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Abstract—The intelligent substations should be developed to 
perform multifunction operations, including power flow control, 
voltage regulation, and cost-effective power quality 
improvement. In this paper, an intelligent substation by a 
distribution transformer integrated with a capacitive-coupling 
winding tap injection static synchronous compensator (CWTI-
DSTATCOM) is proposed for balance and unbalance 
operations. Compared with the state-of-the-art approaches, 
CWTI-DSTATCOM can operate at a low dc voltage with a small 
active inverter rating, which also can provide distributed 
voltage, reactive, and unbalanced current compensation. The 
power rating reduction mechanism is mathematically revealed 
via balance and unbalance compensation analysis, which is 
further used to determine the optimal inverter power rating of 
unbalance operation via an optimal LC filter design method. 
Furthermore, a comprehensive compensation control strategy is 
developed to coordinate the transformer taps and the active 
inverter under balanced and unbalanced operations. Simulation 
and real-time digital simulator (RTDS) hardware-in-the-loop 
(HIL) experiments are performed to prove the validity and 
effectiveness of the proposed topology over inverter rating 
reduction and power quality enhancement. 

Index Terms—static synchronous compensator (STATCOM), 
unbalanced compensation, winding tap, LC filter, symmetry 
sequence, power rating.  

I. INTRODUCTION  

N present distribution systems, unbalanced nonlinear loads 
in three-phase utility have given rise to a number of power 

quality (PQ) problems, such as low power factor (PF), 
harmonic pollution, and unbalanced currents. Excessive 
reactive power demand increases feeder losses and reduces 
active power transfer capability, whereas the unbalance 
current endangers the safe operation of transformers and 
generators [1], [2]. Due to their fast dynamic response and 
excellent compensation performance, distribution static 
synchronous compensators (DSTATCOMs) [3], [4] have 
been widely used to provide reactive power and unbalance 
compensation and improve the PQ of the network. 

In order to improve the PQ, DSTATCOMs are installed 
locally at the customer-side to maintain the local bus voltage 
[5], [6]. Local compensations at some light-load buses are 
unable to share their excess capacity to other heavy-load 
buses [7]. As a result, a large number of decentralized 
STATCOMs need to be installed, which increases the total 
investment and maintenance costs. Recently intelligent box-
type substations [8] and centralized compensation systems [7] 
for low voltage distribution networks are proposed to address 
the above high-cost issues. The integration of distribution 
transformer and power quality compensator can achieve 
multifunction operations, such as distributed voltage 
regulation and power flow control, which turns to become 
more and more important to accelerate the smart grid 
development. 

Conventionally, intelligent box-type substations equipped 
with DSTATCOM [8] have promising application prospects 
in the distribution systems due to their compact design, small 
floor space, and flexible installed environment. The 
centralized compensation system can be easily expanded to 
meet future load growth [7]. There are two usual installed 
positions of DSTATCOMs, including the low-voltage (LV) 
and high-voltage (HV) sides of the transformer. While the 
larger DSTATCOM current level for the LV side installation 
would result in high heating and power losses of the devices, 
the DSTATCOM current level for the HV side installation is 
lower. 

Fig. 1 summarized the historical development, circuit 
configurations, proposed years, and corresponding references 
for different topologies which integrate the STATCOM with 
the high voltage side of a distribution transformer. As shown 
in Fig. 1 (a), the Topology 1 [9] was proposed in 1981, and its 
D-STATCOM is connected to the HV side of a distributed 
transformer through a step-down transformer. Further studies 
relating to its structure, features, and applications were 
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addressed in [10] in 2014. In 2005, cascaded multilevel 
DSTATCOM, as Topology 2 shown in Fig. 1 (b) [11], was 
proposed to connect directly to the grid instead. The 
multilevel structure needs relatively more power electronic 
components and dc-linked capacitors [12], which will cause 
more power switching loss, economic and reliability issues 
[13]. On the other hand, the multilevel structure requires more 
pulses and drivers to control the system so that a complicated 
controller is required [12]. 

Based on the above concerns for multilevel structure, a 
STATCOM integrated with the distribution transformer is 
researched, which is a cost-effective centralized power 
quality compensation method to improve the PQ [6], [14], 
[15]. As a result, controllably inductive power filters (CIPF), 
which is a three-winding transformer structure was proposed 
in 2013 as Topology 3 [16][20] shown in Fig. 1 (c). Its 
operation mechanism and control strategy were studied in 
[16][18]. Such topology was further applied into non-linear 
load scenarios [19] in 2013 and photovoltaic power plants [20] 
in 2019, respectively. Compared with the L-coupling inverter, 
the LC-coupling inverter can reduce the voltage source 
inverter (VSI) rating and dc-link voltage [21][23]. Thus, 
hybrid inductive and active filter (HIAF), as Topology 4 
shown in Fig. 1 (d), was proposed in 2015 in [24] by replacing 
the L filter with LC filter. After that, Topology 4 was applied 
in shipboard [25] in 2017 and DC grid applications [26] 
accordingly in 2020. 

Based on the cost reduction concern and motivated by the 
structure of autotransformer, the STATCOM was directly 
connected with the distribution transformer via winding taps 
instead of an auxiliary step-down transformer in 2016 [27] 
[29], which were applied to traction power system. After 
that, [30] proposed a winding tap injection DSTATCOM 
(WTI-DSTATCOM) integrated with a distribution 
transformer in 2018, as Topology 5 shown in Fig. 1 (e). Its 
operation mechanism and model analysis were studied in [30], 
and the advanced control strategies were analyzed in 
[31][32] respectively between 2018 and 2020. For the 
inverter rating reduction of the conventional WTI-
DSTATCOM [27][32], this paper proposes a centralized 
compensation topology and control strategy of capacitive-
coupling winding tap injection-based DSTATCOM (CWTI-
DSTATCOM) as shown in Fig. 1 (f). 

A comparison among different topologies is summarized 
in Table I. Through the additional step-down transformer, 

relatively medium dc-link voltage and higher inverter rating 
of Topology 1 are required so that its initial cost is increased. 
The multilevel structure of Topology 2 decreases the dc-link 
voltage of each inverter and however the more power 
electronic components increase its cost and structural 
complexity. Though Topologies 3 and 4 can reduce the dc-
link voltage, the induction filter windings and transformers 
must be customized. Since the active inverter bears all the 
compensation power, high inverter ratings are required for 
Topologies 1-3, whereas the inverter rating of Topology 4 can 
be lower due to its LC filters. As the medium cost and simple 
structure, more attention on Topology 5 was obtained recently. 
However, both the VSI rating and dc-link voltage of 
Topology 5 are relatively higher comparing to the proposed 
one. Its unbalanced operation and transformer tap ratio to 
converter rating have not been addressed yet. 

In the proposed topology, the VSI of CWTI-DSTATCOM 
is connected to the adjustable transformer primary winding 
taps via a capacitive LC part. The capacitive LC part provides 
a high voltage drop between the tap coupling point and the 
active inverter so that the inverter can work at a lower dc-link 
voltage level relatively. The capacitive LC also offers a 
certain reactive power to reduce the required inverter rating 
through designing the parameters technically. In such case, 
only a low-rating active inverter is required to absorb the 
residual balanced and unbalanced power. The contributions 
of this paper are summarized as follows. 

1) A CWTI-DSTATCOM is proposed to integrate 
STATCOM with tapped transformer by coupling LC filters. 
The following technical issues are studied: 
 Reduction of power ratings comparing with existing 

solution WTI-DSTATCOM under balanced and 
unbalanced situations; 

 Influence of component parameters including the 
transformer winding tap ratio and coupling impedance to 
the inverter rating; 

TABLE I 
COMPARISONS OF TOPOLOGIES 1-5, AND PROPOSED TOPOLOGY 

Topology 
Windings 

customized 
DC-link 
voltage 

Inverter 
rating 

Unbalance 
operation 

Cost Structure 

1 [9]-[10] No Medium High Yes High Simple 
2 [11]-[13]] No Low High Yes High Complex 
3 [16]-[18]  Yes Medium High Yes High Complex 
4 [24]-[26] Yes Low Low Yes High Complex 
5 [27]-[32]  No High High No Medium Simple 
Proposed  No Low Low Yes Low Simple 

Note: the unsatisfying characteristics are shaded. 

Topology 
(proposed year): 1 (1981) 2 (2005) 3 (2013) 4 (2015) 5 (2016) Proposed Topology
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Fig. 1. DSTATCOM connection type comparison of: (a) Topology 1, (b) Topology 2, (c) Topology 3, (d) Topology 4, (e) Topology 5, and (f) proposed 
capacitive DSTATCOM integrated with transformer taps. 
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 The minimum dc-link voltage of DSTATCOM for 
acceptable performance and low operational loss under 
balanced and unbalanced situations; 

 Cost comparison between existing solution WTI-
DSTATCOM and the proposed one. 
2) Comparing to existing WTI-DSTATCOM, the inverter 

rating of CWTI-DSTATCOM is only 12% and 33% of WTI-
DSTATCOM under balanced and 30% unbalanced cases, 
respectively. 

3) The transformer winding tap ratio is firstly studied to 
reduce the required rating of DSTATCOM, and the tap ratio 
should be 0.5 for the minimum DSTATCOM rating. 

4) The strategy of computing its minimum dc-link voltage 
is proposed based on the symmetrical component theory. 

5) Corresponding control is given with considering 
transformer taps and sufficient dc-link voltage. 

II. CIRCUIT CONFIGURATION AND MODELING OF THE 

PROPOSED CWTI-STATCOM 

A. Circuit Configuration 

Fig. 2 gives the circuit configuration of the proposed 
CWTI-DSTATCOM, which includes a passive part and an 
active inverter part connected to the transformer winding taps 
points. Here, the subscript “x” denotes phase x = a, b, c. vSx, 
vLx, vcx, iSx, iLx, icx represent the source voltage, the load 
voltage, the winding tap coupling point voltage, the source  
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Fig. 2. Circuit configuration of the proposed CWTI-DSTATCOM and 
previous WTI-DSTATCOM. 

current, the load current, the compensation current, 
respectively. Cdc and Vdc are the DC capacitor and dc-link 
voltage. The inverter is connected to the adjustable taps 
(labeled as u0, v0, and w0) on primary winding (labeled as a0-
b0, b0-c0, and c0-a0) of the transformer through coupling 
inductor L and capacitor C. LLx and RLx are the load 
inductance and resistance, respectively. WPx (primary side) 
and WSx (secondary side) denote the winding turns of Dyn11 
connected distribution transformer. The winding turns on 
both sides of the taps are WPx1 and WPx2 (WPx1+WPx2=WPx). idx 
is delta-loop connected windings currents. The SWn 
represents the switches used to select the taps. 

B. Current Modeling 

Based on the Kirchhoff's current law and ampere-turns 
balance principle of the distribution transformer, the 

relationship among source current, load current, and 
compensation current in Fig. 2 is shown as, 
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(1)

where the transform matrix M and N are shown as, 

 

0

1 0 1
1

0 1 1 0

0 1 1

0

Sa Sc

P a P c

Sa Sb

P a P b x

Sb Sc

P b P c

W W

W W

W W
M

W W K

W W

W W

 
 

                 
 
  

 
(2)

 

2 1

1 2

1 2

0

1 0

0 1 0

0 1

0

P a P c

P a P c
x x

P a P b
x x

P a P b
x x

P b P c

P b P c

W W

W W
k k

W W
N k k

W W
k k

W W

W W

 
 
                
 
  

(3)

In (2) and (3), Kx= WSx/WPx is the turn ratio of the 
transformer and Ka= Kb= Kc. Here, the turn ratio K is larger 
than 1 as a result of the step-down transformer. kx represents 
the winding tap ratio. kx = WPx1/WPx and ka= kb= kc. When the 
compensation current icx satisfy (4), only the active current 
exists in the source current iSx. 
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 (4)

The iLxp in (4) is the active component of the load current. 
The load current in 0-1-2 coordinate can be calculated by 
applying symmetrical component theory as, 
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In (6), a=ej120. The phasor magnitude of the load current 
ILx and angle ILx can be obtained by using (7)(9). Noted that 
the 0-1-2 coordinate is adopted as the basic framework in this 
paper for balance and unbalance operations, while the dq0 
framework in (7)-(9) is adopted to calculate the load current 
ILx and angle ILx. i

D 
Lx is the iLx signal delay by 90. iLxd and 

iLxq are the dc components of the d-axis component iLxd and 
q-axis component iLxq. ωt is the input angle of dq 
transformation. 
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  arctanILx Lxq Lxdi i   (9)

For the CWTI-DSTATCOM, based on (4)(6), the 
compensation current in 0-1-2 coordinate can be deduced as, 
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where IL1sinIL1 is the loading fundamental reactive current in 
1-sequence. Due to the delta-connected primary windings of 
the transformer, the 0-sequence component is zero. 

C. Voltage Modeling  

The primary side voltage vector diagram of the delta-star 
connected transformer is given in Fig. 3 (a), in which o0 is the 
virtual neutral point. The winding turns ratio on both sides of 
the tap coupling points is kx :1kx. Based on, the vcx can be 
deduced as, 

 20 0

0 0

= 3 3 1cx S x x x S x

u v
v v k k v

a b
     (11)

Based on (11), Fig. 3 (b) shows the relationship of the 
winding tap ratio and tap coupling point voltage when the 
grid line-to-line voltage is 10kV. It clearly shows that the 
minimum coupling point voltage is 0.5VS when kx = 0.5, i.e., 
the center taps are chosen to connect the VSI. The minimum 
coupling point voltage reflects the minimum required VSI dc-
link voltage and rating. 

Then, the tap coupling point voltage Vc012 in 0-1-2 
coordinate can be computed as, 

 012c c a bcV A V   (12)

Fig. 4 (a) and (b) show the a-b-c and 0-1-2 circuit models 
of the CWTI-STATCOM between the coupling point and the 
active inverter part, respectively. The coupling impedance in 
0-1-2 coordinate can be deduced as, 

 1
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where Xabc and X012 are the coupling impedances in a-b-c and 
0-1-2 coordinates. The X represents the coupling filter 
impedance, which can be expressed as (14) for the WTI-
DSTATCOM or (15) for CWTI-DSTATCOM. 

 LX X j L   (14)
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Based on the circuit model in 0-1-2 coordinate of Fig. 4, 
the inverter output voltage Vinv012 of the CWTI-DSTATCOM 
can be calculated as, 
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 (17)

where the Vc0 and Vc2 are zero due to the same tap ratios. X 
represents the angle of the coupling impendence. 

Based on (16)–(17), the inverter output voltages in a-b-c 
coordinate can be deduced as, 
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(18)

Assume the modulation index m is m=1, the required dc-
link voltage Vdc is designed to the line-to-line peak value of 
the maximum inverter voltage Vinvmax in a-b-c coordinate. It 
can be formulated as, 
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Fig. 3. (a) Primary-side voltage vector diagram; (b) relationship between tap 
ratio and tap coupling point voltage of the distributed transformer. 
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Fig. 4. Circuit of the CWTI-STATCOM in (a) a-b-c; (b) 0-1-2 coordinates. 
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Fig. 5. Ratio RL_bal/RLC_bal in terms of Vcx and VdcL_bal. 

D. Rating Modeling  

For the CWTI-DSTATCOM, the impedance XC of the 
capacitor is much higher than XL of the inductor as shown in 
(21). Thus the overall LC-coupling impedance XLC in (15) is 
still capacitive. 

 C LX X   (21) 
The VSI power rating ratio analyses of the WTI-

DSTATCOM and CWTI-DSTATCOM under balanced and 
unbalanced load are given in the following. 
a) Balanced Load 

For balanced load, the compensation current and inverter 
output voltage contain only the 1-sequence component. Thus, 
the required VSI power rating ratio between the WTI-
DSTATCOM and CWTI-DSTATCOM can be expressed as, 

 
_ _ 1 _ 1 _

_ _ 1 _ 1 _

L b a l in vL b a l c d cL b a l c d c L b a l

L C b a l in vL C b a l c d cL C b a l c d c L C b a l

R V I V I V

R V I V I V

 
  

   (22)

According to [33], the equivalent current to link up dc-link 
voltages between the L- and LC- coupling inverters under 
balanced load case can be expressed as (23). The (23) holds 
if the L value is the same for both coupling L and LC filter, 
the initial voltage value of the coupling capacitor is almost 
equal to vcx, and the initial value of icx is assumed to be zero. 
Based on (23), the VSI power rating ratio in (22) can be 
further deduced as (24). 

 _ _ 6d c L C b a l d c L b a l c xV V V   (23) 

 
_

_ _

6
1

6

L b a l c x

L C b a l d c L b a l c x

R V

R V V

 
  
  

 (24) 

According to (24), the required VSI power rating of the 
CWTI-DSTATCOM is always less than that of WTI-
DSTATCOM due to VdcL_bal>√6Vcx as (23). Fig. 5 shows the 
relationship between RL_bal/RLC_bal and Vcx under different 
VdcL_bal. The VdcL_bal= 8000V and VdcLC_bal = 930V are chosen 
that touches the Vcx= 2887V at kx = 0.5 in the possible 
operation range (Vcx[2887, 5774]), yielding the maximum 
rating ratio RL_bal/RLC_bal = 8.6. 
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From the above VSI rating discussion under balanced loads, 
two important points can be summarized as follows: 
 When the source grid voltage Vsx is given, the winding tap 

ratio kx can be chosen at 0.5 so that its coupling point 
voltage Vcx can be smaller. 

 The VdcLC_bal and RLC_bal of the CWTI-DSTATCOM are 
always smaller than WTI-DSTATCOM. 

b) Unbalanced Load 
For unbalanced load, the compensation current includes 1- 

and 2-sequence components. Assume that the unbalance 
coefficient  is defined as the 2-sequence current amplitude 
divided by the 1-sequence one, 

 2

1

c

c

I

I
   (25) 

The maximum compensation current can be treated as the 
amplitude sum of Ic1 and Ic2 when considering the worst case. 
The inverter output voltage includes 1- and 2-sequence 
voltages in (16) and (17). Similarly, the maximum inverter 
output voltage can also be treated as the amplitude sum of 
Vinv1 and Vinv2. Considering the worst case under unbalanced 
load, the required VSI power rating ratio between unbalanced 
and balanced load can be formulated as, 

 
 

_ 1 2

_ 1

( )d c u n b a l c cu n b a l

b a l d c b a l c

V I IR

R V I

 


  (26) 

where the required dc-link voltage ratio between the worst 
unbalanced and balanced conditions can be expressed as (27) 
based on (14)(17), and (25). 
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Based on the above analysis, for the WTI-DSTATCOM 
and CWTI-DSTATCOM, the required VSI power rating 
ratios between the unbalanced and balanced conditions can 
be further deduced as, 

    _ _

_ _

1 6
1L unbal dcL ba l cx

L ba l dcL ba l

R V V

R V

 


 
   (28)

    _ _

_ _

1 6
1L C unba l dcL C b al cx

L C ba l dcL C bal

R V V

R V

 


 
   (29)

Based on (28) and (29), when the 2-sequence 
compensation current is required, the required VSI power 
ratings of WTI-DSTATCOM and CWTI-DSTATCOM 
increase due to the VdcL_bal >√6Vcx and VdcLC_bal <√6Vcx. The 
required VSI power rating ratio between the CWTI-
DSTATCOM and WTI-DSTATCOM can be expressed as, 
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1 6

1 6

L C u n b a l d cL C b a l cx

L u n b a l d cL b a l cx

R V V

R V V

 

 

 


   (30) 

The VSI power rating ratios of RL_unbal/RL_bal, 
RLC_unbal/RL_bal, and RLC-unbal/RLC-bal in terms of unbalance 
coefficient  are shown in Fig. 6 and 7. Taking RL_bal as the 
base value, Fig. 6 shows that the required VSI ratings 
comparison for unbalanced cases. It implies that when the 
unbalance coefficient from 0 to 1.33, the required VSI dc-link 
voltage and rating of CWTI-DSTATCOM are lower than 
these of WTI-DSTATCOM. However, when the unbalance 
coefficient is larger than 1.33, the WTI-DSTATCOM is 
lower. On the other hand, taking RLC_bal as the base value, Fig. 
7 shows the required power rating ratio between unbalance 
case and balance case for the CWTI-DSTATCOM. 
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From the above VSI power rating comparisons, several 

important points can be summarized as follows: 
 When the load is balanced, the CWTI-DSTATCOM has a 

lower dc voltage and inverter rating compared with the 
conventional WTI-DSTATCOM, and it is only 12% 
inverter rating of the WTI-DSTATCOM. 

 The required inverter rating is increased with the increase 
of the unbalance coefficient. 

 When the unbalanced compensating current becomes 
larger, the CWTI-DSTATCOM is still preferable due to its 
lower rating. When the unbalance compensating current is 
less than 133% of the balanced one, the VdcLC_unbal and 
RLC_unbal of the CWTI-DSTATCOM are lower than those 
of WTI-DSTATCOM. 

III. PARAMETER DESIGN AND POWER RATING COMPARISON 

The selection of coupling parameters such as the 
inductance and capacitance of CWTI-DSTATCOM can 
affect the required dc-link voltage and rating. In this section, 
a conventional LC design method is given in the following 
part A for balanced load, whereas an optimal LC design 
method for unbalanced load is proposed in the following part 
B to further decrease the required dc-link voltage and inverter 
rating. 

A. LC Design Based on Balanced Load 

The coupling L is dedicated to filter out the current ripple 
brought by the power switches of the active inverter part [23]. 
Its value can be limited as (31), 

 
max8

dc

s c

V
L

f i


   (31) 

where fs is the switching frequency and icmax is the maximum 
allowed output ripple current. 

Since the Icx is a fixed value under full compensation for a 
certain load, the minimum dc-link voltage VdcLC_min indicates 
the minimum VSI power rating according to Section II-D. 
Thus, the required minimum dc-link voltage is the key point 
in designing the coupling LC impedance. 

For balanced load, the LC impedance is selected 
conventionally to cope with the 1-sequence reactive current, 
thereby minimizing the inverter output voltage in 1-sequence 
to achieve low dc-link voltage design [23]. Thus, according 
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to (16), the coupling capacitance C=Cbal based on balanced 
load is computed as, 

 1

1

1

2 2
b a l

c

c

C
V

f fL
I

 


 
 

 

 
(32)

 

B. LC Design Based on Unbalanced Load 

The LC design for balance operation only considers the 1-
sequence component. To achieve the minimum dc-link 
voltage for unbalanced load, an LC design is proposed 
considering all symmetrical components simultaneously. 

While the coupling L can be expressed by (31), the 
deduction steps of the optimal coupling Cunbal value of the 
CWTI-DSTATCOM for unbalanced load is shown in Fig. 8 
to obtain the required minimum dc-link voltage. Firstly, three 
initial conditions should be calculated in advance: 1) based 
on the loading situation, the required compensating current of 
STATCOM is computed for reactive and unbalanced currents 
compensation; 2) based on the STATCOM integrating into a 
distributed transformer, its winding tap ratio is analyzed to 
reduce the required inverter dc-link voltage, and the lowest 
tap coupling point voltage can be obtained at winding tap 
ratio 0.5; 3) the LC coupling impedance is taken to get the 
inverter’s output voltage by taking 0-1-2 coordinate for 
unbalance analysis. Then, the output voltages on each phase 
can be computed, and adjusting the coupling capacitance 
value can further reduce the output voltage of the inverter for 
unbalanced operation. Finally, the maximum inverter output 
voltage from all phases is selected to secure the compensation 
ability by transferring ac into the equivalent dc-link voltage 
of the inverter. Based on the above flowchart in Fig. 8, Fig. 9 
gives a numerical example of the relationship between VdcLC 
and C when the coupling L is 10mH, and the load condition 
is shown in Table II. The optimal capacitance Cunbal can be 
selected by solving (33) when the required VdcLC achieves the 
minimum. 

Point A in Fig. 9 shows that the required minimum dc-link 
voltage is 2700V when the coupling capacitance is designed 
as 25F based on the conventional design method. However, 
point B shows that the required minimum dc-link voltage is 
1950V when the coupling capacitance is selected as 30.6F 
based on the proposed LC design. The results show that the 
inverter dc-link and rating are reduced by 27.8%. These 
detailed results are shown in Table III. 
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Fig. 8. Flowchart of the proposed Cunbal design for unbalanced load. 

TABLE II 
UNBALANCED LOAD PARAMETERS WITH =0.3 WHEN VSX=10KV, KX = 0.5 

a-b-c coordinate 0-1-2 coordinate 
PFLx Phase IL (A) 

IS (A) (before 
comp.) 

Sequ-
ence 

IL (A) 
IS (A) (before 

comp.) 
A 611.7∠-8.4 23.4∠-38.4 0 150∠-114.2 0 0.78 
B 1054∠-122.4 31.2∠-145.7 1 758∠-5.6 28.9∠-35.6 0.85 
C 611.7∠111.6 33∠76.9 2 150∠125.8 5.7∠155.7 0.78 
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Fig. 9. Relationship between VdcLC and C under the loading condition. 

 
TABLE III 

REQUIRED MINIMUM DC-LINK VOLTAGE COMPARISONS WITH DIFFERENT 

DESIGN METHODS 

Point Coupling L (mH) Coupling C (F) Vdc (V) RLC reduction (%) 
A 10 25.0 2700  
B 10 30.6 1950 27.8 

IV. CONTROL SYSTEM OF CWTI-DSTATCOM 

In this section, a comprehensive control strategy is 
proposed to coordinate the active inverter and the LC part of 
CWTI-DSTATCOM. 

The load reactive, unbalanced, and harmonic power 
components are included in the reference compensating 
current icx

*. The inverter part is utilized to control the 
compensating current icx to track its reference icx

*. The icx
*can 

be deduced as, 
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 (34)

where the tap coupling point voltages (vcα and vcβ) in the α-β 
plane can be transformed from a-b–c frames as, 

 
1 1 2 1 22

3 0 3 2 3 2

c a
c

c b
c

c c

v
v

v
v

v





                 

 
(35) 

where vcx can be calculated based on the (11) and transformer 
ratio K. It can be formulated as, 

 23 3 1
c a L a

c b x x L b

c c L c

v v

v K k k v

v v

   
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(36) 

In (34), the p and q are the instantaneous active and 
reactive powers of the load in α-β plane, which include dc 
components ̅p, ̅q and ac components 𝑝෤, 𝑞෤. ̅p and ̅q 
can be obtained through the low pass filters (LPFs), while 𝑝෤ 
and 𝑞෤ are calculated by subtracting ̅p and ̅q from p and 
q, respectively. p and q can be obtained as, 

 
p v iv
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 (37)

In (37), the voltages (vα and vβ) and currents (iα and iβ) in 
the α-β plane can be transformed from a-b–c frames by, 

  1 2 1 2 1 2

2 2
1 2 1 2 1 2m ax , ,
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(39)

where vLx and iLx are the load voltage and current signals. 
Finally, by comparing the compensating current icx with its 
reference value icx

* applying the pulse-width modulation 
(PWM) control method, the trigger signals for the active 
inverter part can be generated to control the insulated gate 
bipolar transistors (IGBTs). Based on the above analysis, the 
proposed overall control block of the CWTI-DSTATCOM is 
given in Fig. 10. In the proposed control, the parameters to be 
measured by the sensors are the load voltage vLx, the load 
current iLx, the compensation current icx, and the dc-link 
voltage Vdc. The implementation of this control scheme does 
not require additional sensors compared with the 
conventional WTI-STATCOM since the turn ratio Kx, and 
winding tap ratio kx are settled and given in advance. 
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Fig. 10. Overall control block of the CWTI-DSTATCOM. 
 

V. SIMULATION RESULTS 

In this section, the simulation case studies are provided to 
verify: a) the proposed CWTI-DSTATCOM can compensate 
the reactive and unbalanced load under lower dc-link voltage 
and VSI power rating in comparison with the WTI-
DSTATCOM; b) the proposed LC design method of CWTI-
DSTATCOM for the unbalanced load can further decrease 
the required dc-link voltage and VSI power rating compared 
with the conventional balanced LC design method. The 
simulation parameters are listed in Table IV. 

Table V summarizes the compensating performances of 
the WTI-DSTATCOM and proposed CWTI-DSTATCOM.  

TABLE IV 
SIMULATION/ EXPERIMENTAL SYSTEM PARAMETERS 

 Parameters Physical values 
System  Vsx, VLx, kx 10kV/3, 220V, 0.5 

WTI-DSTATCOM L 10 mF  
CWTI-

DSTATCOM 
Conventional design L, C 10 mF, 25 F  

Proposed design L, C 10 mF, 30.6 F 

Load RLa, LLa, RLb,  
LLb, RLc, LLc 

0.4 Ω, 1 mF, 0.25 Ω,  
0.5 mF, 0.4 Ω, 1 mF 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Dynamic compensating performance by applying (a) WTI-
DSTATCOM; (b) CWTI-DSTATCOM with conventional LC design; (c) 
CWTI-DSTATCOM with proposed LC design. 
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TABLE V 
SIMULATION RESULTS WITH =0.3 WHEN VSX=10KV, KX = 0.5 

Situations 
Vdc 

(V) 
Ph-
ase 

ISx (A) 
QSx 

(kVAR) 
PFSx 

THD 
iSx(%) 

 

(%) 
Loss 
(kW) 

Before comp.  

A 23.4∠-38.4 59.0 0.79 0 
30  B 31.2∠-145.7 54.8 0.90 0 

C 33∠76.9 91.7 0.73 0 

Coupling 
L=10mH (WTI-
DSTATCOM) 

8300 
A 25.2∠0.4 0.5 1.00 4.9 

0.2 5.84 B 25.1∠120.3 0.4 1.00 4.9 
C 25.2∠119.8 0.04 1.00 4.8 

P
ro

po
se

d 
to

po
lo

gy
 

Convention-
al design 

with 
L=10mH, 
C=25µF 

2000 
A 23.5∠5.6 -9.8 0.994 9.7 

11.4  B 26∠123.9 6.8 0.998 8.2 
C 21.2∠115.1 7.2 0.996 11.3 

2800 
A 23.6∠0.99 -1.9 1.00 1.7 

2.7 2.57 B 23.9∠121.5 2.2 1.00 2.0 
C 23∠119.5 4.9 1.00 1.1 

Unbalanced 
design with 
L=10mH, 
C=30.6µF 

2000 
A 24.3∠0.74 -1.6 1.00 2.4 

1.6 2.03 B 24.3∠121.3 1.9 1.00 2.6 
C 24.1∠119.7 0.2 1.00 2.9 

1950 
A 24.1∠2.6 -4.7 1.00 8.1 

6 2.01 B 25.2∠122.5 3.7 1.00 2.1 
C 22.7∠117.5 1.4 1.00 8.4 

1900 
A 18.5∠-0.8 0.9 0.997 23.8 

17.6  B 25.2∠126.4 11.1 0.995 32.3 
C 20.8∠99.9 29 0.938 31.6 

 
TABLE VI 

DC-LINK VOLTAGE AND RATING COMPARISONS BETWEEN THEORY AND 

SIMULATION 

 Theory 
value (V) 

Simulation 
value (V) Ratio Theory 

value 
Simulation 

value 
VdcL_bal 8000  RLC_bal /R L_bal 0.12  
VdcLC_bal 930  RL_unbal /RL_bal 1.35 1.35 
VdcL_unbal 8279 8300 RLC_unbal /RL_unbal 0.33 0.34 
VdcLC_unbal 2772 2800 RLC_unbal /RLC_bal 3.87 3.63 

 
Fig. 11 shows the dynamic performance of different cases 
before and after compensation. It can be seen that the WTI-
DSTATCOM and CWTI-DSTATCOM both can well operate 
under IEEE standard [34], with the source current  less than 
3%, source side PF equal to 1, and total harmonic distortions 
(THDiSx) less than 5%. The required dc-link voltage of 
CWTI-DSTATCOM is 2800V which is lower than 8300V of 
WTI-DSTATCOM. To verify the dc-link voltage is the factor 
to affect the compensating performance, dc-link voltage 
2000V is given for the CWTI-DSTATCOM with 
conventional LC design. The dc-link voltage 2000V is not 
enough for compensation so that PFSx =0.994, THDiSx (%) = 
11.3 (the worst value from 3 phases), and  =11.4%. When 
the dc-link voltage is 2800V, the performance is better with 
PFSx =1, THDiSx (%) = 2.0 (the worst value from 3 phases), 
and  =2.7%. With the optimal LC design, the proposed 
CWTI-DSTATCOM can also achieve the compensation 
requirements with only 2000V dc-link voltage, which is 3.15 
times smaller than the WTI-DSTATCOM. The compensating 
performances of three different dc-link voltages are also 
compared in Table V, which are below point B (1900V), 
point B (1950V), and above point B (2000V) of Fig. 9. These 
verify that the calculated theoretical 1950 V is the minimum 
dc-link voltage to achieve the acceptable compensating 
performance. 

Under full compensation, the compensation current 
Ic1=33.6∠ 90, Ic2=11.6∠ 95.6, and  is about 0.3. The 
theoretical and simulated values comparisons of dc-link are 
shown in Table VI. The power rating ratios of RLC /RL and 

Runbal /Rbal in simulation and in theory are almost the same, 
which verifies the feasibility of power rating calculation 
formulas in Section II-D. Under this unbalanced load, for 
CWTI-DSTATCOM based on conventional balanced LC 
design, its dc-link voltage is reduced by 66.8%, and its VSI 
power rating is about 1/3 of that of WTI-DSTATCOM. With 
the proposed unbalanced LC design, its dc-link voltage is 
reduced approximately by 76.4%, and its VSI power rating is 
about 1/4. 

VI. EXPERIMENTAL RESULTS 

In this section, the proposed CWTI-DSTATCOM and LC 
filter design method for unbalance load have been verified in 
a real-time digital simulator (RTDS) hardware-in-the-loop 
(HIL) system, as shown in Fig. 12. The output vsx, iSx, vcx, icx, 
Vdc signals are collected by DSP TMS320F28335. The DSP 
can calculate reference compensation current icx

*. Then the 
RTDS can control the IGBTS models to  generate 
compensating current icx. All experimental waveforms are 
recorded by the Yokogawa DL850 oscilloscope in real-time. 
The load and system parameters in the experiment are the 
same as in the simulation. The experimental dynamic 
performance and results comparisons are shown in Fig. 13 
and Table VII. After compensation of WTI-DSTATCOM 
with 8300V dc-link voltage, balanced source current, PF=1, 
and small source current ripple can all achieve. For the 
CWTI-DSTATCOM with 25F capacitance, VdcLC must be 
increased from 2000V to 2800V to achieve the above 
satisfactory compensation for this unbalanced load. For the 
WTI-DSTAT COM wi th  30 .6F capac i tance ,  the  

 
Fig. 12. Physical layout of experimental test environment. 

 
TABLE VII 

EXPERIMENTAL RESULTS WITH =0.3 WHEN VSX=10KV, KX = 0.5 

Situations 
Vdc 

(V) 
Ph-
ase 

IiSx (A) 
QSx 

(kVAR) 
PFSx 

THDiSx

(%) 
 

(%) 
Loss 
(kW) 

Before comp.  

A 23.4∠-38.4 59.0 0.79 0 
30  B 31.2∠-145.7 54.8 0.90 0 

C 33∠76.9 91.7 0.73 0 

Coupling 
L=10mH (WTI-
DSTATCOM) 

8300 
A 24.9∠0.5 0.4 1.00 3.5 

1.5 5.80 B 25.2∠120.5 0.3 1.00 4.1 
C 24.9∠119.6 0.2 1.00 3.9 

P
ro

po
se

d 
to

po
lo

gy
 Conventional 

design with 
L=10mH, 
C=25µF 

2000 
A 21.5∠5.6 8.0 0.995 7.6 

12  B 25.4∠123.9 6.8 0.998 10.3 
C 23.2∠115.1 -8.1 0.997 4.2 

2800 
A 23.9∠0.89 -0.9 1.00 2.5 

2.6 2.61 B 24.2∠121.5 0.4 1.00 2.6 
C 24.1∠119.5 0.2 1.00 2.4 

Unbalanced 
design with 
L=10mH, 
C=30.6µF 

2000 

A 24.2∠0.56 -0.8 1.00 2.4 

1.7 2.05 B 24.3∠121.5 0.4 1.00 2.6 

C 24.2∠119.6 0.5 1.00 2.4 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Experimental performance before and after compensation by 
applying (a) WTI-DSTATCOM at VdcL= 8300V; (b) CWTI-DSTATCOM 
with conventional LC design at VdcLC= 2000V; (c) CWTI-DSTATCOM with 
proposed LC design at VdcLC= 2800V; (d) CWTI-DSTATCOM with proposed 
LC design with VdcLC= 2000V. 
 
compensation results reflect that it can well operate in 
balancing the load current and compensating reactive power 
at a 2000V dc-link voltage. All in all, compared with 

conventional topology and design method, the CWTI-
DSTATCOM with proposed LC design method can provide a 
much lower dc-link voltage and significantly reduce the VSI 
power rating requirement. 

VII. CONCLUSIONS 

In this paper, a CWTI-DSTATCOM equipped in the smart 
substation is proposed for cost-effective balanced and 
unbalanced compensation. The modelings of the CWTI-
DSTATCOM based on the symmetrical components are 
expressed to reveal the dc-link voltage and VSI power rating 
reduction mechanism, which are further ensured based on an 
optimal LC design. Its corresponding control strategy for load 
compensation is proposed to coordinate the transformer taps 
and the active inverter. Finally, it can be concluded from the 
simulation and experimental results that 1) with the LC-
coupling, the required dc-link voltage of CWTI-
DSTATCOM can be reduced significantly; 2) under balanced 
situations, the inverter rating of CWTI-DSTATCOM is only 
12% of WTI-DSTATCOM. Under an unbalanced situation at 
0.3 unbalance coefficient, the VSI rating of CWTI-
DSTATCOM by conventional design is about 1/3 of the 
WTI-DSTATCOM. Moreover, with the proposed unbalanced 
design, CWTI-DSTATCOM is about 1/4 VSI rating of WTI-
DSTATCOM; 3) the VSI power rating ratios between CWTI-
DSTATCOM and WTI-DSTATCOM are mathematically 
formulated for balance and unbalance operations. 

APPENDIX 

A. Cost Reduction Analysis 

The costs of WTI-DSTATCOM and CWTI-DSTATCOM 
structures can be approximately calculated as (40) and (41). 

Cos Cos CosWTI DS STATCO LM TATCOMt t t    (40) 

Cos R Cos (1 R ) Cos Costot SCWTI DS TATCOM totTATCO C LMt t t t        (41) 

where CostSTATCOM and CostL are the costs of STATCOM and 
coupling L respectively for WTI-DSTATCOM; Rtot (%) is the 
VSI rating ratio between CWTI-STATCOM and WTI-
STATCOM. According to the rating modeling part in section 
II, the Rtot is 12% for balanced load, and Rtot is 1/3 for 
unbalanced load with =0.3. The costs CostL of coupling L 
are the same for CWTI-STATCOM and WTI-STATCOM, 
which can be ignored in the cost comparison of CWTI-
STATCOM and WTI-STATCOM. According to investment 
costs of the fixed capacitor and STATCOM in the typical 
medium voltage level applications [35], the cost comparison 
of the proposed CWTI-DSTATCOM and WTI-STATCOM 
for =0 and =0.3 loads can be shown in Fig. 14. It can be 
observed that the proposed CWTI-DSTATCOM is more 
cost-effective than the traditional WTI-DSTATCOM. 

 
(a) (b) 

Fig. 14. Investment costs of CWTI-DSTATCOM for the (a) balanced load; 
(b) unbalanced load. 
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B. Power Loss Case Study 

Less dc-link voltage means less power loss. According to 
the power loss studies [36], [37], the a) switching loss and b) 
component conduction loss contribute to the major power 
loss of the proposed structure. 
a) Switching Loss 

The switching loss is influenced by the collector-emitter 
voltage and current of each IGBT, which can be classified as 
turn-on and turn-off losses. (42) is the total turn-on and turn-
off power losses. 

 
1 1 1

8 3 2 4
C M C M

dc lo ss dc C M sw on o fflo ss sw
C N C N

I I
P V I V I f t t

I I
  

        

 (42)

where Vdc, ICM, ICN, ton, toff, and fsw are the dc-link voltage, 
maximum collector current, rated collector current, rated rise 
time, rated fall time, and switching frequency, respectively. 
Thus, the higher Vdc of the WTI-STATCOM and CWTI-
STATCOM, the higher the switching losses are obtained and 
vice versa. 
b) Component Conduction Loss 

For WTI-DSTATCOM and CWTI-DSTATCOM, the 
component conduction power losses can be expressed as (43) 
and (44). 

2
loss ( )L L cxP E SR I   (43)

2 2
loss ( )L C L cx C cxP E SR I E SR I     (44)

where ESRL (=0.18Ω) and ESRC (=0.33Ω) are equivalent 
series resistance of coupling inductor L, coupling capacitor C.  

Based on the above analysis, the total power losses of WTI-
STATCOM and CWTI-STATCOM are shown in Table V and 
Table VII. It shows that the total power loss of the proposed 
CWTI-STATCOM is much lower than that of WTI-
STATCOM. 
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