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Abstract

Cognitive control resolves conflict between task-relevant and -irrelevant information to
enable goal-directed behavior. As conflict can arise from different sources (e.g., sensory
input, internal representations), how a finite set of cognitive control processes can
effectively address huge array of conflict remains a major challenge. We hypothesize that
different conflict can be parameterized and represented as distinct points in a (low-
dimensional) cognitive space, which can then be resolved by a limited set of cognitive
control processes working along the dimensions. To test this hypothesis, we designed a task
with five types of conflict that could be conceptually parameterized along one dimension.
Over two experiments, both human performance and fMRI activity patterns in the right
dorsolateral prefrontal (dlPFC) support that different types of conflict are organized in a
cognitive space. The findings suggest that cognitive space can be a dimension reduction tool
to effectively organize neural representations of conflict for cognitive control.

eLife assessment

Yang et al. investigate whether distinct sources of conflict are represented in a
common cognitive space. The study uses an interesting task that mixes two different
sources of difficulty and reports that the brain appears to represent these sources as
a mixture on a continuum, in the prefrontal areas involved in resolving task difficulty.
While these results are useful, they overlap with previous findings, leave open
several design and logical concerns, and rely on novel statistical analyses that may
require further validation, so they are currently incomplete.
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Introduction

Cognitive control enables humans to behave purposefully by modulating neural processing
to resolve conflict between task-relevant and task-irrelevant information. For example,
when naming the color of the word “BLUE” printed in red ink, we are likely to be distracted
by the word meaning, because reading a word is highly automatic in daily life. To keep our
attention on the color, we need to mobilize the cognitive control processes to resolve the
conflict between the color and word by boosting/suppressing the processing of color/word
meaning. As task-relevant and task-irrelevant information can come from different sources,
the sources of conflict and how they should be resolved can vary greatly(1). For example,
conflict may occur between items of sensory information, such as between a red light and a
police officer signaling cars to pass. Alternatively, conflict may occur between sensory and
motor information, such as when a voice on the left asks you to turn right. The large variety
of conflict sources implies that there may be unlimited number of conflicts. A key unsolved
question in cognitive control is how our brain efficiently resolves a nearly infinite number
of different types of conflict.

A first step to addressing this question is to examine the commonalities and/or dissociations
across different types of conflict that can be categorized into different domains. Examples of
the domains of conflict include experimental paradigm(2),(3), sensory modality(4),(5), or
conflict type regarding the dimensional overlap of conflict processes(6),(7).

Two solutions to resolving a wide range of conflict types are proposed. They differ based on
whether the same cognitive control mechanisms are applied across domains. On the one
hand, the domain-general cognitive control theories posit that the frontoparietal cortex
adaptively encodes task information and can thus flexibly implement control strategies for
different types of conflict. This is supported by the generalizable control adjustment (i.e.,
encountering a conflict trial from one type can facilitate conflict resolution of another type)
(2),(8) and similar neural patterns(9),(10) across distinct conflict tasks. A broader domain-
general view holds that the frontoparietal brain regions/networks are widely involved in
multiple control demands well beyond the conflict domain(11),(12), which explains the
remarkable flexibility in human behaviors. However, since domain-general processes are by
definition likely shared by different tasks, when we need to handle multiple task demands at
the same time, the efficiency of both tasks would be impaired due to resource competition or
interference(13). Therefore, the domain-general processes is evolutionarily less
advantageous for humans to deal with the diverse situations requiring high efficiency(14).
On the other hand, the domain-specific theories argue that different types of conflict are
handled by distinct cognitive control processes (e.g., where and how information processing
should be modulated)(15),(16). However, according to the domain-specific view, the
potentially unlimited conflict situations require a large variety of preexisting control
processes, which is biologically implausible(17).

To reconcile the two theories, researchers recently proposed that cognitive control might be
a mixture of domain-general and domain-specific processes. For instance, Freitas et al.(18)

found that trial-by-trial adjustment of control can generalize across two conflict domains to
different degrees, leading to domain-general (strong generalization) or domain-specific
(weak or no generalization) conclusions depending on the task settings of the consecutive
conflict. Similarly, different brain networks may show domain-generality (i.e., representing
multiple conflicts) or domain-specificity (i.e., representing individual conflicts separately)(7),

(19). Even within the same brain area (e.g., medial frontal cortex), Fu et al.(20) found that the
neural population activity can be factorized into orthogonal dimensions encoding both
domain-general and domain-specific conflict information, which can be selectively read out
by downstream brain regions. While the mixture view provides an explanation for the
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contradictory findings(21), it suffers the same criticism as domain-specific cognitive control
theories, as it still requires unlimited cognitive control processes to fully cover all possible
conflicts.

A key to reconciling domain-general and domain-specific cognitive control is to organize the
nearly infinite possible types of conflict using a system with limited, dissociable dimensions.
A construct with a similar function is the cognitive space(22), which extends the idea of
cognitive map(23) to the representation of abstract information. Critically, the cognitive space
view holds that the representations of different abstract information are organized
continuously and the locations of representations in the cognitive space are determined by
the similarity among the represented information(22).

In the human brain, it has been shown that abstract(23),(24) and social(25) information can be
represented in a cognitive space. For example, social hierarchies with two independent
scores (e.g., popularity and competence) can be represented in a 2D cognitive space (one
dimension for each score), such that each social item can be located by its score in the two
dimensions(25). In the field of cognitive control, recent studies have begun to conceptualize
different control states within a cognitive space(26). For example, Fu et al.(20) mapped
different conflict conditions to locations in a low/high dimensional cognitive space to
demonstrate the domain-general/domain-specific problems; Grahek et al.(27) used a cognitive
space model of cognitive control settings to explain behavioral changes in the speed-
accuracy tradeoff. However, the cognitive spaces proposed in these studies were only
applicable to a limited number of control states involved in their designs. Therefore, it
remains unclear whether there is a cognitive space that can explain an unlimited number of
control states, similar to that of the spatial location(22) and non-spatial knowledge(23). A
challenge to answering this question lies in how to construct control states with continuous
levels of similarity. Our recent work(28) showed that it is possible to manipulate continuous
conflict similarity by using a mixture of two independent conflict types with varying ratios,
which can be used to further examine the behavioral and neural evidence for the cognitive
space view. It is also unclear how the cognitive space of cognitive control is encoded in the
brain, although that of spatial locations and non-spatial abstract knowledge has been
relatively well investigated in the medial temporal lobe, medial prefrontal and orbitofrontal
system(22),(23). Recent research has suggested that the abstract task structure could be
encoded and implemented by the frontoparietal network(29),(30), but whether a similar
neural system encodes the cognitive space of cognitive control remains untested.

We hypothesize that different types of conflict are represented as points in a cognitive space.
The dimensions in the cognitive space of conflict can be the aforementioned domains, in
which domain-specific cognitive control processes are defined. For a specific type of conflict,
its location in the cognitive space can be parameterized using a limited number of
coordinates, which reflect how much control is needed for each of the domain-specific
cognitive control processes. The cognitive space can also represent different types of conflict
with low dimensionality(26),(31). Different domains can be represented conjunctively in a
single cognitive space to achieve domain-general cognitive control, as conflict from different
sources can be resolved using the same set of cognitive control processes. We further
hypothesize that the cognitive space representing different types of conflict may be located
in the frontoparietal network due to its essential roles in conflict resolution(20),(32) and
abstract task representation(30).

In this study, we adjusted the paradigm from our previous study(28) by including transitions
of trials from five different conflict types, which enabled us to test if these conflict types are
organized in a cognitive space (Fig. 1A). Specifically, on each trial, an arrow, pointing either
upwards or downwards, was presented on one of the 10 possible locations on the screen.
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task. On one hand, the vertical location of the arrow can be incongruent with the direction
(e.g., an up-pointing arrow on the lower half of the screen), resulting spatial Stroop
conflict(6),(33). On the other hand, the horizontal location of the arrow can be incongruent
with the response key (e.g., an arrow requiring left response presented on the right side of
the screen), thus causing Simon conflict(33),(34). As the arrow location rotates from the
horizontal axis to the vertical axis, spatial Stroop conflict increases, and Simon conflict
decreases. Therefore, the 10 possible locations of the arrow give rise to five conflict types
with unique blend of spatial Stroop and Simon conflict(28). As the increase in spatial Stroop
conflict is perfectly correlated with the decrease in Simon conflict, we can use a 1D cognitive
space to represent all five conflict types.

Fig. 1.

Experimental design.

(A) The left panel shows the orthogo-
nal stimulus-response mappings of
the two participant groups. In each
group the stimuli were only dis-
played at two quadrants of the circu-
lar locations. One group were asked
to respond with the left button to the
upward arrow and with the right but-
ton to the downward arrow present-
ed in the to-left and bottom-right
quadrants, and the other group vice
versa. The right panel shows the
time course of one example trial. The
stimuli were displayed for 600 ms,
preceded and followed by fixation
crosses that lasted for 1400 ms in to-
tal. (B) Examples of the five types of
conflict, each containing congruent
and incongruent conditions. The ar-

rows were presented at locations along five orientations with isometric polar angles, in which the vertical location intro-
duces the spatial Stroop conflict, and the horizontal location introduces the Simon conflict. Dashed lines are shown only
to indicate the location of arrows and were not shown in the experiments. (C) The definition of the angular difference be-
tween two conflict types and the conflict similarity. The angle θ is determined by the acute angle between two lines that
cross the stimuli and the central fixation. Therefore, stimuli of the same conflict type form the smallest angle of 0, and
stimuli between Conflict 1 and Conflict 5 form the largest angle of 90°, and others are in between. Conflict similarity is de-
fined by the cosine value of θ.

One way to parameterize (i.e., defining a coordinate system) the cognitive space is to encode
each conflict type by the angle of the axis connecting its two possible stimulus locations (Fig.
1B). Within this cognitive space, the similarity between two conflict types can be quantified
as the cosine value of their angular difference (Fig. 1C). If the conflict types are organized as
a cognitive space in the brain, the similarity between conflict types in the cognitive space
should be reflected in both the behavior and similarity in the neural representations of
conflict types. Our data from two experiments using this experimental design support both
predictions: using behavioral data, we found that the influence of congruency (i.e., whether
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the task-relevant and task-irrelevant information indicate the same response) from the
previous trial to the next trial increases with the conflict similarity between the two trials.
Using fMRI data, we found that more similar conflict showed higher multivariate pattern
similarity in the right dorsolateral prefrontal cortex (dlPFC).

Results

Conflict type similarity modulated behavioral congruency
sequence effect (CSE)

Experiment 1

We conducted a behavioral experiment (n = 33, 18 females) to examine how CSEs across
different conflict types are influenced by their similarity. First, we validated the
experimental design by testing the congruency effects. All five conflict types showed robust
congruency effects such that the incongruent trials were slower and less accurate than the
congruent trials (Note S1; Fig. S1 A/B). To test the influence of similarity between conflict
types on behavior, we examined the CSE in consecutive trials. Specifically, the CSE was
quantified as the interaction between previous and current trial congruency and can reflect
how (in)congruency on the previous trial influences cognitive control on the current trial(35),

(36). It has been shown that the CSE diminishes if the two consecutive trials have different
conflict types(37)-(39). Similarly, we tested whether the size of CSE increases as a function of
conflict similarity between consecutive trials. To this end, we organized trials based on a 5
(previous trial conflict type) × 5 (current trial conflict type) × 2 (previous trial congruency) ×
2 (current trial congruency) factorial design, with the first two and the last two factors
capturing between-trial conflict similarity and the CSE, respectively. The cells in the 5 × 5
matrix were mapped to different similarity levels according to the angular difference
between the two conflict types (Fig. 1C). As shown in Fig. 2, the CSE, measured in both
reaction time (RT) and error rate (ER), scaled with conflict similarity.
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Fig. 2.

The conflict similarity modulation
on the behavioral CSE in
Experiment 1.

(A) RT and (B) ER are plotted as a
function of congruency types on trial
n−1 and trial n. Each column shows
one similarity level, as indicated by
the defined angular difference be-
tween two conflict types. Error bars
are standard errors. C = congruent; I
= incongruent; RT = reaction time; ER
= error rate.

To test the modulation of conflict similarity on the CSE, we constructed a linear mixed effect
model to predict RT/ER in each cell of the factorial design using a predictor encoding the
interaction between the CSE and conflict similarity (see Methods). The results showed a
significant effect of conflict similarity (RT: β = 0.10 ± 0.01, t(1978) = 15.82, p < .001, ηp

2 = .120;
ER: β = 0.15 ± 0.02, t(1978) = 7.84, p < .001, ηp

2 = .085, Fig. S2B/E). In other words, the CSE
increased with the conflict similarity between two consecutive trials. The conflict similarity
modulation effect remained significant after regressing out the influence of physical
proximity between the stimuli of consecutive trials (Note S2). As a control analysis, we also
compared this approach to a two-stage analysis that first calculated the CSE for each
previous × current trial conflict type condition and then tested the modulation of conflict
similarity on the CSEs(28). The two-stage analysis also showed a strong effect of conflict
similarity (RT: β = 0.58 ± 0.04, t(493) = 14.74, p < .001, ηp

2 = .383; ER: β = 0.36 ± 0.05, t(493) =
7.01, p < .001, ηp

2 = .321, Fig. S2A/D). Importantly, individual modulation effects of conflict
similarity were positively correlated between the two approaches (RT: r = 0.48; ER: r = 0.86,
both ps < 0.003, one-tailed), indicating the consistency of the estimated conflict similarity
effects across the two approaches.

Experiment 2

Behavioral results

We next conducted an fMRI experiment using a shorter version of the same task with a
different sample (n = 35, 17 females) to seek neural evidence of how different conflict types
are organized. Using behavioral data, we first validated the experimental design by testing
congruency effects in each of the five conflict types (Note S1; Fig. S1 C/D). We then tested the
modulation of conflict similarity on the behavioral CSE using the linear mixed effect model
as in Experiment 1 (except the two-stage method). Results showed a significant effect of
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conflict similarity modulation (RT: β = 0.24 ± 0.04, t(1148) = 6.36, p < .001, ηp
2 = .096; ER: β =

0.33 ± 0.06, t(1206) = 5.81, p < .001, ηp
2 = .124, Fig. S2C/F), thus replicating the results of

Experimental 1 and setting the stage for fMRI analysis. As in Experiment 1, the conflict
similarity modulation effect remained significant after regressing out the influence of
physical proximity between the stimuli of consecutive trials (Note S2).

Brain activations modulated by conflict type dissimilarity
with univariate analyses
In the fMRI analysis, we first replicated the classic congruency effect by searching for brain
regions showing higher univariate activation in incongruent than congruent conditions
(GLM1, see Methods). Consistent with the literature(20),(40), this effect was observed in the
pre-supplementary motor area (pre-SMA) and anterior cingulate cortex (ACC) areas (Fig. 3,
Table S1). We then tested the encoding of conflict type as a cognitive space by identifying
brain regions with activation levels parametrically covarying with the coordinates (i.e., axial
angle relative to the horizontal axis) in the hypothesized cognitive space. As shown in Fig.
1B, change in the angle corresponds to change in spatial Stroop and Simon conflicts in
opposite directions. Accordingly, in the left middle frontal gyrus (MFG), fMRI activation
scaled with the increase in spatial Stroop conflict, whereas the right inferior parietal sulcus
(IPS) and the right dorsomedial prefrontal cortex (dmPFC) displayed positive correlation
between fMRI activation and Simon conflict (Fig. 3, Fig. S3, Table S1).

Fig. 3.

The congruency effect
and parametric
modulation effect
detected by uni-voxel
analyses.

Results displayed are thresholded
with voxel-wise one-tailed p < .005
and cluster-size > 20 voxels. The con-
gruency effect denotes the higher
activation in incongruent than con-
gruent condition. The positive para-
metric modulation effect (I_pm –
C_pm) denotes the higher activation
when the conflict type contained a
higher ratio of Simon conflict compo-
nent (bottom left panel). The nega-
tive parametric modulation effect

[converted to positive with – (I_pm – C_pm)] denotes the higher activation when the conflict type contained a higher ratio
of spatial Stroop conflict component (bottom right panel). I = incongruent; C = congruent; pm = parametric modulator.

To further test if the univariate results explain the conflict similarity modulation of the
behavioral CSE (slope in Fig. S2C), we conducted brain-behavioral correlation analyses for
regions identified above. Regions with higher spatial Stroop/Simon modulation effects were
expected to trigger higher behavioral conflict similarity modulation effect on the CSE.
However, none of the three regions (i.e., left MFG, right IPS and right dmPFC, Fig. 3) were
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positively correlated with the behavioral performance, all pFDR >.762, one-tailed. In addition,
since the conflict type difference covaries with the orientation of the arrow location at the
individual level (e.g., the stimulus in a higher level of Simon conflict is always closer to the
horizontal axis, see Fig. S4), the univariate modulation effects may not reflect purely conflict
type difference. To further tease these factors apart, we used multivariate analyses.

Multivariate patterns of the right dlPFC encodes the
conflict similarity
The hypothesis that the brain encodes conflict types in a cognitive space predicts that similar
conflict types will have similar neural representations. To test this prediction, we computed
the representational similarity matrix (RSM) that encoded correlations of blood-oxygen-level
dependent (BOLD) signal patterns between each pair of conflict type (conflict 1, 2, 3, 4 and 5,
as shown in Fig. 1B) × congruency (congruent, incongruent) × arrow direction (up, down) ×
run × subject combinations for each of the 360 cortical regions from the Multi-Modal
Parcellation (MMP) cortical atlas(41),(42). The RSM was then submitted to a linear mixed-
effect model as the dependent variable to test whether the representational similarity in
each region was modulated by various experimental variables (e.g., conflict type, spatial
orientation, stimulus, response, etc., see Methods). The linear mixed-effect model was used
to de-correlate conflict type and spatial orientation leveraging the between-subject
manipulation of stimulus locations (Fig. S4).

To validate this method, we applied this analysis to test the effects of response/stimulus
features and found that representational similarity of the BOLD signal significantly covaried
with whether two response/spatial location/arrow directions were the same most strongly in
bilateral motor/visual/somatosensory areas, respectively (Fig. S5). We then identified the
cortical regions encoding conflict type as a cognitive space by testing whether their RSMs
can be explained by the similarity between conflict types. Specifically, we applied three
independent criteria: (1) the cortical regions should exhibit a statistically significant positive
conflict similarity effect on the RSM; (2) the conflict similarity effect should be stronger in
incongruent than congruent trials to reflect flexible adjustment of cognitive control demand
when conflict is present; and (3) the conflict similarity effect should be positively correlated
with the behavioral conflict similarity modulation effect on the CSE (see Behavioral Results
of Experiment 2). The first criterion revealed several cortical regions encoding the conflict
similarity, including the 8C area (a subregion of dlPFC(42)), a47r, TPOJ3 and V3CD in the right
hemisphere, and the 6r, 7Am, 24dd, VMV1, VMV2, 7Pl, 23c and 25 areas in the left
hemisphere (pFDRs < 0.05, with raw ps < 0.001, one-tailed, Fig. 4A). We next tested whether
these regions were related to cognitive control by comparing the strength of conflict
similarity effect between incongruent and congruent conditions (criterion 2). Results
revealed that the left lateral area 7P (7P1), left ventromedial visual area 1 (VMV1), left dorsal
area 24d (24dd), right Brodmann area 8C (8C), and right V3CD met this criterion, pFDRs < .01,
one-tailed (Table 1, Fig. 4B), suggesting that the representation of conflict type was
strengthened when conflict was present (e.g., Fig. 4D). The inter-subject brain-behavioral
correlation analysis (criterion 3) showed that the strength of conflict similarity effect on RSM
scaled with the modulation of conflict similarity on the CSE (slope in Fig. S2C) in right 8C (r =
0.43, pFDR = .027, one-tailed, Fig. 4C) but not in the other regions (all pFDR > .632, one-tailed).
In addition, we did not find evidence supporting the encoding of congruency in the right 8C
area (see Note S5), suggesting that the right 8C area specifically represents conflict similarity.
In sum, we found converging evidence supporting that the right dlPFC (8C area) encoded
conflict similarity, which further supports the hypothesis that conflict types are represented
in a cognitive space.
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Table 1.

Summary statistics of regions showing larger encoding strength
in incongruent than congruent conditions for the conflict type
and orientation effects.

Fig. 4.

The conflict type effect.

(A) Brain regions surviving the FDR-
correction (pFDR < 0.05 and p < 0.001)
across the 360 regions (criterion 1).
Labeled regions are those meeting
the criterion 2. (B) The regions show-
ing stronger encoding of conflict
type in the incongruent than congru-
ent conditions (criterion 2). ** pFDR <
.01, *** pFDR < .001. (C) The brain-be-
havior correlation of the right 8C (cri-
terion 3). (D) Illustration of the differ-
ent encoding strength of conflict
type similarity in incongruent versus
congruent conditions of right 8C. l =
left; r = right.
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Multivariate patterns of visual and oculomotor areas
encode stimulus orientation
To tease apart the representation of conflict type from that of perceptual information, we
tested the modulation of the spatial orientations of stimulus locations on RSM using the
aforementioned RSA. We also applied three independent criteria: (1) the cortical regions
should exhibit a statistically significant orientation effect on the RSM; (2) the conflict
similarity effect should be stronger in incongruent than congruent trials; and (3) the
orientation effect should not interact with the CSE, since the orientation effect was
dissociated from the conflict similarity effect and was not expected to influence cognitive
control. We observed increasing fMRI representational similarity between trials with more
similar orientations of stimulus location in the occipital cortex, such as right V1, bilateral V2
and V3, right V4, left area temporoparietooccipital junction 3 (TPOJ3) and right PHT areas
(FDR corrected ps < 0.05 and raw ps < 0.001). We also found the same effect in several
oculomotor related regions, including the left frontal eye field (FEF), anterior 6m (6ma), area
intraparietal 2 (IP2), right parietal area F (PF) and bilateral 5m, as well as other regions (Fig.
5A). Then we tested if any of these brain regions were related to the conflict representation
by comparing their encoding strength between incongruent and congruent conditions.
Results showed that the right V1, bilateral V2, left FEF, left IP2, right hippocampus (H) and
right PF encoded stronger orientation effect in the incongruent than the congruent
condition, pFDRs < .05, one-tailed (Table1, Fig. 5B). We then tested if any of these regions was
related to the behavioral performance, and results showed that none of them positively
correlated with the behavioral conflict similarity modulation effect, all pFDR > .675, one-
tailed. Thus all regions are consistent with the criterion 3. Like the right 8C area, none of the
reported areas directly encoded congruency (see Note S5). Taken together, we found that the
visual and oculomotor regions encoded orientations of stimulus location in a continuous
manner and that the encoding strength was stronger when conflict was present.

Fig. 5.

The axial orientation effect.

(A) Brain regions surviving the FDR-correction (pFDR < 0.05 and p < 0.001) across the 360 re-
gions (criterion 1). Labeled regions are those meeting the criterion 2. (B) The regions showing
stronger encoding of orientation in the incongruent than congruent conditions (criterion 2). *
pFDR < .05, ** pFDR < .01, *** pFDR < .001.

To explore the relation between conflict type and orientation representations, we conducted
representational connectivity (i.e., the similarity between two RSMs of two regions)(43)
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analyses and found that among the orientation effect regions, the right V1 and bilateral V2
showed significant representational connectivity with the right 8C compared to the
controlled regions (including those encoding orientation effect but not showing larger
encoding strength in incongruent than congruent conditions, as well as three other regions
encoding none of our defined effects in the main RSA, see Methods). Compared with the
largest connectivity strength in the controlled regions (i.e., the left V3, β = 0.1447 ± 0.0069),
we found higher connectivity in the left V2, β = 0.1645 ± 0.0060, t(34) = 4.86, right V1, β =
0.1628 ± 0.0065, t(34) = 4.54, and right V2, β = 0.1678 ± 0.0074, t(34) = 5.65, all pFDR < .001, one-
tailed (Fig. S6).

Discussion

Understanding how different types of conflict are resolved is essential to answer how
cognitive control achieves adaptive behavior. However, the dichotomy between domain-
general and/or domain-specific processes presents a dilemma(15),(21). Reconciliation of the
two views also suffers from the inability to fully address how infinite conflict can be
resolved by a limited set of cognitive control processes. In this study, we hypothesized that
this issue can be addressed if conflict is organized as a cognitive space. Leveraging the well-
known dissociation between the spatial Stroop and Simon conflict(44)-(46), we designed five
conflict types that are systematically different from each other. The cognitive space
hypothesis predicted that the representational proximity/distance between two conflict
types scales with their similarities/dissimilarities, which was tested at both behavioral and
neural levels. Behaviorally, we found that the CSEs were linearly modulated by conflict
similarity between consecutive trials, replicating and extending our previous study(28).
BOLD activity patterns in the right dlPFC further showed that the representational similarity
between conflict types was modulated by their conflict similarity, and that strength of the
modulation was positively associated with the modulation of conflict similarity on the
behavioral CSE. We also observed that activity in three brain regions (right IPS, right dlPFC
and left MFG) was parametrically modulated by the conflict type difference, though they did
not directly explain the behavioral results. Additionally, we found that the visual regions
encoded the spatial orientation of the stimulus location, which might provide the essential
concrete information to determine the conflict type. Together, these results support the
hypothesis that the conflicts are organized in a cognitive space that enables a limited set of
cognitive control processes to resolve infinite possible types of conflict.

Conventionally, the domain-general view of control suggests a common representation for
different types of conflict (Fig. 6, left), while the domain-specific view suggests dissociated
representations for different types (Fig. 6, right). Previous research on this topic often adopts
a binary manipulation of conflict(21) (i.e., each domain only has one conflict type) and thus is
not suitable to test the cognitive space hypothesis. Here, we parametrically manipulated the
similarity of conflict in different conflict types and demonstrated that the two theories can
be reconciled as a cognitive space(22) (Fig. 6, middle). Specifically, the cognitive space
provides a solution to use a single cognitive space organization to encode different types of
conflict that are close (domain-general) or distant (domain-specific) to each other. It also
shows the potential for how unlimited conflict types can be coded using limited resources
(i.e., as different points in a low-dimensional cognitive space). Moreover, geometry can also
emerge in the cognitive space(20), which will allow for decomposition of a conflict type (e.g.,
how much conflict in each of the dimensions in the cognitive space) so that it can be mapped
into the limited set of cognitive control processes. Such geometry enables fast learning of
cognitive control settings from similar conflict types by providing a measure of similarity
(e.g., as distance in space).
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Fig. 6.

Illustration of the hypothesized dimensionalities of different
representations.

The shade of the red color indicates the degree of dimensionality (i.e., how many dimensions
are needed to represent different states). The dimensionality of domain-general representa-
tion is extremely low, with all representations compressed to one dot. The dimensionality of
domain-specific representation is extremely high, with each control state encoded in a unique
and orthogonal dimension. The dimensionality of the organized representation is modest, en-
abling distant states to be separated but also allowing close states to share representations.
The solid arrows show the axes of different dimensions. The dashed arrows indicate how the
representational dimensionality can be reduced by projecting the independent dimensions to
a common dimension.

If the dimensionality of the cognitive space of conflict is extremely high, the cognitive space
solution would suffer the same criticism as the domain-specificity theory. We argue that the
dimensionality is manageable for the human brain, as task information unrelated to
differentiating conflicts can be removed. For example, the Simon conflict can be represented
in a space consisting of spatial location, stimulus information and responses. Thus, the
dimensionality of the cognitive space of conflict should not exceed the number of
represented features. The dimensionality can be further reduced, as humans selectively
represent a small number of features when learning task representations (e.g., spatial
information is reduced to the horizontal dimension from the 3D space we live in)(47). The
reduced dimensionality does not only require less effort to represent the conflict, but also
facilitates generalization of cognitive control settings among different conflict types(26).

Although our finding of cognitive space in the right dlPFC differs from other cognitive space
studies(24),(25),(48) that highlighted the orbitofrontal and hippocampus regions, it is consistent
with the cognitive control literature. The prefrontal cortex has long been believed to be a key
region of cognitive control representation(49)-(51) and is widely engaged in multiple task
demands(12),(52). However, it is not until recently that the multivariate representation in this
region has been examined. For instance, Vaidya et al.(29) reported that frontal regions
presented latent states that are organized hierarchically. Freund et al.(32) showed that dlPFC
encoded the target and congruency in a typical color-word Stroop task. Taken together, we
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suggest that the right dlPFC might flexibly encode a variety of cognitive spaces to meet the
dynamic task demands. In addition, we found no such representation in the left dlPFC (Note
S6), indicating a possible lateralization. Previous studies showed that the left dlPFC was
related to the expectancy-related attentional set up-regulation, while the right dlPFC was
related to the online adjustment of control(53),(54), which is consistent with our findings.
Moreover, the right PFC also represents a composition of single rules(55), which may explain
how the spatial Stroop and Simon types can be jointly encoded in a single space.

We found that participants with stronger conflict representation as cognitive space in right
dlPFC have also adjusted their conflict control to a greater extent based on the conflict
similarity (Fig 4C). The finding suggests that the cognitive space organization of conflict
guides cognitive control to adjust behavior. Previous studies have shown that participants
may adopt different strategies to represent a task, with the model-based strategies
benefitting goal-related behaviors more than the model-free strategies(56). Similarly, we
propose that the cognitive space could serve as a mental model to assist fast learning and
efficient organization of cognitive control settings. With the organization of a cognitive
space, a new conflict can be quickly assigned a location in the cognitive space, which will
facilitate the development of cognitive control settings for this conflict by interpolating
nearby conflicts and/or projecting the location to axes representing different cognitive
control processes. On the other hand, without a cognitive space, there would be no measure
of similarity between conflict on different trials, hence limiting the ability of fast learning of
cognitive control setting from similar trials.

The cognitive space in the right dlPFC appears to be an abstraction of concrete information
from the visual regions. We found that the right V1 and bilateral V2 encoded the spatial
orientation of the target location (Fig. 5) and showed strong representational connectivity
with the right dlPFC (Fig. S6), suggesting that there might be information exchange between
these regions. We speculate that the representation of spatial orientation may have provided
the essential perceptual information to determine the conflict type (Fig. 1) and thus served
as the critical input for the cognitive space. The conflict type representation further
incorporates the stimulus-response mapping rules to the spatial orientation representation,
so that vertically symmetric orientations can be recognized as the same conflict type (Fig.
S4). In other words, the representation of conflict type involves the compression of
perceptual information(57), which is consistent with the idea of a low-dimensional
representation of cognitive control(26),(31). The compression and abstraction processes might
be why the frontoparietal regions are the top of hierarchy of information processing(58) and
why the frontoparietal regions are widely engaged in multiple task demands(59).

With conventional univariate analyses, we observed that the overall congruency effect was
located at the medial frontal regions (i.e., pre-SMA and ACC), which is consistent with
previous studies(20),(40). Beyond that, we also found regions that can be parametrically
modulated by conflict type difference, including right IPS, right dlPFC (modulated by Simon
difference) and left MFG (modulated by spatial Stroop difference). The lateralization of these
regions is consistent with a previous finding(19), which highlighted the difference of Stroop
and Simon types with brain activities at different hemispheres. The scaling of brain activities
based on conflict difference is potentially important to the representational organization of
different types of conflict. However, we didn’t observe their brain-behavioral relevance. One
possible reason is that the conflict (dis)similarity is a combination of (dis)similarity of spatial
Stroop and Simon conflicts, but each univariate region only reflects difference along a single
conflict domain. Also likely, the representational geometry is more of a multivariate problem
than what univariate activities can capture(60). Future studies may adopt approaches such as
repetition suppression induced fMRI adaptation(26) to test the role of univariate activities in
task representations.
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One limitation of this study needs to be noted. To parametrically manipulate the conflict
similarity levels, we adopted the spatial Stroop-Simon paradigm that enables parametrical
combinations of spatial Stroop and Simon conflicts. However, since this paradigm is a two-
alternative forced choice design, the behavioral CSE is not a pure measure of adjusted
control but could be partly confounded by bottom-up factors such as feature integration(61).
Future studies may replicate our findings with a multiple-choice design with confound-free
trial sequences(62).

In sum, we showed that the cognitive control can be organized in an abstract cognitive space
that is represented in the right dlPFC and guides cognitive control to adjust goal-directed
behavior. The cognitive space hypothesis reconciles the long-standing debate between the
domain-general and domain-specific views of cognitive control and provides a parsimonious
and more broadly applicable framework for understanding how our brains efficiently and
flexibly represents multiple task settings.

Materials and Methods

Subjects
In Experiment 1, we enrolled thirty-three college students (19-28 years old, average of 21.5 ±
2.3 years old; 19 males). In Experiment 2, thirty-six college students were recruited, and one
subject was excluded due to not following task instructions. The final sample of Experiment
2 consisted of thirty-five participants (19-29 years old, average of 22.3 ± 2. 5 years old; 17
males). The sample sizes were determined based on our previous study(28). All participants
reported no history of psychiatric or neurological disorders and were right-handed, with
normal or corrected-to-normal vision. The experiments were approved by the Institutional
Review Board of the Institute of Psychology, Chinese Academy of Science. Informed consent
was obtained from all subjects.

Method Details

Experiment 1

Experimental Design

We adopted a modified spatial Stroop-Simon task(28) (Fig. 1). The task was programmed with
the E-prime 2.0 (Psychological Software Tools, Inc.). The stimulus was an upward or
downward black arrow (visual angle of ∼ 1°) displayed on a 17-inch LCD monitor with a
viewing distance of ∼60 cm. The arrow appeared inside a grey square at one of ten locations
with the same distance from the center of the screen, including two horizontal (left and
right), two vertical (top and bottom), and six corner (orientations of 22.5°, 45°and 67.5°)
locations. The distance from the arrow to the screen center was approximately 3°. To
dissociate orientation of stimulus locations and conflict types (see below), participants were
randomly assigned to two sets of stimulus locations (one included top-right and bottom-left
quadrants, and the other included top-left and bottom-right quadrants).

Each trial started with a fixation cross displayed in the center for 100−300 ms, followed by
the arrow for 600 ms and another fixation cross for 1100−1300 ms (the total trial length was
fixed at 2000 ms). Participants were instructed to respond to the pointing direction of the
arrow by pressing a left or right button and to ignore its location. The mapping between the
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arrow orientations and the response buttons was counterbalanced across participants. The
task design introduced two possible sources of conflict: on one hand, the direction of the
arrow is either congruent or incongruent with the vertical location of the arrow, thus
introducing a spatial Stroop conflict(33),(63), which contains the dimensional overlap between
task-relevant stimulus and task-irrelevant stimulus(1); on the other hand, the response (left
or right button) is either congruent or incongruent with the horizontal location of the arrow,
thus introducing a Simon conflict(33),(34), which contains the dimensional overlap between
task-irrelevant stimulus and response(1). Therefore, the five polar orientations of the
stimulus location (from 0 to 90°) defined five unique combinations of spatial Stroop and
Simon conflicts, with more similar orientations having more similar composition of conflict.
More generally, the spatial orientation of the arrow location relative to the center of the
screen forms a cognitive space of different blending of spatial Stroop and Simon conflict.

The formal task consisted of 30 runs of 101 trials each, divided into three sessions of ten runs
each. The participants completed one session each time and all three sessions within one
week. Before each session, the participants performed training blocks of 20 trials repeatedly
until the accuracy reached 90% in the most recent block. The trial sequences of the formal
task were pseudo-randomly generated to ensure that each of the task conditions and their
transitions occurred with equal number of trials.

Experiment 2

Experimental Design

The apparatus, stimuli and procedure were identical to Experiment 1 except for the changes
below. The stimuli were back projected onto a screen (with viewing angle being ∼3.9°
between the arrow and the center of the screen) behind the subject and viewed via a surface
mirror mounted onto the head coil. Due to the time constraints of fMRI scanning, the trial
numbers decreased to a total of 340, divided into two runs with 170 trials each. To obtain a
better hemodynamic model fitting, we generated two pseudo-random sequences optimized
with a genetic algorithm(64) conducted by the NeuroDesign package(65) (see Note S3 for more
detail). In addition, we added 6 seconds of fixation before each run to allow the stabilization
of the hemodynamic signal, and 20 seconds after each run to allow the signal to drop to the
baseline.

Before scanning, participants performed two practice sessions. The first one contained 10
trials of center-displayed arrow and the second one contained 32 trials using the same
design as the main task. They repeated both sessions until their performance accuracy for
each session reached 90%, after which the scanning began.

fMRI Image acquisition and preprocessing
Functional imaging was performed on a 3T GE scanner (Discovery MR750) using echo-planar
imaging (EPI) sensitive to BOLD contrast [in-plane resolution of 3.5 × 3.5 mm2, 64 × 64
matrix, 37 slices with a thickness of 3.5 mm and no interslice skip, repetition time (TR) of
2000 ms, echo-time (TE) of 30 ms, and a flip angle of 90°]. In addition, a sagittal T1-weighted
anatomical image was acquired as a structural reference scan, with a total of 256 slices at a
thickness of 1.0 mm with no gap and an in-plane resolution of 1.0 × 1.0 mm 2.

Before preprocessing, the first three volumes of the functional images were removed due to
the instability of the signal at the beginning of the scan. The anatomical and functional data
were preprocessed with the fMRIprep 20.2.0(66) (RRID:SCR_016216), which is based on
Nipype 1.5.1(67) (RRID:SCR_002502). Specifically, BOLD runs were slice-time corrected using
3dTshift from AFNI 20160207(68) (RRID:SCR_005927). The BOLD time-series were resampled
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to the MNI152NLin2009cAsym space without smoothing. For a more detailed description of
preprocessing, see Note S4. After preprocessing, we resampled the functional data to a
spatial resolution of 3 × 3 × 3 mm3. All analyses were conducted in volumetric space, and
surface maps are produced with Connectome Workbench (https://www.humanconnectome
.org/software/connectome-workbench) for display purpose only.

Quantification and Statistical Analysis

Behavioral analysis

Experiment 1

RT and ER were the two dependent variables analyzed. As for RTs, we excluded the first trial
of each block (0.9%, for CSE analysis only), error trials (3.8%), trials with RTs beyond three
SDs or shorter than 200 ms (1.3%) and post-error trials (3.4%). For the ER analysis, the first
trial of each block and trials after an error were excluded. To exclude the possible influence
of response repetition, we centered the RT and ER data within the response repetition and
response alternation conditions separately by replacing condition-specific mean with the
global mean for each subject.

To examine the modulation of conflict similarity on the CSE, we organized trials based on a 5
(previous trial conflict type) × 5 (current trial conflict type) × 2 (previous trial congruency) ×
2 (current trial congruency) factorial design. As conflict similarity is commutive between
conflict types, we expected the previous by current trial conflict type factorial design to be a
symmetrical (e.g., a conflict 1-conflict 2 sequence in theory has the same conflict similarity
modulation effect as a conflict 2-conflict 1 sequence), resulting a total of 15 conditions left
for the first two factors of the design (i.e., previous × current trial conflict type). For each
previous × current trial conflict type condition, the conflict similarity between the two trials
can be quantified as the cosine of their angular difference. In the current design, there were
five possible angular difference levels (0, 22.5°, 42.5°, 67.5° and 90°, see Fig. 1C). We further
coded the previous by current trial congruency conditions (hereafter abbreviated as CSE
conditions) as CC, CI, IC and II, with the first and second letter encoding the congruency (C)
or incongruency (I) on the previous and current trial, respectively. As the CSE is
operationalized as the interaction between previous and current trial congruency, it can be
rewritten as a contrast of (CI – CC) – (II – IC). In other words, the load of CSE on CI, CC, II and
IC conditions is 1, –1, –1 and 1, respectively. To estimate the modulation of conflict similarity
on the CSE, we built a regressor by calculating the Kronecker product of the conflict
similarity scores of the 15 previous × current trial conflict similarity conditions and the CSE
loadings of previous × current trial congruency conditions. This regressor was regressed
against RT and ER data separately, which were normalized across participants and CSE
conditions. The regression was performed using a linear mixed-effect model, with the
intercept and the slope of the regressor for the modulation of conflict similarity on the CSE
as random effects (across both participants and the four CSE conditions). As a control
analysis, we built a similar two-stage model(28). In the first stage, the CSE [i.e., (CI – CC) – (II –
IC)] for each of the previous × current trial conflict similarity condition was computed. In the
second stage, CSE was used as the dependent variable and was predicted using conflict
similarity across the 15 previous × current trial conflict type conditions. The regression was
also performed using a linear mixed effect model with the intercept and the slope of the
regressor for the modulation of conflict similarity on the CSE as random effects (across
participants).
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Experiment 2

Behavioral data was analyzed using the same linear mixed effect model as Experiment 1,
with all the CC, CI, IC and II trials as the dependent variable. In addition, to test if fMRI
activity patterns may explain the behavioral representations differently in congruent and
incongruent conditions, we conducted the same analysis to measure behavioral modulation
of conflict similarity on the CSE using congruent (CC and IC) and incongruent (CI and II)
trials separately.

Estimation of fMRI activity with univariate general linear
model (GLM)
To estimate voxel-wise fMRI activity for each of the experimental conditions, the
preprocessed fMRI data of each run were analyzed with the GLM. We conducted three GLMs
for different purposes. GLM1 aimed to validate the design of our study by replicating the
engagement of frontoparietal activities in conflict processing documented in previous
studies(7),(19), and to explore the cognitive space related regions that were parametrically
modulated by the conflict type. Preprocessed functional images were smoothed using a 6-
mm FWHM Gaussian kernel. We included incongruent and congruent conditions as main
regressors and appended a parametric modulator for each condition. The modulation
parameters for Conf 1, Conf 2, Conf 3, Conf 4, and Conf 5 trials were −2, −1, 0, 1 and 2,
respectively. In addition, we also added event-related nuisance regressors, including
error/missed trials, outlier trials (slower than three SDs of the mean or faster than 200 ms)
and trials within two TRs of significant head motion (i.e., outlier TRs, defined as standard
DVARS > 1.5 or FD > 0.9 mm from previous TR)(41). On average there were 1.2 outlier TRs for
each run. These regressors were convolved with a canonical hemodynamic response
function (HRF) in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm). We further added volume-level
nuisance regressors, including the six head motion parameters, the global signal, the white
matter signal, the cerebrospinal fluid signal, and outlier TRs. Low-frequency signal drifts
were filtered using a cutoff period of 128 s. The two runs were regarded as different sessions
and incorporated into a single GLM to get more power. This yielded two beta maps (i.e., a
main effect map and a parametric modulation map) for the incongruent and congruent
conditions, respectively and for each subject. At the group level, paired t-tests were
conducted between incongruent and congruent conditions, one for the main effect and the
other for the parametric modulation effect. Since the spatial Stroop and Simon conflict
change in the opposite direction to each other, a positive modulation effect would reflect a
higher brain activation when there is more Simon conflict, and a negative modulation effect
would reflect a higher brain activation for more spatial Stroop conflict. To avoid confusion,
we converted the modulation effect of spatial Stroop to positive by using a contrast of [–
(I_pm – C_pm)] throughout the results presentation. Results were thresholded by 3dclust
function in AFNI (69) with voxel-wise p < .005 and cluster-size > 20 voxels, which was
supposed to produce a desirable balance between Type I and II error rates(70). To visualize
the parametric modulation effects, we conducted a similar GLM (GLM2), except we used
incongruent and congruent conditions from each conflict type as separate regressors with
no parametric modulation. Then we extracted beta coefficients for each regressor and each
participant with regions observed in GLM1 as regions of interest, and finally got the
incongruent−congruent contrasts for each conflict type at the individual level. We reported
the results in Fig. 3, Table S1, and Fig. S3. Visualization of the uni-voxel results was made by
the MRIcron (https://www.mccauslandcenter.sc.edu/mricro/mricron/).

The GLM3 aimed to prepare for the representational similarity analysis (see below). There
were several differences compared to GLM1. The unsmoothed functional images after
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preprocessing were used. This model included 20 event-related regressors, one for each of
the 5 (conflict type) × 2 (congruency condition) × 2 (arrow direction) conditions. The event-
related nuisance regressors were similar to GLM1, but with additional regressors of
response repetition and post-error trials to account for the nuisance inter-trial effects. To
fully expand the variance, we conducted one GLM analysis for each run. After this
procedure, a voxel-wise fMRI activation map was obtained per condition, run and subject.

Representational similarity analysis (RSA)
To measure the neural representation of conflict similarity, we adopted the RSA. RSAs were
conducted on each of the 360 cortical regions of a volumetric version of the MMP cortical
atlas(42). To de-correlate the factors of conflict type and orientation of stimulus location, we
leveraged the between-subject manipulation of stimulus locations and conducted RSA in a
cross-subject fashion (Fig. S4)(60),(71). The beta estimates from GLM3 were noise-normalized
by dividing the original beta coefficients by the square root of the covariance matrix of the
error terms(72). For each cortical region, we calculated the Pearson’s correlations between
fMRI activity patterns for each run and each subject, yielding a 1400 (20 conditions × 2 runs
× 35 participants) × 1400 RSM. The correlations were calculated in a cross -voxel manner
using the fMRI activation maps obtained from GLM3 described in the previous section.
Similar to the behavioral analyses, we assumed the conflict similarity between two trials is
commutive and hence collapsed the RSM along the diagonal and converted the lower
triangle into a vector, which was then z-transformed and submitted to a linear mixed effect
model as the dependent variable. The linear mixed effect model also included regressors of
conflict similarity and orientation similarity. Importantly, conflict similarity was based on
how Simon and spatial Stroop conflict are combined and hence was calculated by first
rotating all subject’s stimulus location to the top-right and bottom-left quadrants, whereas
orientation was calculated using original stimulus locations. As a result, the regressors
representing conflict similarity and orientation similarity were de-correlated. Similarity
between two conditions was measured as the cosine value of the angular difference. Other
regressors included a target similarity regressor (i.e., whether the arrow directions were
identical), a response similarity regressor (i.e., whether the correct responses were
identical); a spatial Stroop distractor regressor (i.e., vertical distance between two stimulus
locations); a Simon distractor regressor (i.e., horizontal distance between two stimulus
locations). Additionally, we also included three regressors denoting the similarity of Run (i.e.,
whether two conditions are within the same run), Subject (i.e., whether two conditions are
within the same subject), and Group (i.e., whether two conditions are within the same
subject group, according to the stimulus-response mapping). We also added two regressors
including ROI-mean fMRI activations for each condition of the pair to remove the possible
uni-voxel influence on the RSM. A last term was the intercept. The intercept and slopes of the
regressors were set as random effects at the subject level. Individual effects for each
regressor were also extracted from the model for statistical inference and brain-behavioral
correlation analyses. In brain-behavioral analyses, only the RT was used as behavioral
measure to be consistent with the fMRI results, where the error trials were regressed out.

The statistical significance of these beta estimates was determined with one-sample t-tests
(one-tailed). Multiple comparison correction was applied with false discovery rate (FDR)
approach(73) across all cortical regions (pFDR < 0.05), together with a threshold of 0.001 for
each region. To test if the representation strengths are different between congruent and
incongruent conditions, we also conducted the RDM analyses using only congruent and
incongruent trials separately. Individual effects were extracted from each model and tested
using a paired t-test. To visualize the difference, we plotted the effect-related patterns (the
predictor multiplied by the slope, plus the residual) as a function of the similarity levels (Fig.
4D).
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Representational connectivity analysis
To explore the possible relevance between the conflict type and the orientation effects, we
conducted representational connectivity(43) between regions showing evidence encoding
conflict similarity and orientation similarity. Similar to the RSA mentioned above, the z-
transformed RSM vector of each region were extracted and submitted to a mixed linear
model, with the RSM of the conflict type region (i.e., the right 8C) as the dependent variable,
and the RSM of one of the orientation regions (e.g., bilateral V2) as the predictor. Intercept
and the slope of the regressor were set as random effects at the subject level, and individual
coefficients of the slope were extracted for further statistical analysis. The mixed effect
model was conducted for each pair of regions, respectively. Considering there might be
strong intrinsic correlations across the RSMs induced by the nuisance factors, such as the
within-subject similarity, we added two sets of regions as control. First, we selected regions
without showing any effects of interest (i.e., qFDR > 0.05 for all the conflict type, orientation,
congruency, target, response, spatial Stroop distractor and Simon distractor effects). Second,
we selected regions of orientation effect meeting the first but not the second criterion, to
account for the potential correlation between regions of the two partly orthogonal
regressors (Fig. S6). Existence of representational connectivity was defined by a higher
connectivity slope than any of the control regions with paired-t tests.
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Supplementary Notes

Note S1. Behavioral congruency effects
To test the congruency effects for the five conflict types, we conducted 5 (conflict type) × 2
(congruency) repeated-measure ANOVAs with RT and ER from both experiments. The results
are displayed in Supplementary Fig. 1.

Experiment 1

For the RT, we observed a significant main effect of Congruency, F(1, 32) = 407.70, p < .001,
ηp

2 = .93, a significant main effect of Conflict Type, F(4, 128) = 6.32, p < .001, ηp
2 = .16, and an

interaction between Conflict Type and Congruency, F(4, 128) = 27.86, p < .001, ηp
2 = .47.

Simple effect analyses showed that participants responded more slowly in incongruent
conditions than in congruent conditions for all conflict types, pFDRs < .001. Additionally, the
congruency effect of the Type 2, 3 and 4 were significantly larger than that of the Type 1, and
the congruency effect of the Type 2 and 3 were significantly larger than that of the Type 5,
pFDRs < .05.

Similar results were found with the ER. We observed a significant main effect of Congruency,
F(1, 32) = 56.83, p < .001, ηp

2 = .64, a significant main effect of Conflict Type, F(4, 128) = 6.29, p
< .001, ηp

2 = .16, and an interaction between Conflict Type and Congruency, F(4, 128) = 13.23,
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p < .001, ηp
2 = .29. Simple effect analyses showed that participants were more error-prone in

incongruent conditions than in congruent conditions for all conflict types, pFDRs < .001. The
congruency effect of the Type 2, 3 and 4 were significantly larger than that of the Type 1, and
the congruency effect of the Type 3 and 4 were significantly larger than that of the Type 5,
pFDRs < .05.

Experiment 2

For the RT, We observed a significant main effect of Congruency, F(1, 34) = 149.71, p < .001,
ηp

2 = .81, a significant main effect of Conflict Type, F(4, 136) = 10.11, p < .001, ηp
2 = .23, and an

interaction between Conflict Type and Congruency, F(4, 136) = 7.63, p < .001, ηp
2 = .18. Simple

effect analyses showed that participants responded more slowly in incongruent conditions
than in congruent conditions for all conflict types, pFDRs < .001. The congruency effect of the
Type 4 condition was larger than that of Type 1, and Type 3 and Type 4 were significantly
larger than that of the Type 5, pFDRs < .05.

For the ER, we only observed a significant main effect of Congruency, F(1, 34) = 29.80, p <
.001, ηp

2 = .47. All the types showed a larger error rate in incongruent than congruent
conditions (pFDRs < .001), except that the Type 1 only showed a marginal significance (pFDR =
.062).

In sum, we observed strong behavioral congruency effects in both experiments. The findings
indicate that these conflict conditions indeed engaged cognitive control(1).

Note S2. Modulation of conflict similarity on behavioral
CSEs cannot be explained by the physical proximity
In our design, the conflict similarity might be confounded by the physical proximity between
stimulus (i.e., the arrow) of two consecutive trials. That is, when arrows of the two trials
appear at the same quadrant, a higher conflict similarity also indicates a higher physical
proximity (Fig. 1A). Although the opposite is true if arrows of the two trials appear at
different quadrants, it is possible the behavioral effects can be biased by the within
quadrant trials. To examine if the physical distance has confounded the conflict similarity
modulation effect, we conducted an additional analysis.

We defined the physical angular difference across two trials as the difference of their polar
angles relative to the origin. Therefore, the physical angular difference could vary from 0 to
180°. For each CSE conditions (i.e., CC, CI, IC and II), we grouped the trials based on their
physical angular distances, and then averaged trials with the same previous by current
conflict type transition but different orders (e.g., Conf 2−Conf 3 and Conf 3−Conf 2) within
each subject. The data were submitted to a mixed-effect model with the conflict similarity,
physical proximity (i.e., the opposite of the physical angular difference) as fixed-effect
predictors, and subject and CSE condition as random effects. Results showed significant
conflict similarity modulation effects in both Experiment 1 (RT: β = 0.09 ± 0.01, t(7812) =
13.74, p < .001, ηp

2 = .025; ER: β = 0.09 ± 0.01, t(7812) = 7.66, p < .001, ηp
2 = .018) and

Experiment 2 (RT: β = 0.21 ± 0.02, t(3956) = 9.88, p < .001, ηp
2 = .043; ER: β = 0.20 ± 0.03, t(4201)

= 6.11, p < .001, ηp
2 = .038). Thus, the observed modulation of conflict similarity on

behavioral CSEs cannot be explained by physical proximity.

Note S3. The fMRI sequence generation approach
Two sequences of 170 trials each were generated independently with the NeuroDesign
package (2). Each sequence was initialized as 10 consecutive sub-blocks of each condition
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(incongruent and congruent) for each conflict type (Conf 1, Conf 2, Conf 3, Conf 4 and Conf
5). The contrasts of interest were the main effect of congruency (i.e., [1 −1 1 −1 1 −1 1 −1 1
−1]) and the parametric effect (i.e., [−2 −2 −1 −1 0 0 1 1 2 2]). The order was optimized after
5000 cycles of crossover, mutation, immigration, fitness, and natural selection. The final
number of trials for different conflict types varied from 64 to 73.

Note S4. fMRI data preprocessing
Results included in this manuscript come from preprocessing performed using fMRIPrep
20.2.0 (RRID:SCR_016216)(3), which is based on Nipype 1.5.1 (RRID:SCR_002502)(4).

Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection(5), distributed with ANTs 2.3.3 (RRID:SCR_004757)(6), and used as T1w-
reference throughout the workflow. The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using
fast (FSL 5.0.9, RRID:SCR_002823)(7). Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym) was performed through nonlinear registration with
antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the
T1w template. The following template was selected for spatial normalization: ICBM 152
Nonlinear Asymmetrical template version 2009c [RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym](8).

Functional data preprocessing

For each of the 5 BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. Susceptibility distortion correction
(SDC) was omitted. The BOLD reference was then co-registered to the T1w reference using
flirt (FSL 5.0.9)(9) with the boundary-based registration(10) cost-function. Co-registration was
configured with nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters) are estimated before
any spatiotemporal filtering using mcflirt (FSL 5.0.9)(11). BOLD runs were slice-time
corrected using 3dTshift from AFNI 20160207 (RRID:SCR_005927)(11). The BOLD time-series
(including slice-timing correction when applied) were resampled onto their original, native
space by applying the transforms to correct for head-motion. These resampled BOLD time-
series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD.
The BOLD time-series were resampled into standard space, generating a preprocessed BOLD
run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD was computed using two formulations following Power
(absolute sum of relative motions)(11) and Jenkinson (relative root mean square
displacement between affines, Jenkinson et al.(9)). FD and DVARS are calculated for each
functional run, both using their implementations in Nipype (following the definitions by
Power et al.(11)). The three global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor)(12). Principal components are estimated after
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with
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128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels
within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined
CSF+WM) are generated in anatomical space. The implementation differs from that of
Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor
masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask
is obtained by thresholding the corresponding partial volume map at 0.05, and it ensures
components are not extracted from voxels containing a minimal fraction of GM. Finally,
these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the
original implementation). Components are also calculated separately within the WM and
CSF masks. For each CompCor decomposition, the k components with the largest singular
values are retained, such that the retained components time series are sufficient to explain
50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The
remaining components are dropped from consideration. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds file.
The confound time series derived from head motion estimates and global signals were
expanded with the inclusion of temporal derivatives and quadratic terms for each(12).
Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated
as motion outliers. All resamplings can be performed with a single interpolation step by
composing all the pertinent transformations (i.e. head-motion transform matrices,
susceptibility distortion correction when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels(13). Non-gridded (surface) resamplings were performed
using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (RRID:SCR_001362)(14), mostly within
the functional processing workflow. For more details of the pipeline, see the section
corresponding to workflows in fMRIPrep’s documentation.

Note S5. The multivariate representations of conflict type
and orientation are different from the congruency effect
An explanation to the stronger encoding of conflict type in incongruent than congruent
condition (Fig. 3B/D) in right 8C area may be the encoding of congruency. To test this
possibility, we first tested the univariate congruency effect (incongruent minus congruent)
using the parametric modulating GLM1 that was used to estimate fMRI activation levels of
conflict type × congruency conditions. We observed no univariate congruency effect in the
right 8C region, t(34) = −0.03, p = .513, one-tailed. We further tested the possibility that the
congruency effect may be manifested in behavioral relevance. To this end, we extracted the
congruency effect (incongruent minus congruent) on encoding strength of conflict similarity
for each subject from the mixed-effect model based on the cross-subject RSA (see the
Representational similarity analysis of Methods in the main text) and correlated it with the
behavioral congruency effect, averaged across the five conflict types (i.e., the main effect
reported in the Note S1). No significant correlation was observed (r = 0.14, p = .380, one-
tailed). Taken together, these results suggested that the neural encoding strength of conflict
type does not reflect the level of cognitive control engagement, but the dynamic adjustment
of cognitive control instead.

Similarly, we tested whether those regions with stronger encoding of orientation in
incongruent than congruent condition (i.e., bilateral V2, left FEF, left IP2, right V1, right H
and right PF) reflects the congruency effect. We observed no uni-voxel congruency effect in
any of these regions, all pFDR > .998, one-tailed. In addition, the orientation effect was not
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correlated to the behavioral congruency in any of the regions, all pFDR > .608, one-tailed.
Together with our finding that there was no correlation between the strength of orientation
encoding and the conflict similarity modulation on behavioral CSEs in any of these regions
(see the Multivariate patterns of visual and oculomotor areas encode stimulus orientation of
Results in the main text), these results indicate that the encoding of orientation effect did not
reflect the encoding of congruency or conflict type. Instead, we speculate that the encoding
of orientations provides perceptual information to determine the conflict type.

Note S6. The lateralization of conflict type representation
We observed the right 8C but not the left 8C represented the conflict type similarity. A
further test is to show if there is a lateralization. We tested several regions of the left dlPFC,
including the i6-8, 8Av, 8C, p9-46v, 46, 9-46d, a9-46v(15). We found that none of these regions
show the representation of conflict type, all pFDR > .99. These results indicate that the conflict
type is specifically represented in the right dlPFC.

Supplementary Figures

Fig. S1.

The congruency effects of
Experiment 1 (A and B) and
Experiment 2 (C and D). Error bars
denote the standard errors of mean.
Conf 1 to 5 denotes the five conflict
types. Small insets on top of panel A
denote an example of stimuli posi-
tions for each conflict type. RT = reac-
tion time; ER = error rate.

https://elifesciences.org/
https://doi.org/10.7554/eLife.87126.1


Guochun Yang et al., 2023 eLife. https://doi.org/10.7554/eLife.87126.1 24 of 41

Fig. S2.

The conflict similarity modulation on performance of Experiment 1 (A, B, D and E) and
Experiment 2 (C and F), respectively. A and D are scatter plots of CSE [i.e., (CI−CC) − (II−IC)] for
RT and ER as a function of the cosine similarity, respectively. In B, C, E and F, the cosine simi-
larity and RT / ER are normalized across conflict similarity levels within each of the four CSE
conditions (i.e., CC, II, CI and IC). Conflict similarity for CC and II conditions are reversed (mul-
tiplied by −1), such that for all the four CSE conditions, higher conflict similarity is expected to
be associated with worse performance (see Behavioral analysis in Methods). Each dot repre-
sents a subject. The thin colored lines in B, C, E and F are the fitted lines for each of the four
CSE conditions, and the thick black lines are the fitted lines collapsing across all CSE condi-
tions. For panel C and F some similarity levels are missing because of the limited trial numbers
in the experimental design in Experiment 2. CSE = congruency sequence effect; RT = reaction
time; ER = error rate; CI = congruent (trial n−1)-incongruent (trial n); IC = incongruent-congru-
ent; CC = congruent-congruent; II = incongruent-incongruent.
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Fig. S3.

Neural congruency effect (I−C) by
GLM2 [see the Estimation of fMRI ac-
tivity with univariate general linear
model (GLM) of Methods in the main
text], plotted as a function of conflict
type in different cortical ROIs. The
ROIs were selected because they
show a statistically significant con-
gruency effects or parametric modu-
lation effects when analyzed using
the univariate GLM1.The pre-SMA
and ACC showed overall congruency
effects regardless of the conflict type
(upper panel); the right IPS and right
dmPFC were positively modulated by
the conflict type and the left MFG
was negatively modulated by the

conflict type (lower panel). Conf 1 to 5 denotes the five conflict types, from the spatial Stroop to the Simon. Pre-SMA =
pre-supplementary motor area; ACC = anterior cingulate cortex; IPS = inferior parietal sulcus; dmPFC = dorsomedial pre-
frontal cortex; MFG = middle frontal gyrus.

Fig. S4.

The cross-subject RSA model and the rationale. The RSM is calculated as the Pearson’s corre-
lation between each pair of conditions and the 35 subjects. For 17 subjects, the stimuli were
displayed on the top-left and bottom-right quadrants, and they were asked to respond with
left hand to the upward arrow and right hand to the downward arrow. For the other 18 sub-
jects, the stimuli were displayed on the top-right and bottom-left quadrants, and they were
asked to respond with left hand to the downward arrow and right hand to the upward arrow.
Within each subject, the conflict type and orientation regressors were perfectly covaried. For
instance, the same conflict type will always be on the same orientation. To de-correlate
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conflict type and orientation effects, we conducted the RSA across subjects from different
groups. For example, the dashed ellipses highlight the conditions that are orthogonal to each
other on the orientation representation, response, and Simon distractor, when their conflict
type, target and spatial Stroop distractor are the same. The dashed boxes show the possible
target locations for different conditions. RSM = representational similarity matrix.

Fig. S5.

The cortical regions showing differ-
ent effects in the main RSA. (A) The
target effect reflects the above
chance encoding of upward and
downward arrow directions, and is
most strongly encoded in the visual,
memory and semantic regions, pos-
sibly because producing a goal-direct
response to the stimulus require pro-
cessing in all these regions. (B) the
response effect reflects the above
chance encoding of left and right re-
sponses, and is most strongly encod-
ed in motor regions. (C) the spatial
Stroop distractor effect reflects the
above chance encoding of vertical lo-
cation of the stimulus, and is most
strongly encoded in left visual re-
gions. (D) the Simon distractor effect

reflects the above chance encoding of horizontal locations of the stimulus, and is most strongly encoded at the right vis-
ual regions, among others. All p-values are FDR-corrected (pFDR < 0.05 and raw p < 0.001) across the 360 cortical ROIs.
Brighter colors denote stronger effects as indicated by the opposite of log-transformed p values.
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Fig. S6.

The representational connectivity be-
tween the right 8C area and the cor-
tical regions showing significant en-
coding of orientation. The black bars
represent regions showing both the
overall orientation effect and higher
encoding of orientation in incongru-
ent than congruent conditions; the
grey bars are regions showing only
the overall orientation effect but not
higher encoding of orientation in in-
congruent than congruent condi-
tions; and the white bars are regions
not showing any of the effects of in-
terest (i.e., qFDR > 0.05 for all the con-
flict type, orientation, congruency,
target, response, spatial Stroop dis-

tractor and Simon distractor effects). The grey and white bars show controlled regions. Error bars are the standard error
of the mean. The dashed line indicates the 95% confidence interval of the highest connectivity of controlled regions (i.e.,
left V3). l = left, r = right.

Supplementary Tables

Table S1.

Brain activations for the uni-voxel parametric analysis in GLM1 (voxel-wise one-tailed p < .005,
cluster > 20)
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Reviewer #1 (Public Review):
People can perform a wide variety of different tasks, and a long-standing question in
cognitive neuroscience is how the properties of different tasks are represented in the brain.
The authors develop an interesting task that mixes two different sources of difficulty, and
find that the brain appears to represent this mixture on a continuum, in the prefrontal areas
involved in resolving task difficulty. While these results are interesting and in several ways
compelling, they overlap with previous findings and rely on novel statistical analyses that
may require further validation.

Strengths
1. The authors present an interesting and novel task for combining the contributions of
stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in
the multi-source interference task (MSIT), this task provides a more graded mixture between
these two sources of difficulty

2. The authors do a good job triangulating regions that encoding conflict similarity, looking
for the conjunction across several different measures of conflict encoding

3. The authors quantify several salient alternative hypothesis and systematically distinguish
their core results from these alternatives
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4. The question that the authors tackle is of central theoretical importance to cognitive
control, and they make an interesting an interesting contribution to this question

Concerns
1. It's not entirely clear what the current task can measure that is not known from the MSIT,
such as the additive influence of conflict sources in Fu et al. (2022), Science. More could be
done to distinguish the benefits of this task from MSIT.

2. The evidence from this previous work for mixtures between different conflict sources
make the framing of 'infinite possible types of conflict' feel like a strawman. The authors cite
classic work (e.g., Kornblum et al., 1990) that develops a typology for conflict which is far
from infinite, and I think few people would argue that every possible source of difficulty will
have to be learned separately. Such an issue is addressed in theories like 'Expected Value of
Control', where optimization of control policies can address unique combinations of task
demands.

3. Wouldn't a region that represented each conflict source separately still show the same
pattern of results? The degree of Stroop vs Simon conflict is perfectly negatively correlated
across conditions, so wouldn't a region that *just* tracks Stoop conflict show these RSA
patterns? The authors show that overall congruency is not represented in DLPFC (which is
surprising), but they don't break it down by whether this is due to Stroop or Simon
congruency (I'm not sure their task allows for this).

4. The authors use a novel form of RSA that concatenates patterns across conditions, runs
and subjects into a giant RSA matrix, which is then used for linear mixed effects analysis.
This appears to be necessary because conflict type and visual orientation are perfectly
confounded within the subject (although, if I understand, the conflict type x congruence
interaction wouldn't have the same concern about visual confounds, which shouldn't depend
on congruence). This is an interesting approach but should be better justified, preferably
with simulations validating the sensitivity and specificity of this method and comparing it to
more standard methods.

A chief concern is that the same pattern contributes to many entries in the DV, which has
been addressed in previous work using row-wise and column-wise random effects (Chen et
al., 2017, Neuroimage). It would also be informative to know whether the results hold up to
removing within-run similarity, which can bias similarity measures (Walther et al., 2016,
Neuroimage).

Another concern is the extent to which across-subject similarity will only capture consistent
patterns across people, making this analysis very similar to a traditional univariate analysis
(and unlike the traditional use of RSA to capture subject-specific patterns).

5. Finally, the authors should confirm all their results are robust to less liberal methods of
multiplicity correction. For univariate analysis, they should report the effects from the
standard p < .001 cluster forming threshold for univariate analysis (or TFCE). For
multivariate analyses, FDR can be quite liberal. The authors should consider whether their
mixed-effects analyses allow for group-level randomization, and consider (relatively
powerful) Max-Stat randomization tests (Nichols & Holmes, 2002, Hum Brain Mapp).

Reviewer #2 (Public Review):
Summary, general appraisal
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This study examines the construct of "cognitive spaces" as they relate to neural coding
schemes present in response conflict tasks. The authors utilize a novel paradigm, in which
subjects must map the direction of a vertically oriented arrow to either a left or right
response. Different types of conflict (spatial Stroop, Simon) are parametrically manipulated
by varying the spatial location of the arrow (a task-irrelevant feature). The vertical
eccentricity of the arrow either agrees or conflicts with the arrow's direction (spatial Stroop),
while the horizontal eccentricity of the arrow agrees or conflicts with the side of the
response (Simon). A neural coding model is postulated in which the stimuli are embedded in
a cognitive space, organized by distances that depend only on the similarity of congruency
types (i.e., where conditions with similar relative proportions of spatial-Stroop versus Simon
congruency are represented with similar activity patterns). The authors conduct a
behavioral and fMRI study to provide evidence for such a representational coding scheme.
The behavioral findings replicate the authors' prior work in demonstrating that conflict-
related cognitive control adjustments (the congruency sequence effect) shows strong
modulation as a function of the similarity between conflict types. With the fMRI neural
activity data, the authors report univariate analyses that identified activation in left
prefrontal and dorsomedial frontal cortex modulated by the amount of Stroop or Simon
conflict present, and multivariate representational similarity analyses (RSA) that identified
right lateral prefrontal activity encoding conflict similarity and correlated with the
behavioral effects of conflict similarity.
This study tackles an important question regarding how distinct types of conflict, which
have been previously shown to elicit independent forms of cognitive control adjustments,
might be encoded in the brain within a computationally efficient representational format.
The ideas postulated by the authors are interesting ones and the utilized methods are
rigorous. However, the study has critical limitations that are due to a lack of clarity
regarding theoretical hypotheses, serious confounds in the experimental design, and a
highly non-standard (and problematic) approach to RSA. Without addressing these issues it
is hard to evaluate the contribution of the authors findings to the computational cognitive
neuroscience literature.

The primary theoretical question and its implications are unclear.

The paper would greatly benefit from more clearly specifying potential alternative
hypotheses and discussing their implications. Consider, for example, the case of parallel
conflict monitors. Say that these conflict monitors are separately tuned for Stroop and Simon
conflict, and are located within adjacent patches of cortex that are both contained within a
single cortical parcel (e.g., as defined by the Glasser atlas used by the authors for analyses). If
RSA was conducted on the responses of such a parcel to this task, it seems highly likely that
an activation similarity matrix would be observed that is quite similar (if not identical) to
the hypothesized one displayed in Figure 1. Yet it would seem like the authors are arguing
that the "cognitive space" representation is qualitatively and conceptually distinct from the
"parallel monitor" coding scheme. Thus, it seems that the task and analytic approach is not
sufficient to disambiguate these different types of coding schemes or neural architectures.

The authors also discuss a fully domain-general conflict monitor, in which different forms of
conflict are encoded within a single dimension. Yet this alternative hypothesis is also not
explicitly tested nor discussed in detail. It seems that the experiment was designed to
orthogonalize the "domain-general" model from the "cognitive space" model, by attempting
to keep the overall conflict uniform across the different stimuli (i.e., in the design, the level
of Stroop congruency parametrically trades off with the level of Simon congruency). But in
the behavioral results (Fig. S1), the interference effects were found to peak when both Stroop
and Simon congruency are present (i.e., Conf 3 and 4), suggesting that the "domain-general"
model may not be orthogonal to the "cognitive space" model. One of the key advantages of
RSA is that it provides the ability to explicitly formulate, test and compare different coding
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models to determine which best accounts for the pattern of data. Thus, it would seem critical
for the authors to set up the design and analyses so that an explicit model comparison
analysis could be conducted, contrasting the domain-general, domain-specific, and cognitive
space accounts.
Relatedly, the reasoning for the use of the term "cognitive space" is unclear. The mere
presence of graded coding for two types of conflict seems to be a low bar for referring to
neural activity patterns as encoding a "cognitive space". It is discussed that cognitive
spaces/maps allow for flexibility through inference and generalization. But no links were
made between these cognitive abilities and the observed representational structure.
Additionally, no explicit tests of generality (e.g., via cross-condition generalization) were
provided. Finally, although the design elicits strong CSE effects, it seems somewhat awkward
to consider CSE behavioral patterns as a reflection of the kind of abilities supported by a
cognitive map (if this is indeed the implication that was intended). In fact, CSE effects are
well-modeled by simpler "model-free" associative learning processes, that do not require
elaborate representations of abstract structures.

More generally, it seems problematic that Stroop and Simon conflict in the paradigm
parametrically trade-off against each other. A more powerful design would have de-
confounded Stroop and Simon conflict so that each could be separately estimation via
(potentially orthogonal) conflict axes. Additionally, incorporating more varied stimulus sets,
locations, or responses might have enabled various tests of generality, as implied by a
cognitive space account.

Serious confounds in the design render the results difficult to interpret.

As much prior neuroimaging and behavioral work has established, "conflict" per se is
perniciously correlated with many conceptually different variables. Consequently, it is very
difficult to distinguish these confounding variables within aggregate measures of neural
activity like fMRI. For example, conflict is confounded with increased time-on-task with
longer RT, as well as conflict-driven increases in coding of other task variables (e.g., task-set
related coding; e.g., Ebitz et al. 2020 bioRxiv). Even when using much higher resolution
invasive measures than fMRI (i.e., eCoG), researchers have rightly been wary of making
strong conclusions about explicit encoding of conflict (Tang et al, 2019; eLife). As such, the
researchers would do well to be quite cautious and conservative in their analytic approach
and interpretation of results.

This issue is most critical in the interpretation of the fMRI results as reflecting encoding of
conflict types. A key limitation of the design, that is acknowledged by the authors is that
conflict is fully confounded within-subject by spatial orientation. Indeed, the limited set of
stimulus-response mappings also cast doubt on the underlying factors that give rise to the
CSE modulations observed by the authors in their behavioral results. The CSE modulations
are so strong - going from a complete absence of current x previous trial-type interaction in
the cos(90) case all the way to a complete elimination of any current trial conflict when the
prior trial was incongruent in the cos(0) case - that they cause suspicion that they are
actually driven by conflict-related control adjustments rather than sequential dependencies
in the stimulus-response mappings that can be associatively learned.

To their credit, the authors recognize this confound, and attempt to address it analytically
through the use of a between-subject RSA approach. Yet the solution is itself problematic,
because it doesn't actually deconfound conflict from orientation. In particular, the RSA
model assumes that whatever components of neural activity encode orientation produce this
encoding within the same voxel-level patterns of activity in each subject. If they are not
(which is of course likely), then orthogonalization of these variables will be incomplete.
Similar issues underlie the interpretation target/response and distractor coding. Given these
issues, perhaps zooming out to a larger spatial scale for the between-subject RSA might be
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warranted. Perhaps whole-brain at the voxel level with a high degree of smoothing, or even
whole-brain at the parcel level (averaging per parcel). For this purpose, Schaefer atlas
parcels might be more useful than Glasser, as they more strongly reflect functional divisions
(e.g., motor strip is split into mouth/hand divisions; visual cortex is split into
central/peripheral visual field divisions). Similarly, given the lateralization of stimuli, if a
within-parcel RSA is going to be used, it seems quite sensible to pool voxels across
hemispheres (so effectively using 180 parcels instead of 360).

The strength of the results is difficult to interpret due to the non-standard analysis method.

The use of a mixed-level modeling approach to summarize the empirical similarity matrix is
an interesting idea, but nevertheless is highly non-standard within RSA neuroimaging
methods. More importantly, the way in which it was implemented makes it potentially
vulnerable to a high degree of inaccuracy or bias. In this case, this bias is likely to be overly
optimistic (high false positive rate).

A key source of potential bias comes from the fact that the off-diagonal cells are not
independent (e.g., the correlation between subject A and B is strongly dependent on the
correlation between subject A and C). For appropriate degrees of freedom calculation, the
model must take this into account somehow. As fitted, the current models do not seem to
handle this appropriately. That being said, it may be possible to devise an appropriate test
via mixed-level models. In fact, Chen et al. have a series of three recent Neuroimage articles
that extensively explore this question (all entitled "Untangling the relatedness among
correlations") - adopting one of the methods described in the papers, seems much safer, if
possible.

Another potential source of bias is in treating the subject-level random effect coefficients (as
predicted by the mixed-level model) as independent samples from a random variable (in the
t-tests). The more standard method for inference would be to use test statistics derived from
the mixed-model fixed effects, as those have degrees of freedom calculations that are
calibrated based on statistical theory.

No numerical or formal defense was provided for this mixed-level model approach. As a
result, the use of this method seems quite problematic, as it renders the strength of the
observed results difficult to interpret. Instead, the authors are encouraged using a
previously published method of conducting inference with between-subject RSA, such as the
bootstrapping methods illustrated in Kragel et al. (2018; Nat Neurosci), or in potentially
adopting one of the Chen et al. methods mentioned above, that have been extensively
explored in terms of statistical properties.

Reviewer #3 (Public Review):
Yang and colleagues investigated whether information on two task-irrelevant features that
induce response conflict is represented in a common cognitive space. To test this, the
authors used a task that combines the spatial Stroop conflict and the Simon effect. This task
reliably produces a beautiful graded congruency sequence effect (CSE), where the cost of
congruency is reduced after incongruent trials. The authors measured fMRI to identify brain
regions that represent the graded similarity of conflict types, the congruency of responses,
and the visual features that induce conflicts.

Using several theory-driven exclusion criteria, the authors identified the right dlPFC (right
8C), which shows 1) stronger encoding of graded similarity of conflicts in incongruent trials
and 2) a positive correlation between the strength of conflict similarity type and the CSE on
behavior. The dlPFC has been shown to be important for cognitive control tasks. As the
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dlPFC did not show a univariate parametric modulation based on the higher or lower
component of one type of conflict (e.g., having more spatial Stroop conflict or less Simon
conflict), it implies that dissimilarity of conflicts is represented by a linear increase or
decrease of neural responses. Therefore, the similarity of conflict is represented in
multivariate neural responses that combine two sources of conflict.

The strength of the current approach lies in the clear effect of parametric modulation of
conflict similarity across different conflict types. The authors employed a clever cross-
subject RSA that counterbalanced and isolated the targeted effect of conflict similarity,
decorrelating orientation similarity of stimulus positions that would otherwise be correlated
with conflict similarity. A pattern of neural response seems to exist that maps different types
of conflict, where each type is defined by the parametric gradation of the yoked spatial
Stroop conflict and the Simon conflict on a similarity scale. The similarity of patterns
increases in incongruent trials and is correlated with CSE modulation of behavior. However,
several potential caveats need to be considered.

One caveat to consider is that the main claim of recruitment of an organized "cognitive
space" for conflict representation is solely supported by the exclusion criteria mentioned
earlier. To further support the involvement of organized space in conflict representation,
other pieces of evidence need to be considered. One approach could be to test the accuracy
of out-of-sample predictions to examine the continuity of the space, as commonly done in
studies on representational spaces of sensory information. Another possible approach could
involve rigorously testing the geometric properties of space, rather than fitting RSM to all
conflict types. For instance, in Fig 6, both the organized and domain-specific cognitive maps
would similarly represent the similarity of conflict types expressed in Fig1c (as evident from
the preserved order of conflict types). The RSM suggests a low-dimensional embedding of
conflict similarity, but the underlying dimension remains unclear.

Another important factor to consider is how learning within the confined task space, which
always negatively correlates the two types of conflicts within each subject, may have
influenced the current results. Is statistical dependence of conflict information necessary to
use the organized cognitive space to represent conflicts from multiple sources? Answering
this question would require a paradigm that can adjust multiple sources of conflicts
parametrically and independently. Investigating such dependencies is crucial in order to
better understand the adaptive utility of the observed cognitive space of conflict similarity.

Taken together, this study presents an exciting possibility that information requiring high
levels of cognitive control could be flexibly mapped into cognitive map-like representations
that both benefit and bias our behavior. Further characterization of the representational
geometry and generalization of the current results look promising ways to understand
representations for cognitive control.
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