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Abstract

Purpose – The purpose of this paper is to present a neural network approach to control performance
assessment.

Design/methodology/approach – The performance index under study is based on the minimum
variance control benchmark, a radial basis function network (RBFN) is used as the pre-whitening filter
to estimate the white noise sequence, and a stable filtering and correlation analysis method is adopted
to calculate the performance index by estimating innovations sequence using the RBFN pre-whitening
filter. The new approach is compared with the auto-regressive moving average model and the
Laguerre model methods, for both linear and nonlinear cases.

Findings – Simulation results show that the RBFN approach works satisfactorily for both linear and
nonlinear examples. In particular, the proposed scheme shows merits in assessing controller
performance for nonlinear systems and surpasses the Laguerre model method in parameter selection.

Originality/value – A RBFN approach is proposed for control performance assessment. This new
approach, in comparison with some well-known methods, provides satisfactory performance and
potentials for both linear and nonlinear cases.

Keywords Control technology, Performance appraisal, Analysis of variance, Correlation analysis

Paper type Research paper

1. Introduction
In a typical process industry facility, lots of control loops often make it difficult and
time-consuming to keep all of them operating satisfactorily. Many factors can
contribute to the poor performance of control loops, such as inadequate controller or
inappropriate control structure, equipment malfunction, and unmeasured disturbances
change. Therefore, it is necessary to find out an important tool for control engineers to
detect which control loops need to be paid attention to, and also necessary to find out
which of them causes this poor performance and diagnose the underlying problem.

The performance of an existing control loop is often measured against some types of
benchmarks, such as offset from setpoint, overshoot, rise time, and variance. For
regulatory control, the variance of output is an important performance measure since
many process and quality release criteria are based on variance. The key point is that
the minimum variance (MV) benchmark (as a reference performance bound) can be
estimated from routine operating data without additional experiments, provided the
system delay d is known (or can be estimated with sufficient accuracy). Harris (1989)
firstly showed that the theoretical lower bound of closed-loop output variance can be
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estimated from routine closed-loop operating data, and an important feature of the
method is that it is not necessary to perturb the routine operation of the process with
extraneous test signal. The celebrated MV-based performance index has been
suggested by Harris (1989), and thus is also referred to as the Harris index. The
underlying principles originate from the work by Åström (1970) and Box and Jenkins
(1970), who established the theory of minimum-variance control and DeVries and Wu
(1978), who used these ideas for performance assessment. Desborough and Harris
(1992) connected the Harris index to the squared correlation coefficients usually
calculated in multiple regression analysis. Lynch and Dumont (1996) reported the use
of Laguerre network to model the closed-loop system in order to estimate the MV
control for controller performance monitoring. Eriksson and Isakson (1994) gave some
aspects of control loop performance monitoring for not stochastic control scheme.
Huang et al. (1997) developed an efficient, stable filtering and correlation (FCOR)
analysis method to estimate the MV benchmark. Some other excellent work on control
loop performance assessment can be found in reviews by Harris et al. (1999), Qin (1998),
Huang and Shah (1999), Jelali (2006) and Wei et al. (2008).

In recent years, many control performance assessment methods for linear process
have been reported; unfortunately, there are few approaches for the nonlinear cases.
When extending the methodology of linear system performance assessment to
nonlinear systems, still, there are many challenges in model determination and
parameters estimation. Chen et al. (1990) presented the development of nonlinear MV
controllers for processes that admit a nonlinear ARMAX representation. Bittanti and
Piroddi (1993) gave a MV control for nonlinear plants with neural networks. Harris and
Yu (2007) used Volterra series approximation for estimation of the MV bounds for a
class of nonlinear systems.

Following the idea in Harris and Yu (2007) for a class of nonlinear systems with
feedback-only schemes, we propose a neural network approach for controller
performance assessment. In Section 2, a SISO process description is first given and the
controller performance index based on MV control benchmark is illuminated. FCOR
principles and different whitening methods including the RBFN are described in
Section 3. In Section 4, the proposed approach is tested and compared with several
typical methods through numerical simulations for both linear and nonlinear
examples. The paper is concluded with some future considerations in Section 5.

2. Description of process and performance assessment index
2.1 Description of SISO linear process and MV control benchmark
In what follows, a SISO process under regulatory control as shown in Figure 1 is
considered, where yt is the process output, ut is the process input, at is a white noise
with zero mean and constant variance s 2

a, d is the time delay, Gu is the delay-free plant

Figure 1.
SISO process regulation
with feedback-only
schemes
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transfer function, Ga is the disturbance transfer function, and can be represented by
auto-regressive moving average (ARMA) time series model, Gc is the controller transfer
function. The process model can be written as:

yt ¼ Guut þ Gaat; ð1Þ

where Gu is the control channel transfer function, which usually has the following
form:

Gu ¼ q2dGu: ð2Þ

For any discrete system, d is always larger than 1. Such a decomposition of Gu will help
us identify how much process noise we are not able to eliminate. This part of noise is
directly related to MV, and what is more important, this MV is invariant to controller
design.

When a linear time invariant feedback controller is used to regulate the output
around a fixed zero setpoint by Gc:

ut ¼ 2Gc yt: ð3Þ

Then in Figure 1, the closed-loop output yt turns to be:

yt ¼
Ga

1 þ q2dGcGu
at: ð4Þ

Decomposing Ga into two parts using Diophantine identity gives:

Ga ¼ f 0 þ f 1q
21 þ · · · þ f d21q

2dþ1 þ Rq2d ¼ F þ Rq2d: ð5Þ

Then equation (4) can be written as:

yt ¼
Ga

1 þ q2dGcGu
at ¼ Fat þ

R2 FGcGu

1 þ q2dGcGu
q2dat ¼ Fat þ Lat; ð6Þ

where fi are impulse response constant coefficients, R is the remaining rational proper
transfer function, and Fat ¼ ð f 0 þ f 1q

21 þ · · · þ f d21q
2dþ1Þat is the portion of MV

control output independent of feedback control, L is a proper transfer function.
When the MV control benchmark is used, and since the two terms on the right hand

side of equation (6) are independent, the variance of the output can be expressed as:

varð ytÞ ¼ varðFatÞ þ varðLat2dÞ $ varðFatÞ: ð7Þ

The equality holds if L ¼ 0, i.e.:

R2 FGcGu ¼ 0; ð8Þ

which yields the MV control law:

Gc ¼
R

FGu
: ð9Þ
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2.2 MV performance bounds and feedback invariants for nonlinear systems
In linear systems, the effect of process disturbances can always be correctly
represented as an output disturbance regardless of where they actually appear in
the system, this is a consequence of the principle of superposition. But for nonlinear
systems, superposition does not hold. When facing nonlinear systems that are
superposition of a nonlinear process model plus a linear stochastic disturbance model,
it is useful however to provide an additive description. For discrete models, a most
general form of process description looks like as in Harris and Yu (2007):

yt ¼ f p u*t2d;w
*
t

� �
þ Dt: ð10Þ

The expressions and symbols have the same meaning as what in Harris and Yu (2007),
where Dt is the additive distance which can be represented by a linear ARMA model.
The derivation of MV controller for a process described by equation (10) is
straightforward, as in Grimble (2002). Therefore, equation (10) can be written as:

ytþd ¼ f p u*t ;w
*
tþd

� �
þ Dtþd ¼ f p u*t ;w

*
tþd

� �
þ D̂ðtþd Þ=t þ eðtþd Þ=t

¼ ŷðtþd Þ=t þ eðtþd Þ=t: ð11Þ

If it is possible to find the control action at time t such that f pðu
*
t ;w

*
tþdÞ þ D̂ðtþd Þ=t ¼ 0,

then the resulting controller is the MV controller. eðtþd Þ=t is the feedback invariant MV
performance bounds, in the form of:

eðtþd Þ=t ¼ ð1 þ f 1q
21 þ · · · þ f d21q

2ðd21ÞÞatþd; ð12Þ

where weights fi are the impulse coefficients of the closed-loop transfer function.
Therefore, the MV or the invariant portion of output variance, which is the lower
bound on performance, as measured in mean square sense, is:

s 2
mv ¼ var ymv

tþd

� �
¼ f 2

0 þ f 2
1 þ · · · þ f 2

d21

� �
s 2

a: ð13Þ

In order to measure control performance, the following performance index is used:

h ðd Þ ¼
s 2

mv

s 2
y

: ð14Þ

The s 2
y term in equation (14) can be calculated from the routine closed-loop operating

data. Consequently, this s 2
mv term should be estimated from routine operating data.

Generally speaking, there are two ways for estimating the MV or the feedback
invariant portion:

(1) Estimation of closed-loop impulse response. In this approach, a time series model
given is fit to closed-loop data. The first d 2 1 impulse coefficients are
estimates of the first d 2 1 coefficients of the open-loop disturbance transfer
function. With the estimated coefficients and an estimate of s 2

a obtained from
the model-estimation stage, the MV performance can be estimated. An
autoregressive moving average (ARMA) model can be used for estimating the
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impulse response transfer function. Laguerre network model can also be used to
estimate the impulse response transfer function between the output and the
white noise input, as well as the estimation of the white noise. In FCOR
algorithm, FCOR method is used to estimate impulse response coefficients, the
details are given in the next section.

(2) Direct estimation from the routine operating data. Desborough and Harris (1992)
adopted a lagged regression of the form:

ytþd ¼ ŷtþd þ etþd ¼ j ðq21Þyt þ etþd: ð15Þ

This can be estimated from routine closed-loop operating data. The residual
variance from the model fitting provides an estimate of the MV performance.

For nonlinear processes, this paper uses a radial basis function network (RBFN) as the
nonlinear predictor for estimating the MV or the feedback invariant portion. The MV
performance bounds can be directly estimated from a representative sample of
closed-loop data when the process is adequately modeled and ŷðtþd Þ=t can be accurately
constructed. The RBFN for estimation of the MV bounds is given in the next section.

3. FCOR algorithm and methods for whitening filter
Huang et al. (1997) developed an efficient, stable FCOR method to estimate the MV
benchmark. The key point is that the MV benchmark (as a reference performance
bound) can be estimated from routine operating data without additional experiments,
provided the system delay d is known (or can be estimated with sufficient accuracy).
The pre-whitening step is equivalent to finding a suitable time-series for whitening
filter, for instance, AR or ARMA models that can be used for estimating the white noise
sequence. Whitening is actually to reconstruct or estimate the white noise ât (of course,
ât is no long equal to the real white noise on the process). The identification of
innovation models has attracted much interest.

3.1 Description of FCOR algorithm
A stable closed-loop process can be written as an infinite-order moving average
process, and the impulse response parameters for a closed-loop system may be
expressed as:

yt ¼ H ðtÞat ¼ ð f 0 þ f 1q
21 þ · · · þ f d21q

2dþ1 þ f dq
2d þ · · ·Þat; ð16Þ

where H(t) is the impulse transfer function between yt and at, and fi is its coefficients.
When the performance index in equation (14) is used, and after some statistic

correlation analysis, the corresponding sampled estimation of performance index is
therefore written as:

ĥðd Þ ¼ r̂2
yað0Þ þ r̂2

yað1Þ þ · · · þ r̂2
yaðd 2 1Þ: ð17Þ

The sampled estimation given by:

r̂yaðkÞ ¼
1
L

PL
t¼1ytat2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
L

PL
t¼1y

2
t

1
L

PL
t¼1a

2
t

q ; ð18Þ
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where rya is the cross-correlation coefficient between yt and at for lag 0 to d 2 1, L is the
sample length. Although at is unknown in equation (18), it can be replaced by
the estimated innovations sequence ât . The estimated ât is obtained by pre-whitening
the process output variable yt via time series analysis. The process of obtaining such a
“whitening” filter is analogous to time series modeling, where the final test of the
adequacy of the model consists of checking if the residuals are “white,” where these
residuals are the estimated white noise sequence.

3.2 White noise filter or pre-whitening
3.2.1 AR type model based on adaptive whitening filter. The estimated ât is obtained by
pre-whitening the process output variable yt via time series analysis, and the
estimation of this noise sequence is important for performance assessment.
The coefficients fi of the impulse response from noise-to-output transfer function
have to be estimated, for instance, using an ARMA model. When the deadtime is small,
it means that only few data points are required to fit a full ARMA or continuous model.
If the order of the noise model is assumed to be small (such as an AR(1) or AR(2)
models), then the parameters in these models may be directly estimated from an
impulse response of the closed-loop system.

Here, it is assumed that the disturbance is stable and therefore can be represented
by a finite amount of parameters. Equation (16) is unsuitable for parameter estimation
as it depends on the unknown sequence ât . However, for a discrete form, it may be
transformed into an equivalent sequence:

yk ¼ ðb1q
21 þ b2q

22 þ · · · þ bmq
2mÞyk þ ak ¼ wðk2 1ÞTuþ ak; ð19Þ

where wðkÞ ¼ ½yk; yk21; . . . ; yk2m�
T, u ¼ ½b1;b2; . . . ;bm�

T collects the parameters to
be identified, and m is the number of repressor variables.

In this section, the Wiener filter-based MV control scheme is extended as a direct
adaptive MV self-tuning regulator. The controller consists of two-parameter
adaptation algorithms (PAA) running simultaneously. The PAA is an adaptive
whitening filter that identifies the parameters b̂i , and produces an estimate of
the innovation signal at. Given the parameter estimate and regressor vectors of the
adaptive whitening filter û ¼ ½b̂1; b̂2; . . . ; b̂m�

T, the parameters b̂i may be fit by
performing a recursive least squares (RLS) PAA algorithm based on the closed-loop
data yt; yt21; . . . ; yt2m. Define the predicted output as:

ŷðkÞ ¼ wðk2 1ÞTûðk2 1Þ; ð20Þ

then the a priori estimation error of the adaptive whitening filter looks like:

eðkÞ ¼ yðkÞ2 ŷðkÞ ¼ yðkÞ2 wðk2 1ÞTûðk2 1Þ; ð21Þ

and the RLS algorithm follows like:

ûðkÞ ¼ ûðk2 1Þ þ PðkÞwðk2 1ÞeðkÞ; ð22Þ

pðkÞ ¼ pðk2 1Þ2
pðk2 1Þwðk2 1Þwðk2 1ÞTpðk2 1Þ

wðk2 1ÞTpðk2 1Þwðk2 1Þ
: ð23Þ
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The a priori error e(k) will be used as an estimate of the innovation signal ak in the
overall adaptive scheme. Once bi are estimated, the impulse weight parameters may
easily be determined from the formula (Hugo, 2006):

f̂i ¼
Xi
j¼1

bjf̂i2jð f 0 ¼ 1Þ; i ¼ 1; 2; . . . ; d 2 1: ð24Þ

Rather, when the sample length is large enough, the closed-loop impulse response can
be identified from the cross correlation function of the residuals e(k) with the output y(k)
as in Tyler and Morari (1996):

f̂i ¼
1

n2 i

Xn
j¼i

eð j2 i Þyð j Þ: ð25Þ

With the help of equations (24) or (25), the estimated MV turns to be:

s 2
mv ¼ ðf̂

2

0 þ f̂
2

1 þ · · · þ f̂
2

d21Þs
2
e : ð26Þ

3.2.2 Laguerre network model. Laguerre network model can be used to estimate the
impulse response transfer function between the output and the white noise input, and
the estimation of the white noise are also given. The use of an ARMA model to estimate
impulse response transfer function means that the degrees of the numerator and
denominator of the model have to be determined. Although techniques are available to
facilitate this choice, it is not trivial as the filter can be very complicated and a poor
choice may cause the estimation to suffer. The use of the Laguerre network is
becoming more common, due to its attractive properties. The discrete Laguerre filters
can be written as:

LiðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 a 2

p

q2 a

1 2 aq

q2 a

� �i21

; i ¼ 1; 2; . . . ; ð27Þ

where a is the time scale of the filter. As the Laguerre functions are orthonormal and
complete in L2½0;1Þ; a stable impulse transfer function can be approximated as:

H ðq21Þ ¼
XN
i¼1

giLiðq
21Þ; ð28Þ

where N is the truncated constant of Laguerre network and gi are the Laguerre gains.
Once the filter time scale and the number of filters are set, the Laguerre gains that

best approximate impulse transfer function need to be determined. For this, it is
convenient to represent the discrete Laguerre network in state-space form:

Lðkþ 1Þ ¼ ALðkÞ þ BaðkÞ; yðkÞ ¼ CTLðkÞ þ aðkÞ; ð29Þ

where the C and L vectors are, respectively, defined as:

C ¼ ½g1; g2; . . . ; gN �
T; L ¼ ½l1; l2; . . . ; lN �

T: ð30Þ
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After given the terms A and B, which depend only on the filter time scale and the
number of filters are set, the minimum achievable output variance can be determined
using equation (13) and is:

s 2
mv ¼ ð1 þ ðCTBÞ2 þ ðCTABÞ2 þ · · · þ ðCTAd22BÞ2Þs 2

a; ð31Þ

where CTB;CTAB; . . . ;CTAd22B are the Markov parameters of the process. Upon
close examination of equation (29), it can be seen that the input to the Laguerre network
is the unknown white noise sequence a(k). To estimate the gains, the input must thus
also be estimated. To perform this, the recursive extended least squares (LS) estimation
is used:

Lðkþ 1Þ ¼ ALðkÞ þ Bvðk2 1Þ; ð32Þ

pðkÞ ¼ pðk2 1Þ2
pðk2 1ÞLðkÞLðkÞTpðk2 1Þ

1 þ LðkÞTpðk2 1ÞLðkÞ
; ð33Þ

ĈðkÞ ¼ Ĉðk2 1Þ þ PðkÞLðkÞ½yðkÞ2 Ĉðk2 1ÞTLðkÞ�; ð34Þ

vðkÞ ¼ yðkÞ2 ĈðkÞTLðkÞ: ð35Þ

The residual v(k) gives an estimate of the white noise a(k), and ŝ 2
v can be used to

estimate s 2
a, which is required in equation (31). The estimated MV will then be:

ŝ 2
mv ¼ ð1 þ ðĈTBÞ2 þ ðĈTABÞ2 þ · · · þ ðĈTAd22BÞ2Þŝ 2

v: ð36Þ

3.2.3 RBF neural network structure. A viable alternative to highly nonlinear-in-the-
parameter neural networks is the RBFN. Here, we choose the radial basis function
centers one-by-one in a rational way until an adequate network has been constructed,
based on orthogonal least squares (OLS) learning algorithm. The significant regressors
can be selected in this forward regression manner. An RBF network can be regarded as
a special two-layer network which is linear in the parameters by fixing all RBF centers
and nonlinearities in the hidden layer. Therefore, the hidden layer performs a fixed
nonlinear transformation with no adjustable parameters and it maps the input space
onto a new space. The output layer then implements a linear combiner on this new
space and the only adjustable parameters are the weights of this linear combiner.
These parameters can therefore be determined using the linear LS method, which gives
an important advantage of this approach. Chen et al. (1989) used OLS method as a
forward regression procedure to select a suitable set of centers (regressors) from a large
set of candidates. At each step of the regression, the increment to the explained
variance of the desired output is maximized. Furthermore, oversize and ill-conditioning
problems occurring frequently in random selection of centers can automatically be
avoided. This rational approach provides an efficient learning algorithm for fitting
adequate RBF networks.

A schematic of the RBF network with n inputs and a scalar output is shown in
Figure 2. Such a network implements a mapping f : Rn ! R according to:
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f ðxÞ ¼ w0uþ
Xnr
i¼1

wifðkx2 cikÞ: ð37Þ

Alternatively, the OLS algorithm can be used to select centers so that adequate and
parsimonious RBF networks can be obtained. In order to understand how this works, it
is essential to view the RBF network equation (37) as a special case of the linear
regression model:

dðkÞ ¼
XM
i¼1

wipiðkÞ þ aðkÞ; ð38Þ

where d(k) is the desired output, wi are the parameters to be estimated and pi(k) are
known as the regressors as Gaussian functions of x:

piðkÞ ¼ exp 2
jx2 cij

2

s 2
i

 !
: ð39Þ

After estimating the weight wi, the estimation of white noise sequence can be given by
equation (37), where the input consists of yk; yk21; . . . ; yk2n.

In the following, the proposed RBFN approach is used for estimating the MV or the
feedback invariant portion for nonlinear systems.

4. Numerical simulation and algorithm comparison
4.1 Comparison among different approaches for linear systems
In order to test the proposed RBFN approach and compare with other filter structures
based on FCOR algorithm for performance assessment, the following frequently-used
SISO process with time delay d ¼ 2 is considered (Desborough and Harris, 1992;
Huang and Shah, 1999):

yt ¼ ut22 þ
1 2 0:2q21

1 2 q21
at; ð40Þ

where at is normally distributed, with mean 0 and standard deviation 0.36. When a
simple integral feedback controller is chosen:

Figure 2.
Schematic of RBFN

Linear combiner

Nonlinear transformation
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.......

......
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output
f(x)

w0q

f (||x – ci||), 1≤ i ≤ ng 

w2
w1

x1 x2 x3 xn–1 xn

wng

Neural network
approach

625



Dut ¼ 2Kyt; ð41Þ

where K is the integral gain, it can be shown that the closed-loop response is
given by:

yt ¼ at þ 0:8at21 þ
0:8ð1 2 ðK=0:8Þ2 Kq21Þ

1 2 q21 þ Kq22
at22 ¼

1 2 0:2q21

1 2 q21 þ Kq22
at; ð42Þ

where the first two terms at þ 0:8at21 compose the MV portion, which is
independent on the feedback controller. For comparison, the following control
performance assessment methods are investigated:

. The general approach proposed by Harris (1989) (denoted as the ARMA
approach). This approach uses an ARMA model for estimating the closed-loop
transfer function between yt and at, and an adaptive whitening filter for training
parameter and getting the estimation of the white noise sequence. The
performance index can be acquired after polynomial long division or solving the
Diophantine equation of the transfer function.

. The Laguerre network method. Lynch and Dumont (1996) proposed to use
Laguerre network to model the process system, which can eliminate the need to
solve the Diophantine equation in finding the MV.

. An efficient, stable FCOR method developed by Huang et al. (1997) is also used
for control performance assessment. The pre-whitening step is equivalent to
finding a suitable time-series for whitening filter. The ARMA model based on
adaptive filter, the Laguerre network model and the proposed RBFN can be used
for whitening filter from the routine operating data, provided the system delay d
is known (or can be estimated with sufficient accuracy).

To perform the simulation, a series of standard normal random variants are generated
using the method in Park and Miller (1988). These random variants are tested for
independence using statistic analysis methods. The series is not used if the hypothesis
that all the autocorrelations from lag 1 to lag 10 are zero is rejected at the 95 percent
confidence level. Once an acceptable at series is generated, the process output can then
be calculated using equation (42). The true value of MV lower bound is 0.5904 and the
estimated MV bounds are calculated as the residual variance from each model, and this
procedure is repeated five hundred times with different white noise sequences. About
1,000 realizations of equation (42) as shown in Figure 3 are generated in each procedure
with normal distribution white noise with zero 0 and variance 0.36.

After an iterative procedure of model order selection and parameter estimation for
the ARMA model, an AR(6) model is used to estimate the MV lower bound by using
equation (13). The time scale and filter number of Laguerre network model are given as
0.2 and 6, respectively, and the estimated MV lower bound can be obtained from
equation (36). When the OLS is used for training RBFN, six significant regressors are
selected in a forward regression manner.

The comparison results for K ¼ 0.5 are shown in Table I, where the listed values are
the means of 500 simulations calculated for each model. From the data in Table I, the
following observations can be made:
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. When using AR models to estimate the closed-loop transfer function, the degree
of polynomials, which has big impact on the estimation of s 2

mv, must be chosen
properly. Then the performance index can be calculated after taking polynomial
long division or solving the Diophantine equation.

. The Laguerre network method and all the FCOR-based algorithms can estimate
the MV lower bound through the estimation of closed-loop impulse response,
through which both can eliminate the need of solving the Diophantine equation.

. The proposed RBFN approach based on the FCOR algorithm provides a better
accuracy than the Laguerre network model.

. All the FCOR-based algorithms give smaller estimated MVs than the direct
estimations of the MV lower bound. However, the filter and correlation analysis
of routine closed-loop operating data gives the estimation of closed-loop impulse
response, thus provides a useful insight into control loop performance analysis.

For the RBFN approach, Figure 4 shows the estimated control performance versus the
theoretical performance for different controller integral gain K. As the FCOR algorithm

Figure 3.
The data of the closed-loop

output with k ¼ 0.5
0 100 200 300 400 500 600 700 800 900 1,000
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y t
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â ĥðd Þ

ARMA 0.5890 0.3592 0.9146
L-network 0.5886 0.3573 0.9140
FCOR-based methods

ARMA 0.5485 0.3592 0.8517
L-network 0.5668 0.3573 0.8801
RBFN 0.5774 0.3585 0.8966

Table I.
Estimates of h(d ) using

different models
ðs 2

y ¼ 0:6440Þ
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assumes that the white noise is really “white” (that satisfies normal distribution with
zero mean), higher estimations of the performance index occur at some points.

4.2 Extension to nonlinear systems
Although at any time an invariant linear system can be completely characterized by its
impulse response, or equivalently by an autoregressive model, unfortunately, this
equivalence cannot be extended to all nonlinear problems. For a class of nonlinear
systems, the development of nonlinear MV controllers has been reported by Chen et al.
(1990) for processes that admit a nonlinear ARMAX representation, and an estimation
of lower bound from operating data using Volterra series approximation has been
given in Harris and Yu (2007).

In the following, an example is provided to demonstrate the methodology outlined
in this paper. Consider the nonlinear dynamic system represented by a second order
Volterra series (Harris and Yu, 2007):

yt ¼ 0:2ut22 þ 0:3ut24 þ ut25 þ 0:8u2
t23 þ 0:8ut23ut24 2 0:7u2

t24 2 0:5u2
t25

2 0:5ut23ut25 þ ~Dt: ð43Þ

The disturbance is an ARIMA (2, 0, 0) process:

Dt ¼
at

1 2 1:6q21 þ 0:8q22
; ð44Þ

where at is a white noise sequence with zero mean and variance 0.1. The true value of
the MV lower bound is 0.6656. Assuming the setpoint equals to zero, then a
proportional controller can be used to control the simulated process:

Figure 4.
RBFN approach: the
estimated and theoretical
control performance
indices at different
K values
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ut ¼ 20:2yt: ð45Þ

For estimating the MV lower bounds, three direct estimation methods are compared:

(1) Linear autoregressive (LAR) model: ytþd ¼
Pm

i¼0bi yt2i . For a linear model, it is
also convenient to fit the data using an ARMA representation.

(2) Laguerre network model is used to fit the nonlinear process and the estimation
of the white noise can be used for the FCOR algorithm to examine the approach
efficiency.

(3) The proposed RBFN approach based on FCOR algorithm is tested to assess the
control performance for the nonlinear process.

In this simulation, 500 observations are used to fit the parameters for these models.
When formulating the models, a large number of candidate terms are initially allowed.
About 1,000 realizations of equation (43) are used to estimate the MV lower bound. The
results for the proportional (P) controller assessment are shown in Table II.

4.3 Residual analysis
When the FCOR algorithm is used for performance assessment, the whitening filter
and correlation analysis are important. It is necessary to check if the residuals are
“white,” where these residuals are the estimated white noise sequence.

Suppose at is a white noise sequence, and let að1Þ; að2Þ; . . . ; aðLÞ be some sample
values, where L is the sample length. Then we find correlation among the residuals
themselves. ra(k) is the autocorrelation coefficients of at for lag 0 to d 2 1, defined as:

raðkÞ ¼
RaðkÞ

Rað0Þ
; ð46Þ

where Ra(k) is the autocorrelation function of at, and ra(k) can be estimated from finite
length samples:

r̂aðkÞ ¼
R̂aðkÞ

Rað0Þ
; ð47Þ

where:

R̂aðkÞ ¼
1

L

XL21

t¼1

atatþk: ð48Þ

When L is large enough, under the assumption that at are white noise sequence, the L
statistical value

ffiffiffi
L

p
r̂að1Þ;

ffiffiffi
L

p
r̂að2Þ; . . . ;

ffiffiffi
L

p
r̂aðmÞ satisfy normal distribution N(0, 1),

and the square sum of them should be asymptotically x 2(m) distributed:

ŝ 2
mv ĥðd Þ

ARMA 0.6842 0.4392
RBFN 0.6751 0.4334
Laguerre-network 0.6668 0.4281

Table II.
Estimates of h(d ) using

different models
ðs 2

y ¼ 1:5577Þ
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T ¼
Xm
k¼1

ffiffiffi
L

p
r̂aðkÞ

h i2

¼ L
Xm
k¼1

r̂aðkÞ: ð49Þ

For checking if the residuals are “white,” the sequence whiteness test can through
testing whether T satisfies x 2(m) distributed. If T # x 2

aðmÞ, the a level of the x 2(m)
distribution, the white sequence will pass a test of being x 2(m) distribution, otherwise
at is not a white sequence, and the whitening filter model need be modified to get a new
“white” sequence. In the simulation part, we choose m ¼ 30;a ¼ 0:05;L ¼ 1; 000, and
then we have x 2

0:05ð30Þ ¼ 18:49.
For the proposed RBFN based on FCOR algorithm for the control performance

assessment, to give an accurate whitening identification model, the residual analysis is
necessary. The autocorrelation function of the estimated white noise sequence with the
95 percent confidence level appears in Figure 5, from which we see that the estimated
white noise sequence is white as the autocorrelation at all lags lies near zero, and with a
variance of 0.6751. In this residual analysis, we get T ¼ 15:24 , 18:49, which
indicates T satisfies x 2(m) distribution.

4.4 Discussions
From the simulation comparisons, it can be seen that the proposed RBFN and the
Laguerre network methods perform better than the ARMA model approach for both
linear and nonlinear examples.

It seems that no obvious overall advantage can be seen of using the proposed RBFN
approach. We would comment, however, it took a significant amount of experimental
work to determine where to truncate the polynomial expansion in equation (19) for the
ARMA model structure or how to choose the parameters like the time scale for the
Laguerre network model. For a given plant, the truncation error of a Laguerre network
model using a truncated Laguerre series to represent plant dynamics will be a function
of the number of filters and their time scale. For a fixed number of filters, the optimum
time scale that minimizes the truncation error depends on characteristics of the system
impulse response. To obtain a fast rate of convergence, the time scale should be chosen
close to the dominating time constants of the plant to be approximated while this is
usually not an easy task. Numerical procedures including exhaustive search

Figure 5.
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noise sequence

0.9

C
or

re
la

tio
n

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1
0 5 10 15

LAG

20 25 30

IJICC
1,4

630



algorithms, the nonlinear search simplex method and the Fibonacci search approach
can be used, yet the result of these search methods depend on the Laguerre filters
number used, and need large amount of calculation.

The proposed RBFN is in essence used to identify the unknown noise sequence.
This is quite equivalent to standard system modeling or identification via neural
network approach which is normally fast enough for real-time applications. RBFN has
been proved as a powerful model structure and widely used in system modeling and
identification practice. The parameters ci and wi of the proposed RBFN construction
are, however, not difficult to select by using efficient algorithms like the OLS learning
method. On the other hand, usually it is assumed that the plant, the controller and the
disturbance change little during a short assessment process. Under this circumstance,
the assessment can be deemed as an offline process and thus the proposed RBFN
approach has no difficulty in providing timely assessments.

5. Conclusions and future work
A RBFN approach has been proposed for control performance assessment. Two simple
but frequently-used examples are given to illustrate how the new approach operates
and compares with some well-known methods. It is found that the proposed RBFN
approach works satisfactorily for both linear and nonlinear examples. In particular, it
provides additional useful information that the underlying plant seems to be
adequately represented by this neural network model and thus shows capability in
assessing controller performance for nonlinear plants. Moreover, the RBFN approach
surpasses the Laguerre network method in parameter selection. The OLS method
greatly facilitates the updating of the parameters that enter the RBFN in a nonlinear
fashion.

On the other hand, there are still many challenges in control performance
assessment for nonlinear systems. This paper presents only a preliminary attempt of
using neural network to the problem. Some immediate future work includes applying
the proposed approach to some practical control systems and choosing different neural
network models for identification.
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