficiency

	5 CONCLUSION

	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

