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In the medical domain, data are often collected over time, evolving from simple to refined categories.
The data and the underlying structures of the medical data as to how they have grown to today’s
complexity can be decomposed into crude forms when data collection starts. For instance, the cancer
dataset is labeled either benign or malignant at its simplest or perhaps the earliest form. As medical
knowledge advances and/or more data become available, the dataset progresses from binary class to
multi-class, having more labels of sub-categories of the disease added. In machine learning, inducing
a multi-class model requires more computational power. Model optimization is enforced over the
multi-class models for the highest possible accuracy, which of course, is necessary for life-and-death
decision making. This model optimization task consumes an extremely long model training time. In this
paper, a novel strategy called Group-of-Single-Class prediction (GOSC) coupled with majority voting
and model transfer is proposed for achieving maximum accuracy by using only a fraction of the model
training time. The main advantage is the ability to achieve an optimized multi-class classification model
that has the highest possible accuracy near to the absolute maximum, while the training time could
be saved by up to 70%. Experiments on machine learning over liver dataset classification and deep
learning over COVID19 lung CT images were tested. Preliminary results suggest the feasibility of this
new approach.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Medical data are usually collected over time, and the data
chema might have evolved from data that are composed of
imple to refined categories. For example, when medical records
bout cancer disease were initially collected, they may only be
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labeled either benign or malignant in the simplest form. As med-
ical knowledge about the disease advances by medical discovery
or better electronic patient record technology becomes available,
the features in the dataset expand from embracing binary class
to multi-class. More labels of sub-categories of the disease are
added accordingly. However, the same complex data are made up
of several classes of data, putting together as a multi-class dataset.
This multi-class dataset is possible to be decomposed back to
several subsets, each of which only contains certain binary classes
of data.

What factors should be considered when determining whether
to use multiple binary classifiers or one multiclass classifier for
such data in medical informatics? Perhaps creating a complex

multiclass classifier is not the best option. Alternatively, if we
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Fig. 1. Multiple one-versus-all binary-class classifiers.

ant multiple binary classifiers to work together, a general strat-
gy is similar to the One-vs-All set. In One-vs-All, you essentially
ave an expert binary classifier that is really good at recognizing
he pattern from everyone else, and the implementation strategy
s usually cascading. For example, we could have a quatro-class
lassification model with classes Normal, Class A, Class B, and
lass C. Fig. 1 shows an illustration of a One-vs-all example:
One approach is to build a model that does multi-category of

isease classification. In a very simple example, there are four
utputs from a disease classifier:: [None, Class A disease, Class
disease, Class C disease]. There are two ways to approach this:
ne option uses a multi-class classifier.
Multi-class classifier: [None, Class A disease, Class B disease,

lass C disease]
Another option is to use multiple binary classifiers such as

ollow:
Single-classifier A: [None, Class A disease]
Single-classifier B: [None, Class B disease]
Single-classifier C: [None, Class C disease]
Distinguishing which is a better option and in which condition

he option works better is not easy. Multi-class classifiers have
he following advantages and disadvantages. The advantages are:
asy to use out of the box since there is only one model to
eal with, and is convenient when you have many classes in
he dataset. The disadvantages are usually slower than binary
lassifiers during training; they could really take a while to con-
erge for high-dimensional problems. Some popular multi-class
lassifiers are Tree-based algorithms and artificial neural network
ype of algorithms.

.1. Motivation

One-vs-All classifiers’ advantages and disadvantages are as
ollow. The advantages are simplicity and fast convergence are
sually resulted from binary classifiers. It is good and perhaps
ransparent pertaining to interpretable or explainable AI that is
ood to have a handful of individual classifiers that offer the
robability of how the prediction of classes comes about. How-
ver, the disadvantages may be cumbersome to deal with when
ou have too many classes unless a systemic model is available.
raining individual classifiers over subsets of data may lead to
lass imbalance-related problems that lead to bias, e.g. if you have
large number of samples of none and few samples of a particular
isease type, or vice-versa. Some popular methods are most en-
emble methods, support vector machines and pruning-enabled
ree algorithms that trim off tree branches biased towards a
ajority class.
In One-vs-All, you essentially have an expert binary classifier

hat is good at recognizing one pattern from all the others, and
he implementation strategy is typically cascaded.
11
Although the one-vs-all classification concept has been around
for some years, it did not gain the popularity as deserved, prob-
ably due to some cons. The limitations that we observe from
one-vs-all and the corresponding solutions we propose are as
follows.

1.2. Contribution

A novel strategy called Group-of-Single-Class prediction
(GOSC) coupled with majority voting and model transfer is pro-
posed for achieving optimally maximum accuracy at only a frac-
tion of the required long training time. The main advantage
is the ability to achieve an optimized multi-class classification
model that has the highest possible accuracy near to the absolute
maximum, while the training time could be minimized.

Since many individuals and independent binary-class classi-
fiers are hard to handle, a solution is to have an ensemble-like
methodology to harness a collection of expert binary-class clas-
sifiers. This is the principle of Group-of-Single-Class prediction
(GOSC). Each expert binary-class classifier delivers a single-class
SC prediction, with probability scores and resulting rules explain-
ing the outcomes. The final prediction is inferred by majority vot-
ing, which logically evaluates and selects the most probable result
from the most reliable model. A reliable model is deemed one
with high composite performance over several essential indica-
tors such as accuracy, kappa, false-alarm rate, balanced precision
and recall, etc.

Furthermore, after optimization, each SC classifier (SCC) shares
and copies its best model configuration within the GOSC frame-
work. The best model configuration of a SCC would be transferred
to the construction of a multi-class classifier. This is similar to
transfer learning in deep learning terminology. It helps spare the
time-consuming model optimization for the multi-class classi-
fier. As a result, the users can opt to use either a near-optimal
multi-class classifier or majority voting of a group of SCC’s. This
novel methodology is suitable for medical informatics based on
the assumptions that medical records are built over time, from
binary-class to increasingly complex multi-class add-ons.

The remainder of this paper is organized as follows. The re-
lated work in Section 2 reviews similar one-vs-all classification
examples that have been applied prior and followed by our pro-
posed methodology, namely GOSC in Section 3. The experiment
is conducted and described in Section 4. The discussion of the
experiment results is presented in Section 5. Section 6 concludes
the paper.

2. Related work

Related works to the aspects of the growth of complexity in
medical data, hence the motivations of this research, and some
background of transformation from multi-class to binary class
classifiers are reviewed in this section.

As the electronic Health Record technology matures, the com-
plexity of the data grows in several directions. Developments
of new clinical cases enable more data features to be added in
describing the data. The increasing ease and advances of data
collection and big data archiving techniques give rise to data
volume. Cloud computing and online platforms enable PACS to
fuse multiple data sources more easily than ever. For exam-
ple, [1] reported multiple sources of data could be successfully
aggregated onto a patient-centric health data-sharing platform.

Given the abundance of health data and disease-related data
that grow in increasing complexity, scientists are eager to get on
mining them for insights and discovery and building predictive
models over the data for classification. A lot of research efforts
were focused on single disease analysis. A great deal of machine
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earning was applied to analyze the data about a single disease.
ddin et al. [2] compared the performance of single disease
rediction using a range of supervised machine learning algo-
ithms. Ding et al. [3] investigated machine learning algorithms
or predicting individual diseases. Nguyen et al. [4] proposed a
pecial machine learning network model for predicting whether
reast cancer will relapse or not, focusing on only a single disease
nd binary outcome.
Moreover, research progresses towards finding the relations

nd risks of how certain diseases might have occurred together in
he same data record. Multi-label classification gained popularity,
xpanding the single horizon of a particular to considerations
f multiple diseases or symptoms that simultaneously show up,
.g., a heart attack is associated with blood pressure, hyperten-
ion, obesity, healthy diet and diabetes, etc. Another complexity
s a multi-class model that is built on data that encompasses
ultiple classes. The prediction target is not merely binary but
pans several possible classes. This usually gives a more pre-
ise classification assessing which exactly is the characteristic or
everity level of disease. For example, in cancer staging, there are
our major levels, ranging from stage 0 that is a healthy body, to
tage 1, where the cancer cells are small and confined in a small
rea, to stages 2, 3 and 4, which eventually spreads to other parts
f the patient’s body. Bayati et al. [5] invented an inexpensive
ethod for multiple disease prediction.
Multi-class Classification (MCC) classifies the testing data into

ore than two classes, e.g., class A, class B and class C. Each data
s labeled to one and only one class by MCC. Data can be classified
nto one of the classes A, B, or C, but at the same time cannot be
oth.
In the medical domain, numerous researchers report on pre-

icting or analyzing the likelihood of having a single disease
t a time. For diabetes analysis, Neuvirth et al. [6], Shivakumar
t al. [7] and Yeh et al. [8] built models that classify a disease by
he presence or absence of the disease. Likewise, for predicting
he presence of cerebrovascular disease, the same type of mod-
ls was constructed [8,9]. Typically, binary classification takes
are of the predictions of single diseases. Nevertheless, several
elated diseases may simultaneously occur where binary classifi-
ation is insufficient to handle multiple classes effectively. Runzhi
t al. [10] attempted to use an ensemble multi-label classification
odel for predicting the risks of multi-diseases from physical
xamination records.
In millennia, Allwein et al. [11] were pioneers in unifying

rom several simple classifiers into a multi-class classifier ca-
able of handling multiple binary problems. The experimental
esults prove that their method offers a feasible alternative to
he commonly used multi-class models, giving rise to the pop-
lar adoptions of support vector machines and AdaBoost. Dong
t al. [2] extended the idea to a tree structure of nested hier-
rchical that replaces a multi-class model of multiple classes by
ndividual binary-class models. The method generated random
artitions of ensembles of sampling trees, and it is proven to be an
ffective approach in lieu of a multi-class model. The researchers
lso managed to fix the unbalanced binary class problems over
he fact that the partitioned data may contain too much class-
rrelevant data and too few class-specific data. Galar et al. [3] has
xtensively tested such concept of simplifying a multi-class to a
umber of binary-class models, calling them one-versus-one and
ne-versus-all, etc.
Galar and his team tested a number of popular machine learn-

ng algorithms from the literature, such as decision tree, SVM,
BL and rule-based methods. The results show the binarization
pproach, which decomposes a multi-class model to multiple
inary-class models, has certain benefits. The results are ver-

fied by statistical significance analysis. It was found that the

12
Fig. 2a. A traditional multi-class prediction methodology.

obust techniques include J48 (decision tree), JRip (rule-based
ethod) and SVM have significant advantages when the multi-
lass problem is turned into binary-class models. But instance-
ased learning technique like kNN has little difference.
Fürnkranz [12] compared the one-versus-one decomposition

echniques with respect to the suitability of decision tables and
ecision trees. The comparison is against popular ensemble meth-
ds such as bagging and boosting and bagging. The results in-
icate that an appropriate method for combining the outputs is
eeded to achieve performance improvement using confidence
stimates.
Based on the relevant literature, it is confirmed that the prior

orks have shown breaking down a complex multi-class classifier
nto the binary class classifier. The advantage is observed from
onverting a single multi-class model into a group of binary-
lass models. However, the extent of advantages varies from
lgorithm to algorithm. We are inspired to assure the perfor-
ance of grouping up binary-class models and using them as if

hey are one multi-class classification model. Another way is to
alance the imbalanced class data after decomposition, just as
he same problem was fixed in [2]. It is known that choosing
he right parameters is crucial to which model performance is
ensitive [13,14]. In light of ensuring a good level of accuracy for
classification model or algorithm, one aspect is to get the model
arameters optimized, which are able to maximize the model
erformance. Hence, this becomes a motivation in this study to
mbrace parameter optimization as a part of an investigation of
odel binarization.

. Proposed methodology

Extending from Galar et al. [3], a methodology based on a
roup-of-Single-Class prediction (GOSC) plus certain modifica-
ions are proposed. A traditional multi-class prediction method-
logy, in Fig. 2a works by supervised learning a model from a
raining dataset that consists of multiple classes. Like a standard
upervised learning process, the dataset of multiple classes is
oaded into an induction process where training and validation
ccur, learning a model over the data. Once training is done, the
odel becomes mature, this multi-class classifier (MCC) is ready

or making predictions by loading in some unseen testing data.
By the design of the GOSC methodology, the model induction

nd testing process is expanded to three layers, as shown in
ig. 2b. Firstly the full training dataset is split by the classes,
artitioning it into multiple training datasets. Each has a group
f data associated with a particular class label. The individual
ubset of data of a single class that has binary labels (existence
f a particular disease versus non-existence of that disease) is
sed to train a single binary-class classifier. The number of single
inary-class classifiers is equal to the number of classes. Prior to
hese binary-class classifier trainings, the data subset that is often
mbalanced will be subject to rebalancing, using resample and/or
MOTE [15].
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Fig. 2b. The framework of Group-of-Single-Class prediction methodology.

Each of the individual binary-class classifiers is subject to
ross-validation parameter optimization called CVParameterSelec-
ion [16]. It performs parameter selection by cross-validation to
ind a set of parameters that give the best performance. It is
nown that optimal parameters yield optimal model configu-
ation, therefore optimal performance for a classifier [17–19].
owever, the searching process is tedious and time-consuming,
specially if it were to be done by trial-and-error manually.
VParameterSelection selection function automates the search by
esting out users‘ specified ranges of parameters that contribute
o the base classifier’s model setup. After the classifier model
s optimized and the optimal parameters are found, the new
odel is ready for subsequent predictions. The level of prediction
ccuracy is supposed to improve as well [20].
With a group of binary-class classifiers optimized and ready

o predict, a majority voting mechanism [21] is applied at the
rediction phase. The full framework of the Group-of-Single-Class
rediction methodology is shown in Fig. 2b.
Majority voting is a typical ensemble machine learning that

ses a group of binary-class classifiers instead of an MCC [22].
or predicting a continuous future variable, such as forecasting or
egression, the output from a voting ensemble will be the mean
f the predicted results from the group of prediction models [23].
For classifying samples into discrete labels, as in our case

f medical disease classification, a hard majority voting (MV)
ethod is used [24]. The hard MVmechanism collects the outputs
f all the binary-class classifiers, each classifier votes for a partic-
lar class. Hard MV collects the votes and selects a winning class
ith the most votes as the final prediction outcome. When two
r more votes are in stalemate, the tie is broken by judging from
he classifiers’ accuracy performance. The one that has the highest
evel of accuracy has the winning vote. The predicted probabilities
or classes are summed up.in the soft MV method [24]. Then
t predicts the winning class to which the sample should be
lassified by the class with the largest sum probability. Users
ould optionally choose between hard or soft MV methods to
andle the group voting and make collective predictions from the
ndividual binary-class classifiers.

One innovation in our methodology is the model transfer tech-
ique. The model transfer is referred to the concept of copying
he optimal parameters from the best performing binary-class
lassifiers to the multi-class classifier prior to its training [25].
he motivation is to speed up the whole training process for
CC, which includes parameter optimization, model construction
nd n-fold cross-validation. The parameter optimization times
re known to be extremely long for the multi-class model. In
ontrast, the parameter optimization times for binary-class clas-
ifier is much shorter. The imbalanced data due to splitting the
13
Fig. 3a. The workflow of Group-of-Single-Class prediction methodology — Part
one, when MCC is not needed.

original training sets into subsets of binary-class data need to be
rebalanced. It is an important criterion to produce a good quality
well-trained binary-class model, which contributes to produc-
ing good optimization results in optimal parameters. The model
transfer concept is similar to transfer learning in deep learn-
ing [26], where the initial configuration of a model is pre-trained
from something else which was trained with similar domains
(e.g. pre-training object recognition of a cat prior to transfer
learning the model configuration to recognition of a lion). In our
methodology, the model transfer is about finding the key model
parameters that are influential to the machine learning model
performance, from the binary-class classifier to the MCC.

The working logic of this proposed GOSC methodology is
shown in two parts in Figs. 3a and 3b, respectively. There are
two options of operations by the GOSC methodology. In general,
the two options share the same initial tasks, such as generating
split data subsets according to each of the existing binary classes.
Rebalance the majority and minority class data if necessary. Train
and optimize each individual binary-class classifier. Record the
time performance as well as the model training performance in
accuracy and other related performance measures. If an ultimate
MCC is not required, perform majority voting, soft or hard, by
choice of the user, and obtain the voting result as the final
prediction result. The logic is depicted in Fig. 3a. If an MCC is
required for subsequent predictions, as shown in Fig. 3b, a candi-
date binary-class classifier with the highest prediction accuracy
is nominated for model transfer. Its optimized model parameters
are copied to the initial configuration of MCC. Thereafter, the MCC
is used directly in subsequent prediction without going through
a tedious and long parameter optimization process.

4. Experiment

Two experiments are carried out to validate the concept of
GOSC prediction. The first experiment involves using a tradi-
tional two-dimensional structured dataset with 70 columns of
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Fig. 3b. The workflow of Group-of-Single-Class prediction methodology — Part
wo, when MCC is needed.

Fig. 4. Belief network of an earlier attempt on HEPAR data.

features that characterize 1000 rows of features. The last column
of the dataset is the class categories to which the data map to in
classification. There are four class labels in the dataset: normal,
carcinoma only, and carcinoma-jaundice. The dataset comes from
a physician’s donation9 to the HEPAR project [27], run by the
Institute of Biocybernetics and Biomedical Engineering of the
Polish Academy of Sciences in collaboration with doctors from the
Medical Center for Postgraduate Education. The HEPAR system
contains a database of medical records of the gastroenterology
clinic of the Warsaw Institute of Nutrition. The data has 70
nominal attributes and 10,000 case histories. The presence or
absence of symptoms for 70 signs determines whether a patient
suffers from liver disease. An earlier attempt was made to build
a causal network based on HEPAR, shown in Fig. 4. It could be
seen how the attributes have causal relations with one another
and with the predicted target as well.

This dataset represents a typical scenario of medical data
ollection — it started with basic classification between normal
nd carcinoma. Results of further tests are fused to the data,
14
Fig. 5. A sample from each of the three classes of X-ray images.

efining the data with an extra category of carcinoma-jaundice.
f course, these three categories could be extended to more and
eeper sub-categories if needed in the future. This illustrates
n example of how GOSC could be applicable in boosting the
rediction performance when multi-class medical data are dealt
ith appropriately.
The second dataset came from Kaggle [28]. The dataset carries

hree classes, each class of images are labeled as normal, infected
y bacteria and infected by virus. The images are loaded into a
eep learning network powered by Darknet, running on Google
olab GPU environment for training the network. One deep neu-
al network trained as expert SCC for each class of X-ray images.
ne multi-class network is trained too, which should be able to
ecognize and distinguish three classes of images during testing
he unseen. A total of four deep neural networks are trained;
ne is for classifying three classes as a multi-class classifier, and
hree networks as SCCs recognizing only their respective class
f images. Fig. 5 shows a sample of these three types of X-ray
mages.

The objective of this experiment is twofold. We need to show
hat our GOSC works equally well on conventional structured
edical datasets using popular machine learning algorithms and
-ray images using convolution-style deep learning, one of the
ost current medical imaging prediction methods. The other
bjective is to investigate how the training pattern in the perfor-
ance curve of training error versus epoch behave in multi-class
lassification combining the recognition powers of three classes
n one model compared to a single expert SCC recognizing an only
lass of disease ignoring the rest. Intuitively, training a multi-
lass convolution neural network is more difficult and complex
han training a binary-class network. Once this investigation is
ompleted and the hypothesis is established, subsequent studies
ould be on transfer learning in terms of model parameters
ransfer (like how GOSC advocates) in sequel experiments.

On the other hand, the HEPAR liver cancer dataset will be
sed to test GOSC thoroughly. The dataset is first divided into
ubsets such as a full dataset, the dataset that contains instances
f normal and carcinoma-only, and the dataset that contains
nstances of normal and carcinoma-jaundice. The full dataset
aturally and originally consists of instances of the three classes:
ormal, carcinoma-only, carcinoma-jaundice in the last column
f the data matrix. Each data subset constitutes a correspond-
ng model, known as a multi-class model, binary class model 1
carcinoma-only) and binary class model 2 (carcinoma-jaundice)
or short naming.

All three classification models in our experiment will be sub-
ect to model optimization. For simplicity, only the two most
mportant model parameters will be optimized to the appropriate
alues, giving rise to the highest accuracy after optimization.
wo-level iterating loops are used to try through the parameter
alues of the two variables in a wrapper fashion. In each iteration,
wo candidate values from the testing parameters are used to
uild a trial model and its accuracy will be measured in three-fold
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ross-validation. This optimization process is simplest but takes
very long time to loop through combinations of variable values

n building, evaluating, and discarding candidate models. This
ptimization guarantees the best parameter values, thus the best
odel setup for any given dataset with a given machine learning
lgorithm. However, in the case of a multi-view classification
odel, such optimization will take a significantly long time. One
f the advantages of GOSC is to eliminate the optimization run
n multi-class classification. Instead, finding the right model pa-
ameters from its peers — those SCCs from the subsets of the
ull dataset, and transfer over the values of the parameters from
he best performing optimized SCC to the multi-class classifier,
ithout running the optimization from the full dataset for the
ulti-class classifier.
A collection of representative machine learning algorithms is

ested in the experiment. They are two algorithms belonging to
ree-based classification — J48 [29], an implementation of Clas-
ification and Regression Trees in Java and SPAARC [30], known
s a fast decision algorithm. Two algorithms belong to rule-
ased classification — JRip, which is a propositional rule learner
tands for Java Repeated Incremental Pruning to Produce Error
eduction (RIPPER) [31] and a decision list that uses separate-
nd-conquer (PART) [32]. A classical black-box model by multiple
erceptrons [33] is used too. The machine learning algorithms are
pen-source codes developed by scholars, available on Weka —
aikato Environment for Knowledge Analysis, a machine learn-

ng software suite is written in Java developed at the University
f Waikato, New Zealand. It is free software licensed under the
NU General Public License.
Five performance evaluation criteria are considered here. They

re accuracy, kappa, ROC, FP and time cost. Accuracy is the
ercentage of correct classifications. Cohen’s kappa coefficient (κ)
s a statistic that measures the agreement between evaluators
n qualitative (categorical) items. Generally, it is considered to
e a more robust measure than simple accuracy in data mining,
hich is simply the number of correctly classified data over the
otal. Kappa is sometimes taken as a reliability measure for a
ata mining model. ROC is sometimes known as the AUC-ROC
urve in full. AUC (Area Under the Curve) ROC (Receiver Operating
haracteristics) curve. It is one of the most important metrics for
esting the effectiveness of any classification model. ROC is the
robability curve and AUC is the degree or measure of separabil-
ty. This indicates how well the model can distinguish between
lasses. The higher the AUC, the better the model predicts that 0
s 0 and 1 is 1. Similarly, the higher the AUC, the better the model
an distinguish between diseased and non-diseased patients. The
OC curve is drawn using the ratio of TPR to FPR, where FPR
s on the x-axis and TPR is on the y-axis. TPR (True Positive
ate)/ Recall/Sensitivity = TP/(TP+FN). Specificity=TN/(TN+FP).
PR=FP/(TN+FP). In general, an AUC of 0.5 suggests no discrim-
nation (i.e., ability to diagnose patients with and without the
isease or condition based on the test), 0.7 to 0.8 is considered
cceptable, 0.8 to 0.9 is considered excellent, and more than 0.9
s considered outstanding. FP is FPR as above, known as false
larm rate. The higher it is, the more falsely detected cases as
ositive, which are negative.. Cost of time is the number of CPU
econds required to create or update a machine learning model in
ata streams. Accumulated time is the total spent on all training
nstances. Hardware platform — MacBook Pro with 2.9 GHz Intel
ore i5 processor and 8 GB LPDDR3 at 2133 MHz.
The experiment results are charted as bar charts in Figs. 6–

1, respectively. The machine learning modelIn performance with
espect to each of the five indicators (accuracy, kappa, ROC,
P and time cost) for each model induced by each of the five
lgorithms are compared vis-à-vis over four approaches within
he framework of GOSC — (1) original where default model pa-
ameters are used without any optimization; (2) full optimization
15
Fig. 6a. Accuracy comparison of models by Decision Tree — J48.

Fig. 6b. Accuracy comparison of models by Decision Tree — SPAARC.

Fig. 6c. Accuracy comparison of models by Rule-based Model — PART.

which runs through two-loops-of-iterations for the best pairs of
parameters values; (3) model enhancement by taking up the best
parameters values that were found from one of the SCCs, and (4)
model enhancement by copying over the best parameters values
that were found from the other SCC.

Figs. 13 and 14 show the deep learning errors in RMSE curves
on the logarithmic scale during the model construction process,
in terms of current errors and average errors, respectively.

5. Results discussion

Observing over the experiment results from Figs. 6–9 clusters
of graphs on various performance indicators (accuracy, kappa,
ROC and FP), some significant remarks are listed as follow:

1. In general, parameter optimization enhances a model result-
ing in better performance than the original model in all cases.

2. Full parameter optimization on a multi-class model of-
ten generates the best performance, which can be taken as a
comparative benchmark.

3. The performance of the multi-class model by any one of the
model transfers is close to (and slightly less than), which by full
parameter optimization at around 9%.
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Fig. 6d. Accuracy comparison of models by Rule-based Model — JRip.

Fig. 6e. Accuracy comparison of models by Black-box Model — Neural Network.

Fig. 7a. Kappa comparison of models by Decision Tree — J48.

Fig. 7b. Kappa comparison of models by Decision Tree — SPAARC.

4. The performances of the multi-class model by the possible
model transfers may not always be equal, except for J48 and
PART. These two classifiers use information gain as a node se-
lection criterion in common. In an artificial neural network, one
of the model transfers is better than the other, different by less
than 9%, close to and slightly lower than full optimization by
approximately 4.1%.

5. For algorithms PART and SPAARC, there is a very significant
improvement using parameter optimization. The performances
 m

16
Fig. 7c. Kappa comparison of models by Rule-based Model — PART.

Fig. 7d. Kappa comparison of models by Rule-based Model — JRip.

Fig. 7e. Kappa comparison of models by Black-box Model — Neural Network.

Fig. 8a. ROC comparison of models by Decision Tree — J48.

y full and model transfer optimizations are very close too. There-
ore, it suggests that model transfer is quite a feasible solution to
rim down the optimization time while significantly enhancing
he prediction performance.

6. By the designs of the algorithms, JRip and artificial neural
etworks are relatively strong and stable models. However, opti-
izing the parameters helps marginally increase the performance
ompared to the other algorithms under test. In other words,
hese two algorithms do not showmuch improvement when their
odel parameters are optimized. For example, in Fig. 9d, the
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Fig. 8b. ROC comparison of models by Decision Tree — SPAARC.

Fig. 8c. ROC comparison of models by Rule-based Model — PART.

Fig. 8d. ROC comparison of models by Rule-based Model — JRip.

Fig. 8e. ROC comparison of models by Black-box Model — Neural Network.

false-positive rates for JRip are very similar between optimized
and otherwise models.

7. For binary-class models, copying the parameters that have
been optimized from another binary-class model produce similar
but less perfect performance compared to its own optimization.
But it still outperforms the original model without optimization
at any rate.
17
Fig. 9a. FP comparison of models by Decision Tree — J48.

Fig. 9b. FP comparison of models by Decision Tree — SPAARC.

Fig. 9c. FP comparison of models by Rule-based Model — PART.

Fig. 9d. FP comparison of models by Rule-based Model — JRip.

As a concluding remark, a full parameter optimization yields
the best performance; however, it could be replaced by the model
transfer method as there shows little difference between full and
model transfer optimizations.

While known as time cost, the timing performance for each
experiment run is measured from the beginning of model con-
struction to the end. That excludes multi-fold evaluation time.
It can be seen from Figs. 10a–10e where that full optimization
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Fig. 9e. FP comparison of models by Black-box Model — Neural Network.

Fig. 10a. Time comparison of models by Decision Tree — J48.

Fig. 10b. Time comparison of models by Decision Tree — SPAARC.

is always the most time-consuming approach. The difference
between a model being optimized and original could be up to 100
folds, as in Fig. 10d for JRip. On the bright side, the time taken for
model construction by using model transfer is always much lower
than that for full optimization. This proves that it is possible to
use model transfer in lieu of full optimization to achieve on-par
performance at only a fraction of the time cost.

In Figs. 11 and 12, the five performance indicators are stretched
over radar charts over the five testing algorithms in vertices. The
results are shown in marginal percentage gains with respect to
the performance improvement using model transfer optimization
over the original model without any optimization. In Fig. 11, it
can be clearly observed that algorithms such as artificial neural
18
Fig. 10c. Time comparison of models by Rule-based Model — PART.

Fig. 10d. Time comparison of models by Rule-based Model — JRip.

Fig. 10e. Time comparison of models by Black-box Model — Neural Network.

networks and JRip only have marginal performance increases in
control of the other three algorithms. Decision tree SPPAARC has
the greatest gain when model transfer optimization is used, in
all the accuracy, kappa and ROC. The runner-up algorithms, J48
and PART, show the same. In particular, Kappa has gained the
most compared to Accuracy and ROC using optimization. That
means the models have become more reliable, being able to
generalize well. In Fig. 12, the results of false-positive rate and
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Fig. 11. Radar chart of performance indicators comparison of Accuracy, Kappa
and ROC.

Fig. 12. Radar chart of performance indicators comparison of False Positive Rate
and Time cost.

Fig. 13. Current error curves for deep learning models of four types.

ime costs are laid over the radar chart of five algorithms. Again,

he two stable algorithms, artificial neural networks and JRip have
19
Fig. 14. Average error curves for deep learning models of four types.

ittle performance gains in false-positive rate. J48, SPAARC and
ART, which are largely decision tree-based algorithms, greatly
educed false-positive rates. Ironically, JRip has the greatest gain
n reducing the time up to almost 700% when it comes to time
ost-saving. Artificial network networks and PART also have a sig-
ificant reduction in time cost when model transfer optimization
s used. In contrast, J48 and SPAARC have already been quite fast
n model construction, with little time cost gain and optimization.
n summary, false-positive rates are lowered by approximately
00% for tree-based algorithms, and time cost is hugely saved for
Rip as well as neural network and PART when transfer model
ptimization is used.
GOSC is also tested on deep learning models of several types.

ccording to the given COVID19 lung infection dataset, four deep
earning model trainings were set up. Each model is trained with
particular dataset of various classes. The single class models are
rained with datasets with only individual classes, i.e., single-class
ormal, single-class bacteria, and single-class virus. The multi-
lass model is trained with the dataset containing all three classes
normal, bacteria and virus.
In deep learning, it is anticipated that error curves descend

harply in the early period of epochs. Then the curves decay to
quilibrium as the errors continue to drop at a decreasing rate.
n Fig. 13, it is observed that the error curve of the multi-class
odel has the least error relative to the single-class models at

he early descend. However, the curve of the multi-class model
emains higher than the rest of the error curves of the other
ingle-class models. This observation indicates two phenomena:
he model is learned better when multi-class training data are
vailable than to single-class monotonous training data. Secondly,
he multi-class model finds it hard to converge to a very low
teady-state error rate in the period of curves decay. In contrast,
he single-class models decay sooner than the multi-class model
nd have lower error rates than the multi-class model. It is due
o the complexity of the multi-class learning and the data. The
atter phenomenon essentially hints that the operation involved
n multi-class learning takes longer than single-class learning. The
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omplexity infers that a full optimization (which is organic to
ultiple executions of learning in search of the right parameters)
t a multi-class model will be at high costs, in terms of time and
ifficulty to attend a reasonable low error rate. On the other hand,
single-class model can achieve it relatively more easily. This

mplies it is potentially possible and feasible to use model transfer
opy under GOSC methodology to enhance the multi-class model
nd save time on model parameter optimization. It is noted
hat GOSC methodology would not only be applicable in medical
omain. Other domains such as speech recognition, computer
etwork load balancing, and remote health monitoring, where
upervised learning is the most focused, would be benefited by
OSC.

. Conclusion

A novel computing methodology called Group-of-Single-Class
rediction (GOSC) coupled with majority voting and model pa-
ameter transfer is presented in this paper. GOSC is for attaining
ptimally high (or near best) accuracy for multi-class classifi-
ation, using the model transfer method from the binary-class
odel, which is lighter and much quicker than full optimization.
he binary-class model is built on the same training dataset as
he multi-class model. Two sets of experiments were conducted,
ne on a structured two-dimensional data matrix with instances
bout patients who might have liver carcinoma and other com-
lications. The other dataset is a collection of X-ray images of
hree groups of normal patients, who are suffering from lung
neumonia infected by bacteria, or who are infected by virus. The
atasets are made into multi-class and binary-class compatible
or experiments. Having both data types representing electronic
edical records in the two most popular formats in our exper-

mentation, GOSC was tested, and the results were satisfactory.
ecision tree types of classifiers gained up to 4.2% for SPAARC and
.9% for J48 and PART. Their false positive rates are primarily re-
uced by 31.7% for J48 and around 28% for others. Kappa statistics
ould be interpreted as generalization ability upon testing unseen
ata. Generally, there is improvement using GOSC from 4.6% to
.7% except for JRip and artificial neural networks that hardly can
each up to 1%. They are quite stable with little improvement
n accuracy in kappa. However, they gain the most from time-
ost. While J48 and SPAARC, which are the tree-type classifiers,
ained 9.9% in saving time in model optimization. In contrast,
Rip and artificial neural networks gained as high as 68.2% and
4.3%, respectively. Overall, GOSC via simulation experimentation
s shown to achieve an enhanced prediction performance to an
lmost generally, aximum extend by using the model transfer
ethod instead of full optimization. In all cases, GOSC shows its
dvantages in terms of maximizing the performance without a
ery high time cost. As future works, more medical records are
o be tested, and full transfer learning, including hyperparameter
ptimization with GOSC for convolution neural networks, is to be
mplemented and tested.
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