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Abstract

Efficient management of aircraft and crew recovery system is crucial for cost savings

and improving the satisfaction, which are related to the airline's reputation. However,

most existing work considers only one objective of minimizing costs or maximizing

satisfaction. In this study, we propose a new integrated multi-objective recovery sys-

tem that takes both cost and satisfaction into account simultaneously. To better cap-

ture crew satisfaction in the event of airport closure, a bidding mechanism for early

off-duty task is designed. To overcome the experience-dependent and labour-

consuming problems associated with current manual or mathematical recoveries, we

develop an intelligent optimizer based on multi-swarm and MOPSO frameworks, ter-

med adaptive seeking and tracking multi-objective particle swarm optimization algo-

rithm (ASTMOPSO). Specifically, during the evolutionary process, the sub-swarm size

undergoes adaptive internal transfer while executing more efficient evolutionary

strategies to approach the global Pareto front. Additionally, five ad-hoc repair proce-

dures are designed to ensure feasibility for our aircraft and crew recovery system.

The ASTMOPSO is applied to real-world instances from Shenzhen Airlines with dif-

ferent sizes. Experimental results demonstrate the statistical superiority of our

method over other popular peer algorithms. And the infeasible solution repair proce-

dures significantly improve the feasibility rate by at least 40%, particularly for large-

scale instances.

K E YWORD S

crew satisfaction, infeasible solution repair procedures, integrated aircraft and crew recovery
system, multi-objective optimization, particle swarm optimization

1 | INTRODUCTION

The recovery system plays a crucial role in the airline industry, which is primarily divided into three stages: aircraft, crew, and passenger recoveries

(Su et al., 2021). It aims to reschedule resources for flights deviating from their original plans (Erdem et al., 2021). The division of the recovery sys-

tem is driven by the complexity of the integrated case and the existence of multiple diverse objectives and constraints. Recognizing that aircraft
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and crew are valuable and controllable resources for airlines, this paper specifically focuses on addressing the integrated aircraft and crew recov-

ery problem (I-ACRP).

To address the I-ACRP effectively, it is essential to first formulate the problem model and then design methods for its solution. Due to com-

plex qualification and time limitation constraints on crew, problem of integrating crew and aircraft recovery is still in its infancy. According to

Hassan et al. (2021), only four studies have focused on this integrated problem since 2009. Many models primarily aim to minimize recovery costs

from the perspective of airlines. Le and Wu (2013) considered minimizing aggregate cost, which comprised of delay cost, cancellation cost, and

assignment cost. Zhang et al. (2015) and Maher (2016) had similar cost minimization objective, but they also took the connection disruption pen-

alty and cost of crew deadheading into account, respectively. More recently, Khiabani et al. (2022) also concentrated on cost minimization, but

their main contribution lies in formulating the recovery model based on individual flight legs. In terms of passenger satisfaction, For the satisfac-

tion considered aspect, Aguiar et al. (2011) tried to maintain the schedule as planned.

The existing works primarily focus on a single objective perspective, which has certain limitations in practical applications. Firstly, the obtained

scheduling scheme may perform well in one objective but exhibit poor performance in other perspectives, leading to impractical recovery plans

(Chen et al., 2013). Second, relying on a single solution cannot accommodate the diverse decision preferences of different decision-makers, thus

lacking comprehensiveness (Atencia et al., 2019; Azouz & Boughaci, 2022). Furthermore, these previous works allocate less attention to the crew

aspect, despite evidence demonstrating the significant impact of crew satisfaction on service quality and passenger loyalty, particularly during the

COVID-19 pandemic (Nayak et al., 2022), even though it may cause economic loss from airline perspective.

Based on the considerations mentioned above, we propose a new multi-objective model for the integrated aircraft and crew recovery prob-

lem (referred to as I-MACRP) that simultaneously considers recovery cost and crew satisfaction, focusing on the scenario of airport closure disrup-

tions. During the closure period, no activities are permitted, resulting in severe knock-on effects on subsequent flights, related aerodromes, and

stakeholder emotions (Cook et al., 2009; Wu & Caves, 2002). Herein, cost objective refers to minimize the recovery cost for both aircraft

and crew. To broaden the scope of potential recovery options and facilitate timely arrival of disrupted flights at their destinations before airport

closing time, we also include the consideration of additional fuel cost, taking into account the ability to safely accelerate within a margin of 10%

(Arıkan et al., 2017). Regarding crew satisfaction, we adopt a fairness approach commonly used in the aviation industry. Various measures have

been employed to depict crew satisfaction, including seniority-based priority (Gamache et al., 1998), destination preference (Maenhout &

Vanhoucke, 2010), and minimal conflict with preferred schedules (Zhou et al., 2020). To alleviate the waiting anxiety caused by airport closures

and enhance satisfaction, this study places emphasis on ensuring fairness in crew on-duty time and rational arrangement of the earliest off-duty

tasks. To achieve this, a bidding mechanism, which has been proven effective in achieving a certain degree of fairness and satisfaction (Quesnel

et al., 2022), is newly incorporated to characterize crew satisfaction in this study.

The I-MACRP model is a challenging combinational optimization problem with complex constraints and multiple objectives, it is important to

choose a suitable solution optimizer. In contrast to existing approaches that employ two-stage iterative heuristic decomposing the integrated

problem into iterative sequential decisions Benders' decomposition method that transfers the original large-scale problem to a simplified master

problem and subproblems (Khiabani et al., 2022), we focus on an integrated manner to obtain acquire a set of non-dominated solutions in a single

run using an intelligent optimization algorithm. It can also overcome the limitations of sub-optimal, experience-dependent and labour-consuming

problems associated with existed methods or manual recovery in realistic. According to Hassan et al. (2021), heuristic methods have been exten-

sively used in aircraft recovery problems, constituting over 80% of publications in aviation disruption management literature from 2009 to 2020.

Among these heuristic methods (Del Ser et al., 2019 for review), multi-objective particle swarm optimization (MOPSO, Coello et al., 2004) has

gained popularity for its simplicity in addressing complex continuous or combinational optimization problems (Ben Ammar et al., 2020; Dou

et al., 2021; Tan et al., 2021; Zomorodi-Moghadam et al., 2021). Hence, we design our optimizer based on the MOPSO algorithm. Since the origi-

nal MOPSO is designed for continuous problems and may not be efficient for solving our I-MACRP, we design an ad-hoc matrix hybrid encoding

scheme and develop some problem characteristic-based evolutionary strategies, such as adaptive multi-swarm division and symmetrical

re-arrangement on the crew arrangement, to help for approaching the global Pareto front. Considering the strict compliance requirements of the

aviation industry with various laws and regulations, which result in a sparse feasible solution space, we propose some corresponding recovery pro-

cedures for infeasible solutions in the aircraft crew integration system. These procedures aim to enhance the computational efficiency of the intel-

ligent algorithm and increase the feasibility rate of the model.

To sum up, the main contributions of this study are listed below:

• Diverging from conventional single-objective models, we introduce a novel multi-objective recovery model that integrates both cost and crew

satisfaction factors. Focusing on airport closure scenarios, a new method for depicting crew satisfaction, which encompasses a bidding mecha-

nism for the earliest off-duty task and the fairness for on-duty time, is designed.

• We develop a novel intelligent optimization algorithm, ASTMOPSO, for solving the I-MACRP, which generates a set of nondominated solutions

in a single run. To enhance detection efficiency, evolutionary strategies such as adaptive multi-swarm division and symmetrical re-arrangement

of the crew, are designed to help for approaching the global Pareto front.
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• A series of customized infeasible solution recovery procedures, specifically tailored for the complex and highly constrained aircraft-crew inte-

grated recovery model, are designed and incorporated into the solution process. These approaches have been proven efficient in enhancing

the computational efficiency of intelligent algorithm and feasibility rate of the model.

The remainder of the paper is organized as follows. In Section 2, we first introduce the formulation of the proposed I-MACRP model. Section 3

details our ASTMOPSO algorithm and its coding strategies. Section 4 reports the experimental results and specific recovery schemes. Finally, con-

clusions and future works are discussed in Section 5.

2 | PROBLEM DESCRIPTION AND MODEL CONSTRUCTION

2.1 | Problem description

Considering the dramatic flight decrease during the COVID-19 epidemic, our recovery focuses on the economic situation, where the final flight

returns to its departure airport within one operational day without considering overnight crew costs, aircraft parking costs, and so forth. More-

over, it is assumed that aircraft for each flight is already settled, which aligns with the practical situation.

The earliest off-duty flight task is competed by a bidding mechanism. During bidding procedure, each crew team gives bidding score, yielding

a winner with the maximized bidding score (Achour et al., 2007). Figure 1a is an illustrative example with bidding scores (3, 8, and 5 for crew C1,

crew C2, and crew C3, respectively). Based on the bidding principle, crew C2 with the highest score, is the bidding winner. And the yellow flight

task executed by crew C1 is the subject of the bidding with the earliest off-duty time 18:45. According to the bidding setting, these two crews

should exchange their duties directly. Besides, Figure 1b exhibits the benefit of cruise speed control action in an airport closure situation. It is clear

that the recovery scheme considering cruise speed control (blue dotted line) can save 120-min delay time than the case without cruise speed con-

trol (orange dotted line).

To recover aircraft and crew from irregular disruption, we mainly apply the following recovery operations: 1) cancelling flight, 2) delaying

flight, 3) calling up reserved crew, 4) swapping crew, and 5) controlling cruise speed. The first four methods are the most commonly used

approaches (see reviews by Su et al., 2021, and Hassan et al., 2021), while the fifth one is a newly introduced and flexible approach in this paper.

It effectively reduces the waiting time caused by airport closure, albeit at the expense of increased dimensionality in the model's solution space. It

should be noted that each crew only has one type of licence; the exchange should occur between crews with the licence for same aircraft type.

2.2 | Model construction

The regulations and constraints in different countries may be various. Our model here is based on the latest government document in China. For

reading convenience, Table 1 firstly provides a summary of the notations used in our I-MACRP formulation, in which available parameters are

input for a particular instance, and decision variables are the final purpose of our recovery operation. Expressly, overline and underline parameters

represent the upper boundary and schedule value, respectively.

F IGURE 1 Illustration example. (a) bidding mechanism; (b) cruise speed control effect.
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We follow flight string representation Petersen et al. (2012) to represent our problem. A flight string is a sequence of flights with timing deci-

sions, which has advantage in handling complicated constraints such as ground turn-around time restriction depending on the sequence of flights.

In our model, tdfs,j ,t
f
fs,j
,vfs,j ,dfs,j , rfs,j ,a

d
fs,j
,aifs,j

� �
represents the available attributes of flight fs,j and zfs,j ,t

d
fs,j
,vfs,j , rfs,j

� �
is its decision variable attributes.

Before introducing the complete mathematical formulation, we first explain three pre-defined representations used for easy reading. I :f g is an indi-

cator function that equals 1 if it satisfies the condition in parentheses and 0 otherwise. AnA1 represents the operation that eliminates subset A1

from its original set A. And num :ð Þ represents the operation that counts the number in the set. Notably, we can also represent another specific

flight by changing the subscript. For example, tdfr,num K rð Þð Þ is the departure time of the last on-duty flight of crew r, and tffr,num K rð Þð Þ
is the scheduled flying

time of the final on-duty flight of crew r, and so forth. The detailed objectives and constraints of our I-MACRP model are given as follows:

minf1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

r � Ro
tifr,num K rð Þð Þ � tdfr,1

� �
�
P
r � Ro

tifr,num K rð Þð Þ
�tdfr,1

� �
num Roð Þ

0B@
1CA

2

num Roð Þ

vuuuuuuut ð1Þ

TABLE 1 Summary of notations.

Available parameters:

tb Begin time of airport to be closed te End time of airport to be reopenedetb Begin time of other airlines occupying ete End time of other airlines occupying

S Set of disturbed strings s J sð Þ Set of disturbed flights in string s

R Set of all kinds of crew, indexed by r E Set of aircraft types e

Ro Set of all disturbed on-duty crews ro Rre Set of all reserve crews rre

Ro eð Þ Set of on-duty crews of aircraft e Rre eð Þ Set of reserve crews of aircraft e

K rð Þ Set of flights that crew r executed fr,k kth on-duty flight of crew r

fs,j jth disturbed flight in flight string s tdfs,j Scheduled departure time of fs,j

tffs,j
Scheduled flying time of flight fs,j tifs,j Scheduled arrival time of flight fs,j

vfs,j Scheduled cruise speed of flight fs,j dfs,j Cruise distance of flight fs,j

rfs,j Scheduled crew arrangement for fs,j adfs,j Departure airport of flight fs,j

aifs,j Arrival airport of flight fs,j rw eð Þ Winner crew for aircraft type e

sw Scheduled on-duty string of winner sb Bided string that off-duty earliest

tg Minimal ground turn-around time t
l Maximal delay time for flight

t
rf Maximal crew daily on-fly time t

ro Maximal crew daily on-duty time

γs
b

fs,j
Parameter with a value of 1 if fs,j belongs to sb and 0 otherwise

θrfs,j Parameter with a value of 1 if crew r is qualified for fs,j and 0 otherwise

Sp Subset of disturbed string set S by eliminating strings sw and sb

M Set of flights that overlap with fs,j , which is made up of flight m whose timetable satisfies:

tdfs,j < t
d
m < tifs,j , t

d
m < tdfs,j < t

i
m ,t

d
fs,j
< tdm < tim < tifs,j or t

d
m < tdfs,j < t

i
fs,j
< tim .

cn Unit costs, where cn ,n¼1,2,3,4,5 represent unit cost of cancelling flight(￥), delaying flight(￥/min), calling reserve

crew(￥), swapping crew(￥), and jet fuel(￥/kg)

qn eð Þ Cruise fuel coefficients of aircraft e, where qn ,n¼1,2,3,4 represent aircraft drag and fuel consumption coefficients, air

density at given altitude, and gravitational acceleration

Decision variables:

zfs,j � 0,1f g Whether flight fs,j is cancelled. 1: cancelled; 0: not cancelled

tdfs,j � tdfs,j ,t
d
fs,j
þ t

l
h i

Recovered departure time of flight fs,j

vfs,j � vfs,j ,vfs,j � 1þ10%ð Þ
h i

Recovered cruise speed of flight fs,j

rfs,j eð Þ� R eð Þ[Rre eð Þf g Recovered crew arrangement for flight fs,j of aircraft e
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min f2 ¼
X
s � S

X
j � J sð Þ

c1zfs,j þ
X
s � S

X
j � J sð Þ

c2 1� zfs,j
� �

tdfs,j � tdfs,j

� �
þ
X
s � Sp

X
j � J sð Þ

c3 � I
rfs,j � Rre

n o
þ
X
s � Sp

X
j � J sð Þ

c4I
rfs,j ≠ rfs,j

n oI
fs,j

=2 Rre

n oþ
X
s � S

X
j � J sð Þ

c5 F vfs,j
� ��F vfs,j

� �� � ð2Þ

I
tdfs,j

≠ ;
n oþ zfs,j ¼1, 8s� S,8j� J sð Þ ð3Þ

tdfs,j � te
� �

tdfs,j � tb
� �

>0, 8s� S,8j� J sð Þ ð4Þ

tifs,j � te
� �

tifs,j � tb
� �

>0, 8s� S, 8j� J sð Þ ð5Þ

tdfs,j �ete� �
tdfs,j �etb� �

>0, 8s� S, 8j� J sð Þ ð6Þ

tifs,j �ete� �
tifs,j �etb� �

>0, 8s� S, 8j� J sð Þ ð7Þ

θrfs,j � I
rfs,j ≠ ;
n oþ zfs,j

0@ 1A¼ θrfs,j , 8s� S,8j� J sð Þ ð8Þ

rfs,j ≠ rm, 8s� S,8j� J sð Þ,8m�M ð9Þ

X
s � S

X
j � J sð Þ

I
rfs,j � Rre eð Þ
n o ≤ num Rre eð Þð Þ, 8e� E ð10Þ

aifs,j ¼ adfs,jþ1
, 8s� S,8j� J sð Þn num J sð Þð Þf g ð11Þ

tdfs,jþ1
� tifs,j ≥ t

g , 8s� S,8j� J sð Þn num J sð Þð Þf g ð12Þ

tdfr,kþ1
≥ tifr,k , 8r�R, 8k�K rð Þn num K rð Þð Þf g ð13Þ

tifr,num K rð Þð Þ � tdfr,1 ≤ t
ro
, 8r�R ð14Þ

X
s � S

X
j � J sð Þ

I
rfs,j¼r

n o � tffs,j �
dfs,j
vfs,j

�dfs,j
vfs,j

 !" #
≤ t

rf
, 8r�R ð15Þ

adfr,1 ¼ aifr,num K rð Þð Þ , 8r�R ð16Þ

γs
b

fs,j
� rfs,j ¼ γs

b

fs,j
� rw eð Þ, 8s� S,8j� J sð Þ ð17Þ

rfsw ,j
¼ rfsb ,1 , 8j� J swð Þ ð18Þ

where tifr,num K rð Þð Þ ¼ tdfr,num K rð Þð Þ þ tffr,num K rð Þð Þ
� dfr,num K rð Þð Þ

vfr,num K rð Þð Þ
� dfr,num K rð Þð Þ

vfr,num K rð Þð Þ

� �� �
in formulas (1) and (14) is the actual final off-duty time of crew r, in which the largest

bracket indicates the time saved by speeding up (Similarly, tifs,j in formulas (5), (7), (12) means actual arrival time of flight fs,j and tifr,k in formulas (13)

represents the actual arrival time of kth on-duty flight of crew r), Sp ¼ Sn sw ,sb
	 


in formulas (2) is a subset after eliminating strings sw and sb from

set S, and F vfs,j
� �¼ q1 eð Þv2fs,j þq2 eð Þvfs,j þ q3 eð Þ

v2
fs,j

þ q4 eð Þ
v3
fs,j

in formula (2) is total fuel consumption at cruise speed vfs,j (similar meaning of F vfs,j

� �
with

speed vfs,j ). Since vfs,j is consistently greater than the schedule vfs,j , which represents the minimum fuel cost, the last component in equation (2) will

always yield a positive value.
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The first two objectives focus on satisfaction and cost from the perspective of crew members and airlines, respectively. Objective function

(1) guarantees crew satisfaction, which is reflected by the minimized standard deviation of duty time among all on-duty crews. Objective

function (2) represents the total recovery costs, which consist of five parts: (i) cancellation costs; (ii) delay costs; (iii) reserve crew calling costs;

(iv) crew swapping costs and (v) additional fuel costs due to cruise speed increase. The computational formula between fuel costs and cruise speed

can be acquired in Poles (2009) and the details for 399 aircraft types are available in Nuic (2010).

Constraint (3) promises that each flight is cancelled or reassigned to a new departure time. Constraints (4)–(7) ensure no take-off and landing

activities during the airport shutdown and occupied periods. Here, occupied period reflects recovery priority, which making our model more realis-

tic. Constraint (8) promises that each flight is cancelled or reassigned to a qualified crew. Constraint (9) stipulates that each crew cannot be

assigned more than two flights simultaneously, where rm is the crew arrangement for flight m,m�M. Constraint (10) is the capacity constraint on

the reserve crew. Constraints (11)–(12) guarantee spatial cohesion and minimal ground turn-around time request between two connective flights.

Constraint (13) prevents the crew's subsequent duty from working before the completion time of his/her primary duty. Constraints (14)–(15)

ensure that the crew's daily cumulative on-duty and flying times should not exceed their distinct boundaries. It is strictly regulated for flight

safety. Constraint (16) ensures all crews return to their departure airport on their final duty. Constraint (17) represents the bidding winner to exe-

cute all flights in the earliest off-duty flight string. Constraint (18) requires winner's scheduled duty to be rearranged to the planned crew that per-

forms the earliest off-duty string. Constraints (17)–(18) are the main constraints of the bidding mechanism, which have been explained in detail in

Section 2.1.

3 | SOLUTION PROCEDURE BASED ON ASTMOPSO ALGORITHM

As stated by Hassan et al. (2021), the quality of solutions depends on the heuristics ability to adapt to a particular problem. To efficiently solve

the I-MACRP model aforementioned above, this part comprehensively proposes a new ad-hoc ASTMOPSO algorithm, followed by an example to

understand the specific coding strategies, that is, decision variable representations.

3.1 | ASTMOPSO algorithm

The procedure of ASTMOPSO is illustrated in Figure 2, aiming to generate an external repository Archive A that stores all non-dominated solu-

tions. The particle population is initialized as Apop. Dominant relationship, as defined by Deb et al. (2002), determines whether a new solution is

added to the A or if existing elements in the A are discarded. Whole population undergoes an evolution state-based swarm division strategy,

where particles progressively move from the seeking swarm to the tracking swarms. Two detection strategies, based on problem characteristics,

are randomly executed a predetermined number of times for each particle in the seeking swarm Spop, thereby enhancing the global diversity of

the population. And the best solution optimization learning strategy (Coello et al., 2004) is implemented in the tracking swarm Tpop to facilitate

efficient local search. To ensure feasibility, five repair procedures are activated for all evolved infeasible solutions. During each evolution, the first

num Apopð Þ solutions, ranked in ascending order based on Pareto front ranking, are selected as offspring to maintain the primary population size.

The three components with a blue background (i.e., Components 2, 3 and 5) are our main contributions, which are described in detail as follows:

(1) Evolution state-based swarm division strategy. Global detection and careful local search are two important operations that help increase

solution diversity and accuracy, respectively. In most existing works, update relies on global optimization information. In fact, at the beginning

stage with small iteration t, the solutions found are still far away from the actual Pareto front; thus, it is better to allocate more computing

resources to make extensive explorations. In each iteration t, whole population Apop will be adaptively divided into seeking swarm Spop and track-

ing swarm Tpop as Equations (19)–(20). When t is small, more particles will execute seeking process to expand solution diversity. As t increases,

population focuses on careful local search. The specific calculations are given as follows:

Spop ¼
O

Apop, floor N � rmax
s � rmax

s � rmin
s

� � � t
Tmax

� �� �� �
, ð19Þ

Tpop ¼CApop Spop ¼ i i�Apop,and i =2 Spopjf g ð20Þ

where rmax
s and rmin

s represent the boundary rate of Spop among the whole population. floor :ð Þ denotes a round-down operator. And
N

M,nð Þ is a
pre-defined symbol which means randomly choosing n elements from a set M.

(2) Two novel detection mechanisms for particles in seeking swarm Spop. Detection operation is necessary to guarantee a wide-range solu-

tion set, directly determining the solution quality. To guarantee seeking effectiveness, two problem-characteristics-based disruption mechanisms

are designed. First, we randomly choose a sub-dimension decision variable to execute acceptable re-assignment. Second, considering that the

6 of 17 ZHONG ET AL.
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crew decision variable directly affects objectives 1 and 2 in I-MACRP, we perform symmetrical re-arrangement on the crew. Equation (21) gives

the specific formulations of seeking operation for the jth memory pool of particle i.

xi tþ1ð Þj ¼
xi,sd tð ÞþUsd � �

L
1,Nsdð Þ, if rand< 1=2

Ucrew�xi,crew tð ÞþLcrew , otherwise


ð21Þ

where sd is a sub-vector selected randomly. Vector crew is made up of all crew arrangements. Usd represents corresponding maximum for the ele-

ments among vector sd. Ucrew and Lcrew are the maximum and minimum for the elements among vector crew, respectively. M � �N and
L

m,nð Þ
are two pre-defined symbols, which represent operation of multiplying the corresponding elements between matrices M and N, and generating a

matrix with m row and n columns obeying standard normal distribution, respectively. And rand�U 0,1ð Þ is a random number.

(3) Problem characteristics-based repair procedures for the evolved infeasible solution. The I-MACRP model defined in Section 2.2 is a com-

plex, constrained multi-objective problem, which has difficulty in finding feasible solutions by evolution operation directly. When an evolved solu-

tion is generated, the following infeasible solution repair procedures will be activated by considering problem characteristics and other repair

techniques proposed by Jordehi (2015). The specific infeasible solution repair procedures are concluded as follows:

• Repair procedure 1. In a realistic problem, each decision variable has its corresponding value range to satisfy the real significance. For each

dimension xi in decision variable x¼ x1,x2,…,xi,…,xnð Þ, if xi is smaller than its low boundary Li, we set xi ¼ Li , and if xi exceeds its upper boundary

Ui, we set xi ¼Ui.

• Repair procedure 2. The randomness of the algorithm will cause a high violation probability of constraint (9). We define a set Xavai to store the

available crews associated with an aircraft type so far. For the crew with more than two tasks at once, we execute the tasks using the element

in Xavai sequentially until constraint (9) is met.

F IGURE 2 Main procedure of the ASTMOPSO algorithm.

ZHONG ET AL. 7 of 17
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• Repair procedure 3. In I-MACRP model, ground turn-around time is required for passengers to get up, drop off, or disinfect during the COVID-

19 epidemic. If constraint (12) is violated, we postpone the departure time of subsequent flight until the needed ground turn-around time is met.

• Repair procedure 4. If crew's subsequent duty is earlier than his/her preceding completion time, we postpone the departure time of the latter

duty to guarantee feasibility.

• Repair procedure 5. In I-MACRP model, no departure or arrival activities are allowed during the airport shutdown and occupied period. If a

flight arrives at the airport during the illegal period (i.e., constraints (5) or (7) is violated), we randomly increase cruise speed or postpone its

departure time. Similar repair procedures can be applied to the cases that a flight departs during the unallowed period.

3.2 | Coding strategy

This sub-part introduces elaborate coding strategies to fit the I-MACRP model well. Since the value of the cancellation decision variable zfs,j can

be known easily if the delay time satisfies Δt ≥480 (480min is the maximal delay time regulated in the document in China), the 4-dimension deci-

sion variables for each disturbed flight fs,j can be reduced to 3-dimension, that is, Δt ¼ tdfs,j � tdfs,j ,Δv ¼ vfs,j �vfs,j , rfs,j

� �
. Table 2 explains solution rep-

resentation using an instance with n disturbed strings. For example, Δt ¼3 in f1,1 means that the scheduled first flight in string 1 will delay 3min

corresponding to its scheduled departure time; Δv ¼0 in fn,4 represents that the scheduled 4th flight in string n keeps its scheduled cruise speed;

Assume Rre ¼ 18,19,20,21f g, rfs,j ¼21 in fn,4 means that this flight calls for a reserve crew. For the discrete characteristics of Δt and rfs,j , a round-

off number method is used on the related bits.

4 | EXPERIMENTAL STUDIES AND DISCUSSIONS

In this section, experiments are performed on real-world instances with peer algorithms to verify the superiority of ASTMOPSO in solving the

I-MACRP. All experiments are implemented in Matlab R2020a on a PC with an Intel Core i5-8250U @ 1.80 GHz and 8.00 GB RAM.

4.1 | Test instances

Our real-world instances derived from Shenzhen Airlines in a single-day operation that suffered a 150-min closure at Shenzhen airport (we thank

VariFlight company for providing the statistics of aircraft and crew as Table 3 shown). To test the universality of our solution method, we generate

another two cases with different scales by adjusting closure time dynamically and given in the first two lines of Table 4. Case 1 includes 4 dis-

turbed flight strings (16 disturbed flights) under 30-min closure time, representing a slight accident, such as a minor obstacle on the runway. Con-

sidering airport will try its best to shorten the closure time (Pejovic et al., 2009), a 60-min closure time with 36 disturbed flights is regarded as

Case 2. It describes an off-season situation when the airline industry is in a recession. Finally, the realistic Case 3 with a 150-min closure time

shows a case suffering extreme weather or the severe outbreak of COVID-19.

Our I-MACRP model further considers crew satisfaction by allowing bidding for the earliest off-duty flight string. We randomly generate

crews' bidding scores and obtain the corresponding bidding winners for different aircraft types (i.e., the A320 and B737). The random generator

for bidding scores is reasonable because it is a known input that can be collected directly. Table 5 concludes the fuel cost parameters of two fleets

by referencing Nuic (2010) and Arıkan et al. (2017). Two reserve crews are given for each fleet. Referring to the industry regulations, minimal gro-

und turn-around time, maximal flight delay time, crew daily on-duty time, and on-flying time in our experiments are 40, 480, 1080, and 780 min.

And the unit costs of delay, cancellation, calling for reserve crew, swapping crew, and jet fuel are set as 100, 100,000, 1000, 800, and 6.5,

respectively.

TABLE 2 Example of the coding strategy for the I-MACRP model.

Coding design

Scheduled string 1 … Scheduled string n

f1,1 … f1,4 … fn,1 … fn,4

Δt Δv rfs,j … Δt Δv rfs,j … Δt Δv rfs,j … Δt Δv rfs,j

Position 3 0.9 1 … 65 0.04 8 … 0 0.1 19 … 490 0 21

8 of 17 ZHONG ET AL.
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4.2 | Experimental parameter settings and performance metrics

To demonstrate the superiority of our algorithm in solving the aforementioned instances, the solution results are compared with some typical

heuristic algorithms and improved heuristic algorithms in recent years, such as SPEA2 (Zitzler et al., 2001), MOPSO (Coello et al., 2004), MOEA/D

(Zhang & Li, 2007), NSGA III (Deb & Jain, 2013), CMOPSO (Zhang et al., 2018), and MORBCO (Niu et al., 2021). To acquire fair and convincing

results, each experiment runs 10 times independently with the same population size of 30 and maximum generations of 350. The key parameters

TABLE 3 Instance details of Shenzhen Airlines provided by the VariFlight company.

s e fs,j tdfs,j and tifs,j adfs,j and aifs,j Dfs,j rfs,j

1 A320 f1,1 ! f1,2! f1,3 ! f1,4 6:05–9:30 ! 10:20–13:45 ! 17:10–
19:30 ! 20:30–22:50

SZX ! XNN ! SZX ! MIG ! SZX 2244, 2244,

1303, 1303

1

2 f2,1 ! f2,2! f2,3 ! f2,4 7:25–11:05 ! 11:55–
15:10 ! 18:15–21:15 ! 22:05–
25:10

SZX ! HFE ! SZX ! WXN ! SZX 2464, 2100,

1882, 1955

2

3 f3,1 ! f3,2! f3,3 ! f3,4 8:05–10:15 ! 11:05–
13:10 ! 14:40–17:40 ! 19:40–
22:40

SZX ! YBP ! SZX ! XIY ! SZX 1158, 1086,

1882, 1882

3

4 f4,1 ! f4,2! f4,3 ! f4,4 10:25–12:35 ! 13:35–
15:50 ! 19:00–21:05 ! 21:55–
24:10

SZX ! HFE ! SZX ! WXN ! SZX 1158, 1231,

1086, 1231

4

5 f5,1 ! f5,2! f5,3 ! f5,4 8:15–10:55 ! 12:05–
14:50 ! 17:15–19:45 ! 21:00–
23:40

SZX ! TNA ! SZX ! SZX ! SZX 1593, 1665,

1448, 1593

5

6 f6,1 ! f6,2! f6,3 ! f6,4 6:40–9:55 ! 10:45–14:20 ! 18:00–
20:25 ! 21:45–24:15

SZX ! DLC ! SZX ! PVG ! SZX 2100, 2389,

1376, 1448

6

7 f7,1 ! f7,2! f7,3 ! f7,4 10:00–12:05 ! 13:10–
15:25 ! 17:05–19:45 ! 20:55–
23:35

SZX ! HGH ! SZX ! SZX ! SZX 1086, 1231,

1593, 1593

7

8 f8,1 ! f8,2! f8,3 ! f8,4 7:50–10:30 ! 11:15–
13:45 ! 16:40–18:40 ! 19:50–
22:05

SZX ! LJG ! SZX ! HGH ! SZX 1593, 1448,

1014, 1231

8

9 f9,1 ! f9,2! f9,3 ! f9,4 7:00–9:55 ! 10:55–13:50 ! 14:55–
17:50 ! 18:55–22:00

SZX ! TAO ! SZX ! TNA ! SZX 1810, 1810,

1810, 1955

9

10 f10,1 ! f10,2 ! f10,3 ! f10,4 7:55–10:30 ! 11:45–
14:25 ! 16:25–19:35 ! 21:00–
24:45

SZX ! PVG ! SZX ! PEK ! SZX 1520, 1593,

2027, 2534

10

11 f11,1 ! f11,2 ! f11,3 ! f11,4 7:05–9:40 ! 10:45–13:35 ! 15:00–
17:40 ! 19:15–22:10

SZX ! XIY ! SZX ! PVG ! SZX 1520, 1738,

1593, 1810

11

12 f12,1 ! f12,2 ! f12,3 ! f12,4 8:30–10:55 ! 12:00–
14:35 ! 16:10–18:40 ! 20:00–
22:30

SZX ! PVG ! SZX ! NKG ! SZX 1376, 1520,

1448, 1448

12

13 f13,1 ! f13,2 ! f13,3 ! f13,4 9:25–11:45 ! 12:50–
15:10 ! 17:00–19:15 ! 20:15–
22:40

SZX ! WXN ! SZX ! NGB ! SZX 1303, 1303,

1231, 1376

13

14 B737 f14,1 ! f14,2 ! f14,3 ! f14,4 9:10–11:15 ! 12:00–
13:55 ! 15:40–18:50 ! 19:50–
23:10

SZX ! XFN ! SZX ! TAO ! SZX 1074, 931,

2005, 2148

16

15 f15,1 ! f15,2 ! f15,3 ! f15,4 7:00–10:15 ! 11:35–
15:00 ! 17:10–19:40 ! 20:40–
23:25

SZX ! TSN ! ZX ! LYI ! SZX 2076, 2220,

1432, 1647

17

16 f16,1 ! f16,2 ! f16,3 ! f16,4 7:05–9:05 ! 10:15–12:40 ! 14:30–
17:50 ! 19:00–22:35

SZX ! HGH ! SZX ! PEK ! SZX 1002, 1360,

2148, 2363

18

17 f17,1 ! f17,2 ! f17,3 ! f17,4 9:05–11:20 ! 12:40–
14:55 ! 16:50–19:00 ! 20:15–
22:20

SZX ! CKG ! SZX ! CKG ! SZX 1217, 1217,

1146, 1074

19

Note: s, string number; !, symbol represents sequential order.
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which render each algorithm to perform best in the original literature are adopted, and the main details, including our ASTMOPSO algorithm, are

listed as follows:

• In SPEA2, probabilities Pcrossover = 0.1 and Pmutation = 0.2.

• Regarding MOPSO, learning factors c1 = 1, c2 = 2, and the inertia weight w0 = 0.9, w1 = 0.5.

• About MOEA/D, probability Pneighbor = 0.15.

• Considering NSGA-III, probabilities Pcrossover = 0.1 and Pmutation = 0.5.

• With regard to CMOPSO, number Elitenum = 10.

• Concerning MORBCO, Nswim = 4, c1 = 3, c2 = 3, Elitenum = 20, and chemotaxis step C = 0.001.

• In ASTMOPSO, c1 = 1, c2 = 2, Ndt = 5, Ndd = 5, w0 = 0.9, and w1 = 0.5.

The vital aim of multi-objective optimization is to find a uniformly distributed subset (i.e., PF) that approximates the true Pareto-optimal front

PF* as close as possible. In this paper, we adopt three popular performance metrics to evaluate the solution quality of all compared algorithms,

which include Spread (SP) (Deb et al., 2002), Hypervolume (HV) (Zitzler & Thiele, 1999), and Inverted Generational Distance (IGD) (Bosman &

Thierens, 2003) as follows:

• SP¼
P oj j

j¼1
dej þ
P PFj j

i¼1
di�dj jP oj j

j¼1
dej þ PFj j � d

measures uniform distribution along obtained PF, where oj j is objective numbers, dej represents Euclidean distance

between the extreme solution in the j-th objective direction and the corresponding extreme solution in the PF*, d denotes average Euclidean

distance of all the Pareto optimal solutions PF found.

• HV and IGD quantify and encapsulate both the convergence and diversity of the obtained PF, while HV requires a pre-defined reference point

R and IGD relies on PF*. Specifically, HV PF,Rð Þ¼ volume [
jPFj

i¼1
vi

� �
, where R is the worst objective values from all solutions obtained in all runs, vi

is a hypercube that is constructed with the reference point and the solution i in obtained PF. And IGD¼
P

x � PF� d
min x,PFð Þ

PF�j j , where dmin x,PFð Þ is the
minimum Euclidean distance between the true Pareto optimal solution and solution in obtained PF, jPF*j is the non-dominated solution

numbers.

The lower SP and IGD values are desirable, while a larger HV is better. Since the PF* of our I-MACRP model is unknown, it is estimated by

large-scale experiments (50 runs) on all compared algorithms, which is widely adopted to acquire PF* of a real-world problem in the literature.

4.3 | Experimental results and analyses

4.3.1 | Metrics results analyses

Numerical comparison

Based on the above settings, the metric results of all compared algorithms on solving the I-MACRP model among 10 runs are summarized in

Table 6, including mean, standard deviation (Std.), and median (Med.), and the best results are highlighted in boldface. We can find that our

TABLE 4 Three different-scale airport closure cases.

Cases Scales Disturbed flights Closure time Closure period Aircraft type Bidding winners Reserve crews

1 4 16 30 min [13:45,14:15] A320, B737 3 & 6 {4,5}&{7,8}

2 9 36 60 min [13:45,14:45] 7 & 10 {8,9}&{12,13}

3 17 68 150 min [13:45,16:15] 13 & 17 {14,15}&{20,21}

TABLE 5 Parameters of two fleet types used in calculating fuel cost.

e vfs,j vfs,j q1 q2 q3 q4

A320 14.48 15.928 0.000025790 0.154734277 0.379117180 2274.703078

B737 14.32 15.752 0.002761029 0.049698524 0.049698524 1179.863088

10 of 17 ZHONG ET AL.
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ASTMOPSO algorithm has an excellent ability to find uniformly distributed and convergent solutions regardless of the instance scales. On the

small scale (Scale = 4), it only exists a slight advantage over the second-rank NSGA-III algorithm. With the increment of instance scale, the benefit

becomes obviously, since it increases by nearly 19%1 (IGD), 12%(HV) on the medium scale (Scale = 9), and 33%(IGD), 18%(HV) on the large scale

(Scale = 17), respectively. Regarding Pareto solutions distributivity (SP metric), all algorithms perform similarly without difference in each run.

Besides, the original MOPSO performs worse than NSGA III while our ASTMOPSO algorithm performs better, which declares that our proposed

seeking and tracking swarm strategies indeed improve convergence and overall performance on solving the model.

Statistic test

Furthermore, statistical tests are also given in Table 6. Wilcoxon's rank-sum test (Fay & Proschan, 2010) with a significance level of 0.05 is

adopted to test the superiority credibility of our proposed ASTMOPSO over each of the other compared algorithms. Symbols ‘þ’, ‘�’, and ‘≈ ’
marked in the Med. columns indicate that the compared algorithm is significantly better than, worse than, or similar to our ASTMOPSO, respec-

tively. As seen from Table 6, ASTMOPSO shows no statistically significant inferiority compared to any of the comparison algorithms in terms of

distribution and convergence. This is evident from the absence of any symbol ‘þ’ across all metrics (IGD, HV, and SP). Specifically, for small and

medium scales, NSGA-III exhibits similar solution effectiveness to our proposed algorithm, as indicated by statistically comparable performance.

However, when considering large-scale problems, substantial performance differences become apparent. Analysis of the SP column reveals a

TABLE 6 Metrics results (GD, HV, and SP) on the I-MACRP model.

Algorithms

Metrics

IGD HV SP

Mean Std. Med. Mean Std. Med. Mean Std. Med.

Scale 4 (Small scale)

SPEA 2 3765 242.9 3833� 0.598 0.009 0.594� 1.00 4.14e-06 1.00≈

MOPSO 3297 314.9 3166� 0.621 0.014 0.627� 1.00 4.05e-06 1.00≈

MOEA/D 4194 408.2 4099� 0.540 0.039 0.542� 1.00 5.62e-06 1.00≈

NSGA-III 1796 342.6 1691≈ 0.747 0.031 0.755≈ 1.00 9.09e-07 1.00≈

CMOPSO 3948 383.9 4011� 0.581 0.016 0.577� 1.00 3.85e-06 1.00≈

MORBCO 4026 285.6 3985� 0.574 0.022 0.581� 1.00 2.82e-06 1.00≈

ASTMOPSO 1787 105.0 1777 0.757 0.007 0.756 1.00 4.41e-07 1.00

þ=�=≈ / / 0/5/1 / / 0/5/1 / / 0/0/6

Scale 9 (Medium scale)

SPEA 2 5780 489.8 5628� 0.578 0.016 0.587� 0.99 1.67e-06 0.99≈

MOPSO 7019 852.9 6699� 0.560 0.017 0.565� 1.00 1.66e-06 1.00≈

MOEA/D 7946 1248 8187� 0.507 0.040 0.499� 1.00 4.07e-06 1.00≈

NSGA-III 3861 1319 3591≈ 0.614 0.030 0.618� 1.00 1.76e-06 1.00≈

CMOPSO 8648 1122 8359� 0.520 0.031 0.524� 0.99 2.09e-06 0.99≈

MORBCO 8349 1180 8492� 0.504 0.023 0.492� 1.00 1.82e-06 1.00≈

ASTMOPSO 3105 1293 3035 0.688 0.048 0.684 1.00 4.33e-06 1.00

þ=�=≈ / / 0/5/1 / / 0/6/0 / / 0/0/6

Scale 17 (Large scale)

SPEA 2 6160 2655 5390� 0.444 0.039 0.446� 1.00 1.95e-06 1.00≈

MOPSO 8957 1089 8870� 0.394 0.020 0.397� 1.00 1.11e-06 1.00≈

MOEA/D 10,454 3020 10,368� 0.343 0.048 0.344� 1.00 3.88e-07 1.00≈

NSGA-III 4367 1431 4130� 0.513 0.026 0.513� 1.00 5.55e-07 1.00≈

CMOPSO 14,845 1772 14,985� 0.283 0.019 0.278� 1.00 1.04e-06 1.00≈

MORBCO 10,571 2814 11,521� 0.331 0.051 0.338� 1.00 4.11e-07 1.00≈

ASTMOPSO 2919 926.3 2953 0.606 0.026 0.615 1.00 8.58e-07 1.00

þ=�=≈ / / 0/6/0 / / 0/6/0 / / 0/0/6

Note: /, no value needs to be recorded.
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similar distribution pattern among all algorithms, potentially attributed to the sparsity of the feasible solution space in our high-dimensional con-

strained problem.

4.3.2 | Solution structure analyses

The numerical statistics discussed above provide convincing results but lack an intuitive comparison. In order to visualize the solution sets

obtained by different algorithms, we plot the best performance solution found in 10 runs in Figure 3 for different instance scales. Note that devia-

tion of duty time among crews f1 and recovery cost f2 are minimum objectives. Therefore, Pareto front should be as far to the lower left as possi-

ble. Experimental results in Figure 3 further confirm that ASTMOPSO has an overall better convergence performance than the other six

compared algorithms. Since the proposed I-MACRP model is a multi-objective problem, it is better to find more solutions to balance all objectives

in different situations discretionarily. From the figures, the most solution quantity found for different scales are 11 (it is found by SPEA 2 and

ASTMOPSO finds 4 solutions which is only better than MOEA/D), 14 (it is found by ASTMOPSO and followed by the second rank 8 solutions

found by MOPSO), and 14 (it is found by ASTMOPSO and followed by the second rank 11 solutions found by MORBCO). Our ASTMOPSO algo-

rithm seems to have better solution-finding ability than the other algorithms when the instance scale is large.

4.3.3 | Further discussions

Discussion on infeasible solution repair procedures

Since our I-MACRP model is a complex multi-objective problem with various constraints, it is difficult to find a feasible solution. To demonstrate

the effectiveness of our proposed repair methods (as shown in Section 3.1) in finding the feasible solution, we focus on the feasible rate (FR),

which is the ratio of the number of feasible runs to the total number of runs. Our five repair procedures focus on variable boundary handling (pro-

cedure 1), crew constraint handling (procedure 2), and time constraint (procedures 3 to 5) handling. Since repair procedure 1 has been adopted

popularly in literature, we delete repair procedures 2 and 3 to do further discussion for our ASTMOPSO algorithm. The comparisons of

ASTMOPSO-noC (without procedure 2), ASTMOPSO-noT (without procedure 3), ASTMOPSO-noC&T (without both procedures 2 and 3) with

ASTMOPSO in terms of FR are shown in Table 7, where the best results are in boldface. We can find that our ASTMOPSO considering repair

methods on crew and time can obtain feasible solutions in all 10 runs on all instances. Its significant advantage in finding feasible solutions is that

a set of constraints is checked and satisfied in each step during the solution construction. In contrast, neglecting adjustment on crew or time only

has a nearly 40% probability of finding a feasible solution in all scale instances. As more repair methods are neglected (ASTMOPSO-noC&T), the

smaller FR can hardly obtain a feasible solution in large scale with a high dimensional search space.

Discussion on cruise speed recovery action

Table 8 compares the recovery performance between considering cruise speed control recovery (CSC) and no cruise speed control recovery

action (N-CSC). It takes one of Pareto solutions found by ASTMOPSO algorithm as an example and the results of N-CSC case can be acquired

easily by setting vfs,j ¼ vfs,j . For each scale, the last row calculates the improvement of the CSC-considered algorithm compared to its

corresponding N-CSC case. Table 7 shows that adopting cruise speed control as a recovery action helps reduce disturbed flights and total delay

time, which is helpful in comforting the emotion of stakeholders. This is because the aircraft under CSC situation can speed up to arrive before air-

port closure or satisfy minimal ground turn-around time requirement, which significantly declines delay to downstream flights.

F IGURE 3 Pareto front of all algorithms for different instance scales. (a) small scale; (b) medium scale; (c) large scale.

12 of 17 ZHONG ET AL.
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4.3.4 | Recovery scheme exhibition

One illustrative recovery scheme on the instance provided by the ASTMOPSO algorithm is presented in Figure 4. The planned and recovered

schemes for each disturbed flight are shown in grey and orange rectangles, respectively (the grey rectangle will be neglected if no timetable and

cruise speed change). Their decision deviations on delay time, cruise speed, and crew re-arrangement introduced in Sect. 3.2 are depicted by the

3-dimension data above the orange rectangle. For example, (0,0,6) above the orange rectangle f1,1 means that the first flight in string 1 keeps its

departure time and cruise speed, and it will be operated by crew 6. In this recovery scheme, the actual earliest off-duty string is f1,1 ! f1,2 and it

will be executed by corresponding winner crew 6. From Figure 4, the flights f1,2, f8,2 and f9,2 are successful in avoiding the influence of airport clo-

sure by increasing cruise speed to go back to the base airport before the closure time. Reserve crews 14, 15, and 20 are called on this recovery

scheme.

5 | CONCLUSIONS AND FUTURE WORKS

Unlike most existing I-ACRP models that only consider costs from airlines, this study proposes a new multi-objective model from both airlines and

crew perspectives. Precisely, crew satisfaction is measured by on-duty time difference and preference for the earliest off- duty task through bid-

ding. Besides, a novel ASTMOPSO algorithm is developed to efficiently solve the multi-objective model. Two adaptive swarms with improved

evolutionary strategies are employed to balance the abilities between global detection and local search. And five ad-hoc infeasible solution repair

procedures are proposed to increase the probability of finding feasible solutions.

Experiments conducted on three instances from real world verify the effectiveness of our ASTMOPSO in solving the proposed I-MACRP

model. ASTMOPSO statistically outperforms the other compared optimization algorithms and the infeasible solution repair procedures signifi-

cantly improve the feasibility rate by at least 40%, particularly for large-scale instances.

Our proposed model and optimizer try to give high-quality recovery schemes for integrated aircraft and crew suffering airport closure. Since

the timetable and crew are mixed decision variables, our encoding strategy is also helpful in other practical problems. The present work is limited

to single-day recovery; however, severe airport closures can result in disruptions spanning multiple days. Therefore, in future research, we will

focus on studying multi-day recovery. Additionally, passenger recovery serves as the final stage of restoring operations after disruptions, and inte-

grating it into our future studies to achieve holistic recovery would be an intriguing topic.

TABLE 7 Comparison of FR results under different ASTMOPSO variants.

Variants scale ASTMOPSO-noC ASTMOPSO-noT ASTMOPSO-noC&T ASTMOPSO

4 60% 40% 30% 100%

9 50% 40% 10% 100%

17 40% 30% 0% 100%

TABLE 8 Comparison of recovery results under CSC and N-CSC cases.

Feasibility No. delay flights Total delay time

Scale 4 (Small scale)

CSC Yes 8 203

N-CSC Yes 11 291

Improvement / 27.27% 30.24%

Scale 9 (Medium scale)

CSC Yes 19 666

N-CSC Yes 21 795

Improvement / 9.52% 16.23%

Scale 17 (Large scale)

CSC Yes 45 3591

N-CSC Yes 48 4067

Improvement / 6.25% 11.70%
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