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ABSTRACT
To mitigate the straggler effect, today’s systems and computing

frameworks have adopted redundancy to launch extra copies for

stragglers. Two limitations of the existing straggler-mitigation tech-

niques, however, are that resource demand of tasks is only consid-

ered in the context of slots and, moreover, redundancy is seldom

coordinated with job scheduling. To tackle these issues, in this

paper, we present DollyMP, a job scheduler that addresses multi-

resource scheduling with task cloning in heterogeneous clusters.

DollyMP carefully combines SRPT (Shortest Remaining Processing

Time) and SVF (Smallest Volume First) via knapsack optimization to

schedule tasks with multi-resource demands and, in the meanwhile,

dynamically launches task clones to yield a small job completion

time. DollyMP is built on a strong mathematical foundation to guar-

antee near-optimal performance. The deployment of our Hadoop

YARN prototype on a 30-node cluster demonstrates that DollyMP

can reduce job response time by 50% under different cluster loads.
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1 INTRODUCTION
Modern data centers typically consist of thousands of heteroge-

neous servers to handle explosive growth of cloud applications.

Within such large-scale infrastructure, parallel and distributed com-

puting have become dominant techniques to achieve efficiency and

scalability. Computing frameworks such as MapReduce [14] and

Spark [50] split jobs into multiple small tasks which can run in

parallel on different servers so as to leverage system resources and

significantly accelerate job completion. A key challenge of catalyz-

ing the widespread adoption of these computing frameworks is the

disproportionately long-running tasks, or the so-called stragglers,

which corresponding to tasks that are unfortunately assigned to

servers suffering from a low processing rate. Stragglers can easily

lead to unpredictable job completion time and thus degrade the
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system performance substantially [8]. Measurement traces from

the Facebook cluster show that stragglers in Hadoop clusters can

run up to 8× slower than normal tasks [5, 38].

The problem of stragglers has received considerable attention

from both industry and academic research, with a slew of straggler

mitigation techniques being developed by making use of redun-

dancy. These techniques can be broadly divided into two categories,

namely, Speculative Execution [4, 7, 8, 14, 23] and Cloning [5, 33].

We next explain more details about these two techniques.

For speculative execution, the progress of each task is monitored

by the system and backup copies are launched for those tasks that

are running much slower than others. On the one hand, specula-

tive execution techniques suffer from a fundamental limitation, i.e.,

stragglers can be detected when a job is close to completion and

thus relaunching duplicates does not help much. This situation is

particularly challenging for small jobs since it is difficult to collect

enough statistically significant samples of tasks for small jobs. On

the other hand, speculative execution can also incur extra system

instrumentation and performance overhead. The case is even worse

when the progress of a large number of tasks has to be tracked [46].

Under the cloning approach, extra copies of a task are scheduled

in parallel with the initial task, and the one which finishes first is

used for the subsequent computation [46]. Though cloning is sim-

ple to implement and needs no monitoring, it can incur additional

resource contention since it consumes more resources comparing

to speculative execution. Nevertheless, today’s clusters are under-

utilized at most times since they are heavily over-provisioned to

satisfy their peak demand of over 99% [5]. In particular, traces anal-

ysis from Google clusters indicates the average utilization is less

than 50% and 95% of jobs are small (duration less than two hours)

[36]. As a consequence, there is a large room to make clones for

jobs running in production clusters. In this paper, we resort to the

use of cloning for improving job performance.

However, one common drawback shared by all existing straggler

mitigation approaches is that they consider each server in the clus-

ter is configured into multiple static slots and each slot can hold

one task from any job. Obviously, these schemes cannot apply to

today’s resource scheduling models in modern clusters where each

task can have different resource demands with multi-dimensional

requirements [20, 25]. In addition, most of these speculative execu-

tion/cloning schemes are designed independently with job sched-

uling via simply allocating slots to speculative/cloned copies in a

"best-effort" fashion, e.g., [5, 7, 8, 14]. Speculation/cloning aggres-

sively can improve the performance of the job at hand but may hurt

the performance of other jobs, since extra available resources are

occupied by redundant copies instead of new tasks.

Contributions of this paper: In this paper, we present Dol-

lyMP, a job scheduler that combines multi-resource scheduling

with task cloning in heterogeneous clusters. DollyMP is built based
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Figure 1: Job running time under different schedulers.

on a general optimization framework aiming at minimizing the

overall job completion time by combining job scheduling with task

cloning. DollyMP relies on an interesting observation that, when

the execution time of stragglers is heavy-tail distributed, cloning

small jobs can help to reduce the overall job completion time a lot.

To tackle the multi-resource scheduling problem, DollyMP balances

the scheduling between jobs of small volume [26] and those which

can lead to resource fragmentation, by solving multiple knapsack

problems. As a consequence, DollyMP can yield a more compact

and efficient resource allocation result comparing to SVF (Smallest

Volume First). More importantly, we prove that DollyMP manages

to achieve a competitive ratio of O(1) using a (2+ ϵ) capacity when
each job only consists of one single task or there is only one server

in the cluster. To the best of our knowledge, this is the first com-

petitive result achieved for multi-resource job scheduling with task

cloning in the resource-augmentation setting [16]. We also imple-

ment DollyMP under the widely deployed resource management

system-Hadoop YARN. Our implementation has made substantial

modifications to the current version of YARN [44].

We deploy the DollyMP implementation in our private cluster

which consists of more than 300 cores. The experimental results

demonstrate cloning alone can reduce the job response time by

nearly 15% when a few jobs are running in the cluster, i.e., the

cluster is lightly loaded. For the heavily loaded case where a large

number of jobs arrive over time, DollyMP can significantly reduce

the average job flowtime by 50% compared to the Capacity Sched-

uler. When compared to the well-known multi-resource scheduler

DRF [19] and Tetris [20], DollyMP reduces job flowtime by nearly

40%. In contrast to the state-of-the-art scheduler, i.e., Carbyne [21],

DollyMP can still cut down the average job flowtime by nearly 25%.

Our conducted trace-driven simulations also show when the cluster

load is high, by designing efficient scheduling algorithms, cloning

can help to reduce the job response time by nearly 10% with only

consuming 2% of extra resources.

The rest of this paper is organized as follows. Section 3 describes

the analytical model and Section 4 presents the key design ideas

behind DollyMP scheduler. In Section 5, we illustrate the implemen-

tation details of DollyMP on the top of Hadoop YARN. We conduct

experiments in Section 6 to evaluate the performance of DollyMP.

Before concluding our work in Section 8, we review works that are

related to redundant execution and job scheduling for computing

clusters in Section 7.
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Figure 2: The comparison between different scheduling algo-
rithm. The Tetris Scheduler shown in the left panel achieves
a total completion time of 46 seconds for the three jobs.How-
ever, the total completion timeunder theDollyMP scheduler
is only 28 seconds and DollyMP makes one clone for both
Job 2 and Job 3 when they are scheduled (the cloned copy is
in the same color as its original copy).

2 MOTIVATION OF DOLLYMP SCHEDULER
To motivate the cloning mechanism design of DollyMP, we run a

WordCount job with an input size of 4GB and repeat the job 8 times

in a small private cluster consisting of 30 heterogeneous nodes

including both powerful servers and normal computing nodes
1
. To

eliminate the effect of the scheduling policy, each job is submitted

to the cluster after the previous one finishes. The result is depicted

in Fig. 1 and it shows that, the running times of the same job vary

a lot under the Capacity Scheduler even though the MapReduce

framework itself has adopted some speculative execution scheme

to handle stragglers [44]. Similarly, the DollyMP scheduler with

the cloning mechanism disabled, i.e., DollyMP
0
also performs quite

poor and the average running time is close to the capacity scheduler.

By contrast, DollyMP
1
and DollyMP

2
(DollyMP scheduler with one

cloned copy and two cloned copies respectively) perform much

more stable, especially in the last five runs. We also report the

average running time of jobs under these schedulers. The results

indicate DollyMP
2
can reduce the average running time by nearly

20%, when comparing to the capacity scheduler. Therefore, the im-

provement gain from cloning is significant. We observe two major

issues behind this result. On the one hand, the server heterogeneity

makes the execution times of tasks within the same job phase differ

a lot. On the other hand, the background workload on the physi-

cal servers where the VM instances are located also changes over

time. Due to this, resource contention can occur and thus lead to

stragglers. In this example, the reason why speculative execution

fails under the Capacity Scheduler is caused by the late launching

of extra backup copies when a straggler is detected.

Furthermore, we need to design an efficient multi-resource sched-

uler to benefit themost from cloning. To demonstrate this argument,

we construct a simple example illustrated in Fig. 2. There are three

jobs with their normalized resource demand and task execution

times shown in the table and one server with a normalized capacity

of one. Under the Tetris Scheduler, Job 1 (in orange color) is sched-

uled first since it has the highest combination value (a+ϵ ·p), where
a denotes the alignment score (the inner product between the re-

source demand the server capacity) and p is the resource usage (the

product of the processing time and resource demand). After Job 1

1
Refer to Section 6.1 for a more detailed description.
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finishes, Tetris then begins to execute Job 2 (in black color) and Job

3 (in gray color) simultaneously. Note that, one can also leverage

cloning to speedup the processing of these two jobs since there are

extra idle resources. In this case, we shall make one clone for Job

2 and Job 3 respectively, leading to a speedup from 8 seconds to 6

seconds for both jobs and the total job completion time becomes

42 seconds. However, an alternative scheme of first scheduling Job

2 and Job 3 along with their clones and then Scheduling Job 1 will

result in a total completion time of 28 seconds. Even we do not make

any clone under the second scheme, the resulting completion time

is still 20% less than that under the Tetris scheduler with cloning

(34 seconds v.s. 42 seconds). As a result, the scheduling policy has

a heavy impact on cloning efficiency. We need to jointly combine

cloning and job scheduling to yield better performance.

3 ANALYTICAL MODEL FOR DOLLYMP
In this section, we develop an analytical framework which is gen-

eral enough to characterize the multi-resource scheduling problem

accounting for stragglers in heterogeneous big data processing

clusters.

Consider a time-slotted system and a computing cluster which

consists of M servers where the servers are indexed from 1 to

M . Server i has a capacity of Ci CPU cores and Mi GB memory.

Job j arrives at the cluster at time aj and the job arrival process,

(a1,a2, · · · ,aN ), is an arbitrary time sequence. Each job j is char-
acterized by a DAG graph G j which has multiple phases with de-

pendency and the phase set is denoted by Φj = {ϕ1j ,ϕ
2

j , · · · ,ϕ
πj
j }

[3]. For each phase ϕkj , we denote by P(ϕkj ) the set of its parent

(upstream) phases and ϕ
πj
j is the phase that shall be completed last.

Phase ϕkj ∈ Φj consists of n
k
j tasks for all k ∈ {1, 2, · · · ,πj }, and

all these tasks can execute in parallel. However, for a given task

in phase ϕkj , it can only begin executing after all the tasks in its

parent phases finish processing.

Moreover, each task of phase ϕkj has a resource demand of ckj
CPU cores andmk

j GB memory. The execution time of tasks from

ϕkj is denoted by Θk
j , where Θ

k
j is a random variable with its mean

E[Θk
j ] characterized by θkj and standard derivation SD[Θk

j ] cap-

tured by σkj . Both θ
k
j and σkj are known when job j arrives.

The cluster manager may assign multiple clones on available

servers once a task is scheduled. A copy that completes first among

all the cloned ones will be used for subsequent computation. When

r clones (copies or replicas) are launched for a task in phase ϕkj , the

execution time of this task under cloning (i.e., the fastest replica) is

still a random variable denoted by Θk
j (r ), whose mean is given by:

E
[
Θk
j (r )

]
= θkj /h

k
j (r ), (1)

wherehkj (·) denotes a speedup function of phaseϕ
k
j . One important

assumption we make on hkj (·) is that h
k
j (x) is strictly increasing

and concave with respect to x ∈ N+ for all j and k . For example,

when Θk
j is Type-I Pareto distributed with parameter xm and αkj

[7], namely, the cumulative density function of Θk
j is given by:

Pr

{
Θk
j > x

}
=
(xm
x

)αkj
. (2)

Then, hkj (x) can be simply derived as:

hkj (x) =
αkj − 1

x

αkj − 1

= 1 +
1 − 1

x

αkj − 1

. (3)

By adopting a unified speedup function, we do not distinguish be-

tween server heterogeneity and other factors that lead to stragglers.

This can ease the modeling and algorithm design.

The aim of DollyMP is to mitigate the impact of stragglers by

carefully lunching clones. Let x
j,k,l
i (t) ∈ {0, 1} be an indicator

variable to denote whether the lth task in phase ϕkj of job j is

running on server i at time slot t . Following Eq. (1), the expected
amount of work completed within time slot t for this task can be

expressed as:

y j,k,l (t) = hkj

( M∑
i=1

x
j,k,l
i (t)

)
, ∀j,k, l , t . (4)

In Eq. (4), we consider all clones of a task are launched at the same

time. In this case, the completion time of a task is the minimum

among the execution times of its copies. Nevertheless, it is still

difficult to characterize the minimum of multiple random variables

from a probabilistic perspective without knowing the complete dis-

tribution. Therefore, we take an alternative approach of adopting

the speedup function to capture the task completion requirement.

With the mean and variance, we derive the speedup function via

fitting a Pareto distribution, which is widely implemented in exist-

ing straggler mitigation schemes, e.g., [7, 38] and also adopted in

theoretical models, e.g., [9, 34].

3.1 Problem Formulation
First, the total amount of resource usage on server i should not

exceed the capacity of the server:∑
j,k,l

x
j,k,l
i (t) · ckj ≤ Ci ,

∑
j,k,l

x
j,k,l
i (t) ·mk

j ≤ Mi , ∀i, t . (5)

Second, a job phase finishes when all of its tasks complete, let

λkj denote the finishing time of phase ϕkj , it satisfies:

λkj∑
t=aj+1

y j,k,l (t) = θkj , ∀j,k, l , t . (6)

Third, each task can not begin its execution until all tasks in its

parent phases complete, thus, we have:

x
j,k,l
i (t) = 0, ∀j,k, l and t ≤ λσj if ϕσj ∈ P(ϕkj ), (7)

Last, the whole job completes only after its last phase finishes.

As such, the job finish time fj is characterized by:

fj = λ
πj
j , ∀j . (8)

The goal of DollyMP is to minimize the overall job completion

time (flowtime), which is a common performance metric in dis-

tributed computing clusters [20]. This goal yields the following
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optimization problem:

min

x

N∑
j=1

(fj − aj ) (OPT)

such that Eqs. (4), (5), (6), (7), (8) are satisfied,

where (fj − aj ) is treated as the flowtime of job j . In the rest of the

paper, we will use the two terms, i.e., completion time and flowtime

interchangeably.

3.2 Hardness
The optimization program (OPT) above is essentially a difficult

problem. Regardless of task cloning, the multi-resource packing

problem alone, e.g., Eq.(5) is APX-Hard [20]. As an illustrative ex-

ample, consider the case where there is only one machine and all

jobs (each job only has one task) require the same processing time

but different numbers of CPU cores and amount of memory, our

problem is then equivalent to the classical 2D bin-packing problem

aiming at minimizing the number of bins used, which is strongly

NP-complete. Due to this, DollyMP resorts to the use of approxi-

mate solutions.

4 KEY DESIGNS BEHIND DOLLYMP
In this section, we design two heuristics to solve two critical prob-

lems, i.e., when cloning can help to improve the overall job perfor-

mance and how to design efficient job scheduling algorithms for a

better coordination with task cloning.

4.1 When cloning is helpful?
Cloning delays the scheduling of other jobs, which may lead to a

negative impact on the overall job performance. In this part, we

first design simple heuristics for task cloning under DollyMP via

analyzing several scheduling cases.

Consider a case where N jobs enter the cluster at time zero and

each job has one single task to execute and all jobs have the same

speedup function. The total capacity of the cluster is normalized

to 1. In particular, job j needs 1

2
j normalized CPU cores and

1

2
j

normalized Memory. In addition, the expected execution time of all

jobs is one. In this case, the total resource demand is

∑N
j=1

1

2
j = 1−

1

2
N . The first scheduling scheme is to schedule all jobs at time zero

and make one cloned copy for Job N , the resultant job completion

time in expectation is flow1 = N − 1 + 1

h(2) .

By contrast, the second scheme tries to clone as many copies

as possible for each job. Specifically, it launches 2
j
copies simulta-

neously for job j after job (j + 1) completes. In this case, the total

expected job flowtime is flow2 =
∑N
j=1

j
h(2j ) , since there is only one

job being executed at any time slot and other jobs need to wait.

The third scheme makes two clones for each job and schedules

the job with the smallest resource demand first. As a result, Job 2

to N are scheduled together before Job 1. In this scenario, the total

expected job flowtime is at most flow3 =
N+1
h(2) .

The difference between flow1 and flow2 (flow3) is :

flow1 − flow2 =

N∑
j=2

h(2j ) − j

h(2j )
, flow1 − flow3 = N − 1 −

N

h(2)
.

When the task execution time follows a Pareto distribution and

the speedup function is given by Eq. (3), hj (2
j ) < j if j ≥ α

α−1 and

h(2) > N
N−1

when N > 2α − 1. This leads to flow3 < flow1 < flow2.

One implication of this result is that, a small number of clones can

help to reduce the overall job completion time even in an overloaded

cluster and priority should be given to small jobs. As such, DollyMP

chooses to schedule extra cloned copies for small jobs when the

total amount of consumed resources under cloning is less than the

resource demand of other jobs.

4.2 Maximizing resource packing or
minimizing waiting time?

Another key issue towards designing an efficient job scheduler is

to balance the trade-off between maximizing the resource packing

efficiency and minimizing the job waiting time. Optimizing the

former performance objective leads to better resource utilization

and requires one to give scheduling priority to jobs that can be

tightly packed on available servers. However, it is usually better to

schedule these small jobs first if one wants to reduce the waiting

time of other jobs. To address this trade-off and better illustrate the

major scheduling logic of DollyMP, we consider a transient case

where the arrival time of all N jobs are zero and there is only one

server in the cluster. In this transient setting, Im et al. design several
priority-based algorithms when resource is one-dimensional and

there is no task cloning [26]. Priority-based algorithms refer to

those that prioritize jobs based on specified quantities, typical ones

include:

• Shortest Remaining Processing Time (SRPT): jobs with the

smallest running time are scheduled first. SRPT is optimal

in the offline case where all the machines are identical and

resource demands are homogeneous [17].

• Smallest Volume first (SVF): jobs with the smallest volumes

are scheduled first where the volume is defined as the prod-

uct of the job processing time and the job resource demand.

SVF is a simple extension from SRPT to incorporate hetero-

geneous resource demands.

The above schemes are easy to implement, however, they can lead to

quite poor performance. SRPT-based algorithm only prioritizes jobs

according to the job processing time and can easily cause resource

fragmentation, especially when the resource demand across jobs

varies a lot [20]. By contrast, SVF aims at making a better balance

between job processing time and resource demand. Nevertheless,

SVF still does not perform well in a long run. Some jobs may require

large resource demands and thus have low scheduling priority,

however, cannot be built up in the queue for a long time. Otherwise,

the system keeps scheduling low-demand jobs and can easily lead

to low resource utilization.

With these limitations in mind, we combine SRPT and SVF to-

gether to yield a more efficient scheduling scheme. Specifically,

we first modify the SVF scheme to include the multi-dimensional

resource packing. To achieve this, we define the dominant resource

of each job j as follows:

dj = max

{
c j∑M
i=1Ci

,
mj∑M
i=1Mi

}
, (9)
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Algorithm 1: The transient scheduling algorithm.

1 Procedure Proc
(
Job set J ,

{
vj }j , {θ j

}
j
)
;

2 Let д = log

( ∑
j ∈J vj/(1 −maxj dj )

)
;

3 Let plj = ∞, ∀j ∈ J , 0 ≤ l ≤ д;

4 for l = 1, 2, · · · ,д do
5 Find Bl =

{
j ∈ J : θ j ≤ 2

l }
;

6 Call the knapsack optimization oracle to solve:

max

x ∈{0,1}

∑
j ∈Bl

x j , s .t .,
∑
j ∈Bl

vjx j ≤ 2
l .

7 if x j = 1 and pl−1j = ∞ then
8 Let plj = l ;

9 else
10 plj = p

l−1
j ;

11 Let {p : pj = p
д
j } Sort jobs in J in an increasing order of pj

and let sch = 1 Update remaining resources ;

12 while resource is enough to launch job sch do
13 Schedule job sch ;

14 if job (sch + 1) cannot be scheduled then
15 Make one extra clone to job sch;

16 sch + +;

which is similar to that in Dominant Resource Fairness (DRF)

scheme [19]. We next define the volume of each job as:

vj = dj · θ j . (10)

We then divide jobs into different categories based on the job pro-

cessing time. Within each category, we try to pack as many jobs as

possible via solving a knapsack optimization problem. The objective

is to maximize the total number of packed jobs subject to, the total

volumes of the packed jobs not exceeding a certain constant. In

this case, the scheduling priority is still given to jobs with small

processing time, however, all jobs within the same category are

treated equally once they can be chosen by the optimization oracle.

By doing this, we can achieve a high packing efficiency and in the

meanwhile reduce the total job waiting time. In addition, cloning

is made when there are extra available resources.

The transient scheduling process is shown in Algorithm 1. It

first finds a set of jobs that can be completed within 2
l
time slots.

It then maximizes the number of jobs packed with the total volume

not exceed 2
l
. It is worth noting that, in Step 6 of Algorithm 1, the

knapsack optimization oracle can be solved efficiently by selecting

items with the smallest weights since the profits of all items are the

same.

4.2.1 Complexity of the transient scheduling process. Since the

system capacity is used by at least (1 −maxj dj ) in any time except

the final time slot under Algorithm 1, it manages to complete all jobs

by time slot д =
∑
j vj/(1 −maxj dj ). The optimization oracle only

sorts items based on weights and therefore has a time complexity

of O(n2) where n is the number of items to be packed. Since there

are д steps and there are at most N jobs to be selected in each

step, the time complexity of the transient scheduling process is

O
(
N 2 · log

( ∑
j vj/(1 −maxj dj )

) )
.

4.2.2 Optimality. We show that the transient scheduling algorithm

can achieve a bounded competitive performance.

Theorem 1. When hj (x) is upper bounded by R for all j and
x ∈ N , then Algorithm 1 without cloning can achieve a competitive
ratio of 6R with respect to the total job flowtime.

Proof. Let OPT denote the optimal schedule and N−1 = 0.

When OPT finishes Nl jobs by time slot 2
l
, Algorithm 1 have

completed at least Nl jobs by time slot 3R · 2l , following the result

of 2D-strip packing [40]. In this case, there are at most (N − Nl )

jobs that are still active in the cluster during the time interval

[3R ·2l , 3R ·2l+1). LetWl denote the amount of flowtime accumulated

during this interval,Wl is upper bounded by:

Wl ≤ 3R · 2l · (N − Nl ). (11)

As such, one upper bound for the total flowtime under Algorithm 1

is given by:

FA =

д∑
l=0

Wl ≤ 3R ·

д∑
l=0

2
l (N − Nl ). (12)

By contrast, these (N − Nl ) jobs need to wait for at least 2
l−1

time slots under OPT . And no jobs complete in the first time slot,

thus, the total job flowtime under OPT is lower bounded by:

F ∗ ≥

д∑
l=0

2
l−1(N − Nl ) + N , (13)

Combining Eq. (11) and Eq. (12), we have that FA ≤ 6R · F ∗, this
completes the proof of Theorem 1. □

The following corollary states that, Algorithm 1 can achieve

a much better competitive performance if we schedule clones in

a more careful manner. More specifically, let r j = min

{
r ∈ N :

2
lhj (r ) ≥ θ j

}
, then (r j −1) clones will be made if the corresponding

resources can be packed in Step 6.

Corollary 4.1. There exists an offline scheduling algorithm that
can achieve a competitive ratio of 6.

5 DOLLYMP SCHEDULER FOR GENERAL
DAG JOBS

In this section, we apply the key designs above to handle the sched-

uling of general DAG jobs. In these jobs, tasks that have a large

variation in execution times in a phase can easily prolong other

tasks in dependent phases and hence should be given lower sched-

uling priority. When taking this into account, DollyMP scheduler

incorporates the standard deviation of task execution time by a

factor of r to define the effective processing time of phase ϕkj as

ekj = θ
k
j + σ

k
j .

In a DAG graph, each path contains a chain of sequential phases

and the length of the path is the sum of the effective processing

time of phases on the path. In particular, let Lj be the critical path,
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i.e., the longest path in job j ′s DAG, we then define the effective

volume and effective processing time of a DAG job j as follows:

vj =

πj∑
k=1

nkj · ekj · dkj , ej =
∑

k :ϕkj ∈Lj

ekj . (14)

where dkj is the dominant resource of the tasks in phase ϕkj of job

j and is given by the following formula:

dkj = max

{
ckj∑M
i=1Ci

,
mk
j∑M

i=1Mi

}
. (15)

With this newly defined effective job volume and job processing

time for DAG jobs, we adopt the same scheduling logic as that in

Algorithm 1 to determine the scheduling order for all jobs that have

not finished in the cluster. Based on this order, DollyMP scheduler

tries to schedule as many tasks as possible for jobs with a small

order (high priority). For jobs with multiple phases, the tasks in

the subsequent phase can be scheduled only after all the tasks in

their parent phases have been completed. When the cluster can not

schedule any new task (either due to all the tasks of a job have been

scheduled or due to some of the dependent tasks have not finished

yet), the scheduler begins to launch clones for the scheduled tasks if

there still exist extra idle resources. When launching cloned copies,

the scheduler also follows the same order as that for scheduling the

normal tasks. In addition, the maximum number of clones for each

running task is two under DollyMP, namely, there are at most three

concurrent copies running for each task. There are two reasons

leading to this design. On the one hand, the speedup function hkj (x )

is concave in x and thus a large number of clones does not improve

much comparing to a small number. On the other hand, in the

distributed file systems, each data block usually keeps two replicas

for fault tolerance. As such, two clones can maintain a good data

locality for reducing the time of fetching the input data.

Each job reports its effective volume and processing time to the

job scheduler when it is newly submitted. The job scheduler inputs

this information to the transient scheduling Algorithm, which in

turn returns the scheduling orders of all input jobs. To reduce the

overhead, the scheduling order of all jobs in the cluster won’t be up-

dated until the next job arrival. Once resources on a server become

available, the scheduler then assigns tasks with the highest priority

to this server if its resource demand can be satisfied. If the resource

demand of the most preferable task exceeds the available capacity,

the scheduler then turns to the next preferable task. When multiple

jobs own the highest priority returned from the optimization oracle,

DollyMP will choose a task from these jobs with the best resource

fit. Similar to Tetris Scheduler, the resource fit is computed as the

inner product between the resource demand vector of each task

and the remaining resource capacity of the available server.

The corresponding pseudo-code is shown in Algorithm 2. It is

worth noting that, in Step 3, the job scheduler needs to update the

computation of job volume and processing time when a new job

arrives to the cluster. Let Φj (t) denote the remaining phases of job

j that have not been finished, the updated job volume is given by:

vj (t) =
∑

k :ϕkj ∈Φj (t )

nkj (t) · e
k
j · dkj , (16)

Algorithm 2: The online scheduling process of the Dol-

lyMP Scheduler

1 if A new job enters the Cluster in time t then
2 Let At = {j : aj ≤ t < c j };

3 For each j ∈ At , compute vj (t) and ej (t) following

Eq. (16) and Eq. (17);

4 Call Proc(At ,vj (t),ej (t)) in Algorithm 1 to obtain the

job priority {pj (t)};

5 Let Ast = sort
(
{pj (t)}

)
based on the increasing order;

6 while There are available resources on a server i do
7 Let Rci be the amount of available CPU Resource;

8 Let Rmi be the amount of available Memory Resource;

9 for l ∈ Ast do
10 Let Ωl

t = {j ∈ At : pj (t) = l};

11 while Rci < minj ∈Ωl
t
ckj or Rmi < minj ∈Ωl

t
mk
j do

12 Let j∗ = argmaxj ∈Ωl
t
Rci · c

k
j + R

m
i ·mk

j ;

13 if ckj < Rci &mk
j < Rmi then

14 Assign a task or its clone from phase ϕkj of

job j∗ to server i;

15 Rci = Rci − ckj , R
m
i = Rmi −mk

j ;

16 Repeat Step 9 twice if there are available resources.

where nkj (t) is the number of not-finished tasks in phase ϕkj of job

j by time t . Let Lj (t) be the critical path in the remaining phases

of job j, correspondingly, the updated processing time of job j is
defined as:

ej (t) =
∑

k :ϕkj ∈Lj (t )

ekj . (17)

Each task can maintain two extra clones at most, Step 9 to 15

of Algorithm 2 is repeated three times before the resources are

used up in the cluster. Moreover, the scheduler needs to wait for

available resources before it can make actual scheduling decisions

(i.e., Step 11). For each job j, ϕkj is the first available phase that

can be scheduled at present. In addition, DollyMP follows the delay

assignment policy in [5] to determine whether and when to kill

other clones once the first copy of a task completes.

5.1 Optimality of DollyMP Scheduler
DollyMP Scheduler can manage to achieve a bounded competitive

ratio in some special settings under resource augmentation [16]. In

a capacity augmentation analysis, an algorithm is given a capacity

greater than one while being compared to the optimal schedule on

a unit-capacity server.

Theorem 2. Algorithm 2 is (2 + ϵ)-capacity, O( 1ϵ ) competitive
with respect to the total job flowtime, when there is only one server in
the cluster or all the jobs have only one single task.

Proof sketch. The key step is to formulate a simplified optimiza-

tion problem whose cost is within a constant factor of the offline

optimal cost. We adopt the online primal-dual fitting approach
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Figure 3: The system architecture of DollyMP built on the
top of Hadoop YARN (shown in red).

via investigating this approximate problem, followed by construct-

ing a pair of dual variables following the policy of Algorithm 2.

This construction combines SVF and knapsack packing, which is

completely different from traditional dual designs in the setting of

homogeneous demands.

Discussion: when there is no straggling task in the cluster, i.e.,

the execution time of each task is a fixed constant, Algorithm 2

achieves a competitive ratio of

(
3+3ϵ
ϵ

)
for minimizing the overall

job flowtime when using a (2+ϵ)-capacity with 1-speed in an online
setting. By contrast, the HRDF policy presented in [16] achieves a

competitive ratio of

(
5+3ϵ
ϵ

)
using the same amount of capacity, in

the single-server setting. In this sense, our designed online sched-

uler manages to achieve a much better competitive performance

than existing schemes, especially when ϵ is small.

5.2 DollyMP Implementation under YARN
We implement DollyMP on top of Hadoop YARN. The system ar-

chitecture is illustrated in Figure 3 where we highlight the modifi-

cations to Hadoop YARN in red colors.

We implement the scheduling algorithm in Section 5 under the

Resource Manager of YARN (RM). The new scheduling logic com-

bines DRF, SVF, and SRPT to recompute the priority of each job

whenever a new Application Master is created. In addition, the

Resource Manager knows the ID of each task so as to make cloned

containers for each task.

Application Master (AM) estimates task demands as well as the

statistics of task execution times from historical jobs and from ear-

lier tasks in the same phase. First, recurring jobs are fairly common

in big data processing clusters, we observe in the cluster that the

jobs submitted from the same usually repeat the same computation.

For such jobs, AM directly applies task statistics measured in prior

runs of the job [20, 21, 28]. Second, the tasks from the same phase

within a job have similar resource requirements and execution prop-

erties [6, 15, 43]. Hence, AM estimates the resource demands and

execution times of a phase (mean and stand derivation) using the

measured statistics from the first few tasks, and update it timely

when more tasks finish. Third, when none of the above properties

are satisfied. AM just uses the resource demand from the container

request to perform the computation. For the estimation of task

execution times, AM simply uses all the prior jobs from the same

application framework to calculate both the mean and the stand

derivation.

AM relies on the Resource Manager to report such informa-

tion. Based on this information, Application Master computes the

job volume along with the processing time, and sends them to

the Resource Manager. Moreover, each Application is responsible

for launching cloned copies for a task. When RM allocates more

containers than the number of pending tasks, an AM will make a

second-level scheduling decision to determine where to launch each

task and its clones, based on the data locality constraint. Whenever

a task or its cloned copy finishes, the corresponding AM keeps

another running copy with the best data locality level and kills the

remaining running copies on their corresponding Node Managers.

We also add the information of each task ID to a container re-

quest. With this ID, RM knows the data locality preferences of each

task and thus launches cloned copies for the task to satisfy such

preferences. Moreover, the container request also encodes informa-

tion of the maximum number of clones to launch for each task and

the default value is two.

For intermediate data transfer between two successive phases

within a job, e.g., Map Phase and Reduce phase, DollyMP adopts

the mechanism of delay assignment only when tasks from the

downstream phase have also been scheduled clones [5]. Under

this scenario, AM first waits to assign the outputs of two early

upstream copies to each of the downstream clones evenly, and

thereafter proceeds without waiting for the last clone if there are

copies running for tasks in the upstream phase. In the case where

the number of copies in the upstream phase is less than that in

the subsequent phase, AM assigns the output from the copy that

finishes first to all the copies of each downstream task.

6 PERFORMANCE EVALUATION
We evaluate DollyMP using our prototype implementation on a

private cluster with 30 heterogeneous nodes with a total of 328 cores.

We also supplement the evaluation with trace-driven simulations.

6.1 Experiment Setup
Cluster: The cluster consists of three different types of servers.

There are two powerful servers each one with 24 CPU cores and

48GB memory, and seven normal servers each one with 16 CPU

cores and 32-64GB memory. The remaining nodes are similar where

each one has 8 CPU cores and 16GB of memory. All servers are

placed within two racks and connected in a folded CLOS.

Baselines: We compare DollyMP with δ = 0.3, r = 1.5 to the

default scheduler of YARN, i.e., the Capacity Scheduler [2]. The

Capacity Scheduler is also deployed in production clusters of Yahoo.

In addition, we also compare DollyMP to the well-known scheduler,

i.e., Tetris [20] and DRF [19]. Tetris combines the SRPT scheduler

and heuristic algorithms for the multi-dimensional resource pack-

ing problem to compute a weighted score for each of the mapping

pairs between the available server and unscheduled tasks. Then,

Tetris assigns a task with the highest score to the available servers.

DRF is a widely-adopted fair algorithm under which it offers re-

sources to the job whose dominant resource’s allocation is furthest

from its fair share. Moreover, we also deploy three different ver-

sions of DollyMP according to the limit on the maximum number

of cloned copies that can be launched for a task: no clone, one

clone, and two clones. For ease of presentation, we let DollyMP
0
,

DollyMP
1
, DollyMP

2
denote these versions respectively in the rest

of this paper.
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Figure 4: Job flowtime and execution times under different
schedulers in the lightly-loaded regime.
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Figure 5: The running time CDF of different applications in
the heavily-loaded regime.

Performance metrics: To compare the performance across dif-

ferent cluster schedulers, we study both the job flowtime and the

actual job execution time (running time). We characterize the over-

all distribution as well as the sum of the job flowtime and execution

times. We also investigate the resource consumption under cloning.

6.2 Deployment Results
Workload: To evaluate DollyMP, we constructed a workload suite

of over 1000 jobs by picking uniformly at random from the Google

traces [37]. The Google traces contain job size (the total number

of tasks) and the resource demand for CPU cores and memory of

each task. Based on the task number, we generate a fixed portion of

map tasks and reduce tasks respectively. Our constructed workload

includes two types of applications, i.e., PageRank and Wordcount.

For PageRank jobs, half of them have an input data size of 10GB

and another half has an input size of around 1GB. For Wordcount,

all jobs have an input data size of 10GB.

6.2.1 Evaluation of cloning efficiency. To study the performance

of DollyMP on different job types and job sizes in a lightly-loaded

case, we select 100 jobs from our constructed workload suite where

a half of the jobs run the Pagerank application and the other half

run the Wordcount example. The inter-arrival time between these

jobs is around 200 seconds. In this case, the job flowtime is very

close to the job running time since only a few jobs need to wait

for available resources when they enter the cluster. And Tetris

performs quite similarly to Capacity scheduler. Fig. (4b) depicts

the cumulative density function (CDF) of the job execution times

under different schedulers. Observe from Fig. (4b) that, nearly 95%

of jobs can complete within 350 seconds under DollyMP
2
while

only 80% of jobs can achieve this under the Capacity scheduler.

We also illustrate the overall job flowtime achieved under different

schedulers in Fig. (4a). Still, DollyMP performs better than Capacity

scheduler and it can reduce the average job flowtime by nearly 10%

comparing to the latter. Interestingly, we also note that, DollyMP
2

outperforms DollyMP
1
. This is because DollyMP

2
tends to launch

more clones for a running task and therefore can better reduce the

execution time of a job. In particular, when a job is small, there
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Figure 6: The flowtime CDF of different applications in the
heavily-loaded regime.

are enough resources to make clones in the cluster and therefore

the performance improvement is even larger by launching more

clones.

6.2.2 Evaluation of the scheduling policy. In this subsection, we

aim to study the impact of the job scheduling policy from different

schedulers on the overall system performance. As is known, Tetris

combines SRPT and multi-resource packing together by simply

computing the weighted sum of these two terms. By contrast, Dol-

lyMP makes a better trade-off between SVF and SRPT by solving a

knapsack problem when a new job comes.

In the first experiment, we run 500 Pagerank jobs and the inter-

arrival time between jobs is around 20 seconds. In this case, the jobs

enter the cluster with a very high frequency, the system load is thus

very heavy and there is only room to make clones for small jobs.

We then run another 500 Wordcount jobs in the second experiment

with similar inter-arrival times as the Pagerank experiment.

The job flowtime is usually much larger than the job running

time in a heavily-loaded cluster as many jobs need to wait for a

long time before being processed. As such, we evaluate both the

job flowtime and the job running time in these two experiments.

As illustrated in Fig. (5a), in the Pagerank experiment, the running

times of jobs under DollyMP are much smaller than that under

Tetris and Capacity scheduler. In particular, all the jobs can com-

plete within 200 seconds after they are scheduled under DollyMP.

However, only 80% of jobs can finish within 200 seconds under

Tetris. Similar results could be observed from the Wordcount exper-

iment in Fig. (5b). Under DollyMP, when a job is scheduled, most of

the tasks within the same job phase can be executed simultaneously

in the cluster, and therefore, the running time performs similar to

that in the lightly-loaded regime.

When referring to the performance metric of job flowtime, Dol-

lyMP performs even better. As depicted in Fig. (6a) and Fig. (6b),

mots jobs finish within 6000 seconds since their arrival under Dol-

lyMP. By contrast, only 60% (45%) of jobs can complete within 6000

seconds under Tetris (Capacity scheduler). We also illustrate in

Fig. (7a) and Fig. (7b) the total job flowtime accumulated as jobs

enter the cluster over time. The result indicates that, DollyMP can

reduce the overall job flowtime by nearly 50% (30%) when compar-

ing to the Capacity scheduler (Tetris).

6.3 Trace-driven Simulations
We also build a trace-driven simulator to evaluate the performance

of DollyMP in a large-scale computing cluster that consists of more

than 30K heterogeneous servers. The simulator replays job traces
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Figure 7: The overall job flowtime of different applications
in the heavily-loaded regime.
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Figure 8: CDF for the ratios of job duration and resource us-
age under DollyMP2 to that under Tetris.

from Google Clusters [37]. The statistics show that the task execu-

tion times within the same job phase cancan vary substantially (the

stragglers could be 20× slow as the normal tasks) and moreover, the

percentage of job phases that contain stragglers is also very high

(i.e., 70% of job phases contain a fraction of more than 15% task

stragglers). When mimicking the execution of task clones, we set

the running time of each clone to be the same as that of a task ran-

domly chosen from the same job phase. Unless otherwise specified,

the evaluation results use the default parameter value r = 1.5. In

the simulations, we choose the scheduling interval (i.e., the length

of the slot) to be 5 seconds, which is comparable to the duration of

small tasks in traces. At the beginning of each interval, DollyMP

shall check the amount of available resources in the cluster to make

scheduling decisions.

6.3.1 Job speedup v.s. extra resource usage. Cloning helps to speed

up the task execution process and however, can incur extra resource

consumption. To make a fair comparison, we quantify both the

job speedup and the resource usage of cloning under DollyMP
2
,

Tetris, DRF respectively. Here, the resource usage is the sum across

the (normalized) CPU and Memory resource multiplied by the

task duration within a job. As shown in Fig. (8a), at least 40% of

jobs obtain a reduction by 30% in job flowtime under DollyMP
2

compared to Tetris and the average speedup is 22%. Fig. (8b) shows

that around 70% of jobs consume double amount of resources in

both CPU and Memory dimensions under DollyMP
2
w.r.t. DRF.

Since DollyMP prefers to make clones for small jobs, the overall

resource consumption of DollyMP
2
is only 60% higher than that of

DRF. In addition, DollyMP
2
also reduces the makespan (the longest

job completion time) by 18%. As the cluster load is not high, the DRF

scheduler performs similar to the Tetris scheduler and therefore

we do not show the results of DRF in the figures.

What is the optimal number of clones for each task? To answer

this question, we tune the number of clones from one to three and
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Figure 9: The job speedup and resource usage under differ-
ent number of clones.

0 0.1 0.2 0.3 0.4 0.5
Reduction in Job completion time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   
   

   
   

C
D

F

Low load

High Load

(a) Job speedup

0 1 2 3 4
The times of resource usage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   
   

   
   

C
D

F

Low Load

High Load

(b) Resource usage

Figure 10: DollyMP2 v.s. DollyMP0: the effect of cloning un-
der different cluster loads.

investigate both the job speedup and the amount of extra resource

usage. The results shown in Fig. 9 indicate that, increasing the

number of clones from two to three does not help much. Comparing

to DollyMP
1
, DollyMP

2
helps more than 30% of jobs to reduce the

job flow time by 20%. However, DollyMP
3
only leads to another

5% of jobs achieving the same level of reduction in job flowtime.

Moreover, DollyMP
3
results in an amount of total resource usage

which is 15% higher than that achieved by DollyMP
2
.

We also evaluate the efficiency of cloning under different cluster

loads. To achieve this, we fix the job workload while varying the

number of CPU cores in the cluster. Intuitively, cloning should

be helpful only when the cluster load is not high. However, Fig-

ure. (10a) demonstrates that cloning can still effectively reduce the

job flowtime under high cluster loading (10× the low load). The

overall job flowtime is reduced by 10% under cloning with 2% of

extra resource consumption. In addition, more than 40% of jobs

show a reduction in job flowtime by at least 20% under DollyMP
2

when comparing to the scheme with cloning disabled. The major

reason is due to that the job scheduling policy can make a heavy

impact on the cloning effect. Since the number of jobs staying in

the cluster is not large under DollyMP even when the cluster load is

high, there often exists room to make clones for small tasks running

in the cluster. Figure. (10b) further implies that nearly 40% of tasks

have cloned copies running in the cluster when the cluster load

is high. In a conclusion, one can make the most use of cloning by

carefully designing job scheduling policies.

6.3.2 Comparison with the state of the art. Finally, we compare

our built scheduler to the state of the art, i.e., Carbyne [21] and

Graphene [22]. The Carbyne Scheduler adopts ideas from DRF and
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Figure 11: Comparison between DollyMP2 and Carbyne
when the cluster is heavily loaded.

Tetris, and applies altruistic scheduling to collect leftover resources.

The leftover resources are then be redistributed to other tasks for

achieving better job performance and cluster efficiency. By contrast,

the strength of Graphene is to deal with jobs consisting of hetero-

geneous DAGs, and it performs similarly to Tetris for jobs with

sequential dependencies. As such, we only depict the comparison

results between DollyMP
2
and Carbyne.

We compare the performance of DollyMP
2
to Carbyne under in

a heavily-load cluster. As shown in Fig. (11a), nearly 30% of jobs

achieve a reduction in job completion time by more than 80%. In

the meanwhile, around 60% of jobs consume the same amount of re-

sources under these two schedulers (Fig. (11b)). Moreover, DollyMP
2

reduces the average job completion time by 25% comparing to Car-

byne. Even though Carbyne makes use of the redistribution of

leftover resources to optimize the performance of jobs with DAG

graphs, DollyMP
2
can still achieve a significant improvement by

cloning small jobs.

6.3.3 Scheduling overhead. The overall scheduling overhead of

DollyMP is very low. Specifically, the scheduler takes less than

20ms to make scheduling decisions for all jobs in our private cluster.

When referring to scheduling costs in a large-scale cluster, the

simulation result shows that scheduling 1K jobs to 30K machines

costs less than 50ms on a 3.3 GHz 6-Core Intel Core i5 processor.

7 RELATEDWORK
In the literature, there have been several research efforts to design

speculative execution and cloning schemes for MapReduce Systems

[1, 5, 7, 8, 13, 14, 27, 41, 46, 51]. While some of these approaches are

implemented in practical systems and demonstrated to be efficient

for specific job types, they mainly deal with traditional MapReduce

jobs which only require slots to be statically configured on each

machine. Another major limitation is that, these schemes do not

jointly design job scheduling with redundant execution, making

redundancy not as efficient as expected. To overcome these draw-

backs, Ren et al. propose Hopper, a speculation-aware scheduler,
which coordinates job scheduling with speculative execution [38].

However, Hopper still has several downsides that can degrade the

cluster performance. Hopper is non-work-conserving: it is possible

to keep a computing slot idle as a reservation for a future straggler

while other jobs/ tasks already queue up for computation resources.

Recently, Xu et al. present Chronos to bring several different

speculative scheduling strategies together under a unifying op-

timization framework [48]. Chronos defines a novel metric, i.e.,

Probability of Completion before Deadlines (PoCD), to compute the

probability that a job meets its desired deadline, under cloning and

speculative execution respectively. Based on this metric, Chronos

proposes to solve an optimization problem for jointly optimizing

PoCD and the execution cost in different strategies. While such

optimizations can lead to utility increase and cost improvements,

they fail to deal with multiple jobs that have multi-resource re-

quirements and complicated task dependencies. In addition, Zhou

et al. build an energy consumption model to characterize the en-

ergy efficiency for different speculative execution solutions under

MapReduce systems [53]. Relying on the theoretical analysis, the

authors then propose a window-based dynamic resource reserva-

tion and a heterogeneity-aware copy allocation technique to further

optimize the job performance and energy consumption.

To efficiently allocate resources in production clusters, several

schedulers have been proposed from both production clusters [10,

24, 29, 35, 39, 44, 45] and the academia, see [11, 12, 18, 20–22, 30–

32, 42, 43, 47, 49, 52] for example. In particular, schedulers in [11,

12, 30, 32, 42, 49, 52] are designed under the MapReduce system and

only consider one-dimensional resource, i.e., CPU. In contrast, all

the other schedulers consider multi-dimensional resources for the

task requirement. Moreover, schedulers in [11, 12, 20, 30, 32, 42, 44,

49, 52] are centralizedwhere the resourcemanager is responsible for

scheduling all applications/ jobs in a cluster. Mesos adopts the two-

level scheduling paradigm under which resources are first allocated

to each framework by the master and then the framework will make

second-level scheduling decisions [24]. By contrast, schedulers in

[10, 29, 35, 39, 45] are fully distributed, each scheduler makes the

scheduling decision independently and only one commitment will

succeed if there are any conflicts.

8 CONCLUSIONS AND FUTUREWORKS
This paper makes an attempt to mitigate stragglers by making

task clones for big data processing systems with multi-resource

requirements. Our primary goal and contribution are to build the

first analytical model accounting for multi-resource scheduling

under task cloning for jobs with DAG dependencies.We conducted a

simple analysis to studywhen cloning is helpful. Such analysis could

enable us to design efficient online scheduling algorithms. Another

contribution of this paper is to bound the competitive performance

of a multi-resource scheduling algorithm with cloning. As future

works, we plan to apply online learning methods to quickly identify

those servers that can easily lead to stragglers.
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