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Abstract – Incremental delta-sigma analog-to-digital converters 
(IADC) are widely used in modern high-fidelity audio, sensors, and 
IoT low-power applications. Over the past years, the techniques to 
implement high-resolution IADCs have been significantly improved, 
for example, in handling the weighting problems inside the IADCs to 
overcome thermal noise and DAC mismatch issues. This paper 
offers a tutorial review on the considerations of weightings in IADCs. 
The influence of weightings on thermal noise and DAC mismatches 
is analyzed, and the use of weighting in algorithms is described 
specifically. The advanced architectures to take advantage of the 
weightings based on recent academic achievements are presented 
respectively, with design examples to illustrate the successful 
practical implementations.  

 

I. Introduction 

In sensor and instrumentation applications, for example, audio, 
temperature sensing, acceleration and location sensing, and also 
wearable devices to identify biometrics [1]-[16], the signals to be 
processed are usually with frequencies from DC to audio bandwidth 
[1]-[4]. High-resolution analog-to-digital converters (ADC) with a high 
signal-to-noise ratio (SNR) are in strong demand in these 
applications. The ADCs in these applications require a high dynamic 
range because the signal power in most cases is relatively weak. To 
achieve high resolution in audio bandwidth, while the flicker noise 
can be suppressed by the use of a chopper [14]-[23], the ADC needs 
to overcome thermal noise as well [1]-[6]. Moreover, multi-channel 
sensors need to digitize the input individually with low latency and to 
be multiplexed easily [1]-[4], [12], [15].  

The oversampling technique is one of the best choices for high-
resolution ADC design, and as an effective structure, delta-sigma 
(ΔΣ) ADCs are widely considered [19]-[25]. Fig. 1 (a) shows an 
example block diagram of the continuously free-running ΔΣ ADC, in 
which the digital decimator is rather complicated, and the latency of 
the ΔΣ modulator can be long [2]-[4]. Also, in Fig. 1 (a), the latency 
from the input to the output is order-dependent. Supposing the input 
signal was switched to another channel, in that case, the digital filter 
needs (L+1)OSR (i.e., OSR is short for the over-sampling ratio) clock 
cycles to settle and then provide the estimation of the input signal of 
the new channel. Eventually, the traditional free-running ΔΣ 
modulator architecture was not applicable to multi-channel signal 
acquisition [1]-[4], [15].  

To overcome the long latency of continuously free-running ΔΣ 
ADC, the incremental ΔΣ ADC can be an alternative [1]-[4]. As shown 
in Fig. 1 (b), the block diagram is very similar to its free-running 
counterpart [2], which also consists of an analog modulator and a 
digital decimator. Unlike the traditional ΔΣ ADC, the IADC clears the 
memory periodically by resetting the analog modulator and the digital 
filter, inducing an independent sample-by-sample operation.  

For IADCs, the resetting operation breaks the loop’s continuity. 
The digital output codes depend only on the input samples lying 
within the conversion interval. Thus, it provides a Nyquist-like 
property [2], [4], [5]. Therefore, the IADC is suitable for multi-channel 
applications since the digitalization of the input signal is ready at the 
end of one conversion. Furthermore, the IADC does not suffer from 
idle tones [1], [2] thanks to its resetting operation, because the 
pattern signal can be regarded as an offset and can be removed in 
the digital domain, making the IADC an excellent candidate for the 
high-performance audio system. 

Compared to the ΔΣ modulators, IADCs have unique signal 
processing characteristics. Specifically, the signal transfer function 
(STF) of the free-running ΔΣ modulator is usually able to be set as 
unity (or with some delays), which means that the relative importance 
(i.e., weights) of all the input samples are equal. Thus the OSR can 
work well to suppress the thermal noise [2], [5]. Also the DAC 
mismatches can be effectively suppressed using a general data-
weighted averaging (DWA) algorithm [26]-[29]. However, the case in 

the IADC is different. Due to the resetting operation, the IADC posts 
equivalently a specific “deadline” to force a finite number of 
oversampling samples to represent a certain Nyquist output, and the 
STF is usually not unity. This imposes weighting issues, especially 
in high-order IADCs, and compromises the effectiveness of the OSR 
to suppress the thermal noise and DAC mismatches through DWA 
[30], [31]. Although the effect of non-uniform weighting is 
disadvantageous for high-order IADCs, some unique designs may 
make use of this special property and create excellent architectural 
algorithms to mitigate the problems [30]-[38]. 

This paper is organized as follows. Section II describes the 
fundamental theories of IADC. Section III analyzes the influence of 
weightings on the performance of the IADC. Section IV introduces 
algorithms based on exponential IADC. The design examples based 
on weighting in advanced architectures are discussed in Section V. 
Section VI gives a conclusion to this paper. 

 

II. A Simple Review of IADC Algorithms 

a) First-Order IADCs 

First presented by Van De Plassche in 1978 in [39], as illustrated 
in Fig. 2, the IADC is like a ΔΣ ADC with a resetting button. It is easier 
to observe an IADC in the time domain [6]. At the beginning of each 
conversion, the integrator, as well as the digital decimator, are reset 
to clear the previous memory. Then the integrator accumulates the 
difference between the input signal Vin and the signal from feedback 
DAC Dk·Vref. Assume Vres is the residue output voltage of the 
integrator. After Nth clock cycles, Vres is calculated as: 

 ������� = 	 �
��
��

�
 − 	 ���
��


�
 ���� (1)

where Dk(i) represents the digital output codes at ith clock cycle, and 
N=OSR is the number of clocks per conversion or the oversampling 
ratio in the IADC. The estimated input signal can be derived as: 

 �
� = ∑ ���
������
�� � + �������
�  (2)

The first term of the right-hand side is the digital estimation of Vin, 
which can be regarded as a weighted average of digital output codes. 
The second term is the quantization error, determined by the residue 
output voltage of integrator Vres(N). 

The resolution of the first-order IADC can be derived as: 

 ���� = ������� (3)

It can be concluded that for a first-order incremental architecture, 
the required clock cycle is 2n for an n-bit resolution, which 
accumulates the input signal with low efficiency. 
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Fig. 1. The block diagram of (a) a ΔΣ ADC in continuously free-
running mode and (b) an incremental ADC with reset. 
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b) Second-Order IADCs 

Cascading integrators can increase the speed of accumulation 
[2], [5], and the number of clock cycles reduces sharply.  

Fig. 3 shows a cascaded-integrator feedforward (CIFF) structure 
of a second-order IADC with a single-bit quantizer. Using the same 
model as described earlier in first-order IADC, the estimated input 
signal for the second-order modulator is calculated as: 

 � �!!!! = ∑ ∑ ���
�����
"�#���
�� $ + �������
$  (4)

where M is the total gain of signal accumulation which is (N(N+1))/2. 

The resolution of the second-order IADC can be calculated as: 

 ���% = ���� &��� + 1�
2 ) (5)

Compared to the first-order, the second-order structure is much more 
efficient for its faster accumulation and lower power consumption. To 
achieve a 20-bit resolution, the first-order needs 1048576 clock 
cycles, while only 1449 clock cycles are required in the second-order 
structure. 

 

c) High-Order IADCs 

Since a second-order IADC is more efficient than a first-order one, 
high-order IADCs are considered straightforwardly. An Lth-order 
single-loop IADC with feedforward paths and a single-bit quantizer is 
illustrated in Fig. 4.  

Based on the accumulation structure above, the input signal can 
be estimated as:  

 �
� = *�*� ⋯ *, ∑ ∑ ⋯ ∑ ���
,�����
-./"�
-��
/"�
0���
/��
$ + �������

$  (6)

where M=c1c2…cL·N(N+1)(N+2)…(N+L-1)/L! is the signal gain of Lth-
order IADC.  

 The analysis above shows that a high-order architecture can 
reach high resolution with less conversion cycles [3]. However, the 
coefficients of the loop filter are restricted to values lower than 1 to 
guarantee loop stability, which results in the gain attenuation of later 
conversion cycles. 

 

III. Impacts of Weighting on Performance 

a) Impact on Thermal Noise 

 Thermal noise is a fundamental limiting factor that must be 
carefully considered in high-resolution ADCs [5]. Different from the 
quantization noise1, the thermal noise is random and sample-
independent. Compared with the rapid drop of quantization noise 
during the proceeding of the IADC conversion cycle, the attenuation 
of thermal noise is relatively slow since it is a kind of “white noise”. 
To suppress the thermal noise to a satisfactory level, a much larger 
number of conversion cycles is required. As a result, the 
oversampling technique was often used in signal processing to 
reduce the thermal noise by the principle of averaging. During the 
sampling operation, the thermal noise could be regarded as a 
random signal, which is uncorrelated with the input. Thus, the final 
SNR would be improved by the oversampling technique, resulting in 
a 3dB improvement for every doubling of the OSR. 

 In the first-order IADC, the STF can be written as follow: 

 123��� = 1
1 − 4"� = 1 + 4"� + 4"� + 4"5 + ⋯ (7)

From Eqs. (7), an important conclusion can be observed: the first-
order IADC has uniform weightings, from the first sample to the last 
one. The input-referred thermal noise can be ideally suppressed by 
OSR (i.e., the number of conversion cycles N) as:  

 ��,
�78�9:;<=>?
� = 2@2

A�
1
� (8)

Thus, the first-order IADCs will benefit fully from the OSR for the 
thermal noise without penalty. If multibit DAC is used, then the 
effectiveness of the DWA can be benefitted fully also from OSR for 
suppressing DAC nonlinearity in a similar way. 
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Fig. 3. The block diagram of a second-order IADC. 
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Fig. 4. The block diagram of an Lth-order IADC.  
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Fig. 2. The block diagram of a first-order IADC. 
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Fig. 5. The weightings of 1st- to 4th-order IADCs. 

1Although quantization “noise” is normally assumed random, indeed it is 

a result of deterministic action between the input signal and the quantizer’s 

threshold levels. The quantization noise in later samples in IADCs depends 

on the previous conversion. As a result, the IADC’s OSR can suppress the 

quantization noise in a faster rate (6dB by 2x OSR for first-order IADC). While 

the thermal noise is truly random and sample-independent, the IADC’s OSR 

suppress the thermal noise in a much slower rate (3dB by 2x OSR). Authorized licensed use limited to: Universidade de Macau. Downloaded on August 21,2023 at 04:34:58 UTC from IEEE Xplore.  Restrictions apply. 
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 However, high-order IADCs have a thermal noise penalty due to 
the non-uniform weights in the signal accumulation [3], [30]-[33], and 
the OSReff (i.e., the “effective OSR” for thermal noise reduction) will 
be reduced. The STF of second-order to fourth-order IADCs are 
calculated in (9) to (11): 

 123��% = B 1
1 − 4"�C� = 1 + 24"� + 34"� + 44"5 + ⋯ (9)

 1235�% = B 1
1 − 4"�C5 = 1 + 34"� + 64"� + 104"5 + ⋯ (10)

 123H�I = B 1
1 − 4"�CH = 1 + 44"� + 104"� + 204"5 + ⋯ (11)

It is observed in Eqs. (9) to (11) that higher-order IADCs lead to non-
uniform weightings. The earlier inputs earn larger weightings, while 
the weightings of the later inputs are relatively small.  

Fig. 5 shows the uniform weighting of the first-order IADC and 
non-uniform weightings of the second- to fourth-order IADCs vividly. 
The non-uniform weightings in the higher-order IADCs are due to the 
cascaded integrator gains within a single conversion cycle, which 
makes the earlier samples and residues receive a gain larger than 1 
when they are circulated in the integrators every clock cycle. Note 
that when there is attenuation in the integrator path of the loop, the 
weightings may vary, but the overall trend remains. 

 The monotonic decreasing weighting in traditional high-order 
IADCs results in a thermal noise penalty when we try to use the 
oversampling technique to suppress the thermal noise. The 
averaging effect is diminishing due to the reduced weight 
contributions for the later samples. Thus the “effective OSR”, OSReff 
[37], [38] on the thermal noise reduction will be reduced. The input-
referred noise of such a converter could be calculated as: 

 ��,
�78�:=:9:;<=>?
� = ��.�K�LM�

$� = 2@2
A�

∑ N�
���
���∑ N�
��
�� �� (12)

where Vn.total
2 is the total output noise and M is the total gain of the 

input signal accumulation. W(i) is the weight of the ith sampled data. 

 Higher noise penalty will happen in higher loop order due to the 
sharply dropped weightings of later samples. The penalty factor [33], 
[38] can be described as: 

 OPQR�ST 3R*S�U = � ∑ N�
���
���∑ N�
��
�� �� (13)

where the selected weightings in (13) depend on specific 
implementations.  

 For second- to fourth-order IADCs, the calculated thermal noise 
penalty factors are 1.3/1.8/2.3 when N is sufficiently large. Table I 
compares the thermal noise penalties from the first- to fourth-order 
IADCs and the required N=OSR needed to resolve 20 bits. The 

above penalty discussion holds similarly for using the DWA 
averaging effect on the multibit DAC nonlinearity reduction in IADCs.  

 The unity-gain bandwidth of an op-amp is usually limited by 
process, and as a result, the achievable sampling frequency is 
limited. Implementing a first-order IADC is tough for its long 
conversion cycles, leading to extremely high OSR. As shown in 
Table I, to achieve a resolution of 20-b, the OSR should be larger 
than 1048576 for a first-order structure. This might not be a good 
solution for audio bandwidth. Still, in DC to low frequency (tens of 
Hz) application [3], a first-order IADC with a reasonable sampling 
frequency and zero noise penalty can be obtained due to the uniform 
weightings.  

 A high-order structure can significantly reduce the number of 
conversion cycles. However, it causes non-uniform sample 
weightings, resulting in a large thermal noise penalty, as shown in 
Table I. Furthermore, larger sampling capacitors are needed for the 
same input-referred thermal noise in higher order, causing more 
power consumption to drive the increased capacitors.  

 

b) Impact on DAC Mismatch Error 

 Multibit quantizers are beneficial for SQNR boosting [30], [31], as 
the final residue is bounded by a smaller quantizer’s step size. 
Besides, it can lead to a power-efficient op-amp topology due to the 
reduced integrator swing. However, the multibit feedback DAC 
induces nonlinearity issues due to element mismatches. Since such 
errors add directly to the modulator’s input, the linearity of the DAC 
must satisfy the overall performance of the IADC. Linearization 
techniques such as dynamic element matching (DEM) can be 
realized with a small cost in circuit complexity, especially for the DWA 
technique.  

However, the effectiveness of the DWA has degraded in high-
order incremental ADCs because of the non-uniform weightings [30], 
[31]. Take the second-order structure for example, the weights of 
DAC are time-varying during conversion, which is the same as the 
input signal weightings. The earlier input signal and DAC receives a 
larger gain or weighting. Meanwhile, the various DAC capacitors can 
be described as:  

 A
 = A8!!!�1 + V
� (14)

where A8!!! is the average capacitance value and εi represents the 
mismatch error in the ith unit. Considering the linearly-varied 
weighting in the second-order IADC, the weighting of DAC error 
caused by the mismatch in the jth cycle is presented as: 

 N# = � − W (15)

Then, at the end of the Nth conversion cycle, the total injected 
mismatch error is:  

 V�K� = 	 N#
�"�
#�� × Y	 V


Z�#�

�� [ (16)

where D[j] is the code of the quantizer. 

 At the beginning of conversion, the signal, as well as the DAC, 
has the largest weighting, and the impact of injected mismatch error 
is more significant. Since the mismatch error has a sample-variant 
weighting function, rotation of the capacitor array is not effective in 
suppressing the mismatch errors [30], [31], causing a DWA 
effectiveness penalty factor similar to that for thermal noise. 

 

IV. Algorithms based on Exponential IADC 

a) Exponential IADC Fundamentals 

For the conventional IADCs, higher-order structures lead to 
faster accumulation speed. In first-order IADCs, the weighting of 
each sample is uniform [2], [37], [38], so the accumulation is the 
slowest. As the order increases, the weightings of the earlier samples 
are much larger than the later ones, which makes the IADC achieve 
higher resolution with smaller conversion cycles. Indeed, the 
exponential IADC can achieve an extremely fast accumulation speed 
[37], [38] in a first-order-like structure.  

The structure of an exponential IADC and its timing diagram is 
shown in Fig. 6, where ke is an exponential coefficient. A larger ke 
leads to a faster accumulation speed.  
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It is easier to analyze an exponential IADC in the time domain. 
Once the system is reset, the modulator and digital filter accumulate 
the difference between the analog input and output of the feedback 
DAC. It is easy to write the STF in a more obvious way as: 

 123�\7 = 1
1 − �1 + @��4"� 

 = 1 + �1 + @��4"� + �1 + @���4"� + �1 + @��54"5 + ⋯ (17)

It can be seen from (17) that the weighting drops exponentially, in 
which the larger ke brings a faster drop. If the weights are normalized 
to the last sampled signal, the weight of the ith sample is described 
as:  

 N�
� = �1 + @���"
 (18)

and the total gain of the input signal is as:  

 $ = 	 N�
��

�� = �1 + @��� − 1

@� ≈ �1 + @���
@�  (19)

Assume that there are L levels in the quantizer and the VFS is the full-
scale reference voltage. The height of each step of the quantizer is 
presented as: 

 ����^ = �_`a − 1 (20)

Then the input voltage can be estimated in (21), in which Vres(N) is 
the residue voltage of the integrator output.  

 �
� = ∑ �K8��
�����^N�
��
�� $ + �������
$  (21)

The resolution, in theory, is described as: 

 � = log��$�a − 1�� ≈ log� Y�1 + @���
@� [ + log��a − 1� (22)

From (22), we can obtain that higher OSR, larger coefficient ke, and 
more quantizer levels will bring a higher resolution. Suppose a two-
level quantizer is used, Fig. 7 compares the ideal resolution and 
OSReff between exponential IADC and conventional order-based 
ones. The IADCs accumulate signals in a much faster way. To 
achieve a resolution of 20-b, second- to fourth-order IADCs need 

1449/186/73 OSR, respectively, while exponential structures only 
need 55/32/20 cycles with ke=0.25/0.5/1 respectively [38]. 

 Even though the exponential IADC can achieve high resolution 
via a few conversion cycles, it suffers from the thermal noise penalty 
because of the non-uniform weightings as high-order IADC does, but 
in a much more severe way. 

 After a whole conversion period, the total thermal noise injected 
by all cycles can be described in (23) and also shown in Table I: 

 ��,�K�� = 2@2
A� 	 �1 + @����"�
�


�� = 2@2
A�

�1 + @���� − 1
@��@� + 2�  (23)

Then, the input-referred thermal noise can be calculated as:  

��,
�� = ��.�K��
M� = 2@2

A�
�1 + @���� − 1

@��@� + 2�
@��

��1 + @��� − 1�� ≈ 2@2
A�

1
1 + 2@�

 (24)

After a few conversion cycles, the input-referred thermal noise 
becomes almost unrelated to the increasing number of conversion 
cycles because of the exponentially decaying weights for later 
samples. As Fig. 7 (b)  presents for exponential IADCs, when OSR 
increases, the OSReff remains almost constant in a minimal value, 
which means that the conversion cycles do not suppress input-
referred thermal noise anymore. The situation is even tougher than 
the high-order conventional IADCs. 

 The exponential IADCs bring more non-uniform weightings than 
order-based ones, which get more significant DAC mismatch errors 
than regular high-order IADCs. With the increase of OSR, the 
weights drop exponentially, which reduces the effectiveness of DWA 
as well. 

 

b) Linear-Exponential IADC Algorithm 

 Based on the linear weightings of first-order IADCs and 
accelerated accumulation of exponential IADCs, the linear-
exponential algorithm was proposed in [34]-[38]. This solution takes 
advantage of the ideal thermal noise suppression and DWA-
friendliness in first-order and fast SQNR boosting in the exponential 
structure.  

The system first works in a linear phase as a first-order IADC to 
suppress thermal noise as well as to put DWA to work effectively. 
Although the first-order IADC’s uniform weighting brings many 
advantages to data conversion, its long conversion cycles limit its 
bandwidth. The origin of such a long conversion is due to the 
suppression of the large quantization noise. As a result, one can turn 
the IADC into an exponential phase during the last few conversion 
cycles in a conversion period to boost SQNR in a short conversion 
time. With a reasonable distribution of conversion cycles between 
the first-order and exponential modes, the new algorithm can take 
advantage of both phases. 

 The STF of the linear phase is described in (7). In the exponential 
phase, the STF can be described as (17). Normalize the weights 
from both linear and exponential phases to the last sample, and the 
equation in (25) and (26) will be obtained. 

 N�
� = f �1 + @���g , 
 ∈ �1, �,�
�1 + @���"
 , 
 ∈ ��, + 1, �� (25)

 �, + �i = � (26)
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Fig. 7. (a) Theoretical resolution of an exponential IADC and 
conventional order-based IADCs vs. OSR (or N). (b) Effective OSR 
of thermal noise reduction of exponential IADC and conventional 
order-based IADCs vs. OSR (or N) [38].  

εq

1-(1+ke)z-1

Vin Dout

DAC

Reset

z-1

1-(1+ke)z-1

Reset

Exponential

Accumulator

Ddecimated

Digital FilterAnalog Modulator

z-1

Φ1 Φ2 Φ1 Φ1Φ1 Φ2

Rst RstReset

Clock

One conversion 

 N  

Vres

 
Fig. 6. Diagram of an exponential IADC and its timing [38].  

0 60 120 180 240 245 250 255

0

2000

4000

6000

8000

Samples

W
e

ig
h

ti
n

g

245/256

246/256

244/256

NL/(NL+NE)

 
Fig. 8. Weighting function of a linear-exponential IADC with the 
coefficient ke of 1 (normalized from the last sample) [38].  
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where NL and NE are conversion cycles for linear and exponential 
phases, respectively. It can be observed in (25) that in the 
exponential phase, the weights are highly non-uniform and are the 
same as the situation in exponential IADC. To trade off between high 
linearity and fast accumulation, there shouldn’t be many conversion 
cycles in the exponential phase. 

 Suppose ke=1, the normalized weightings are shown clearly in 
Fig. 8. Higher weightings will be obtained in the linear phase with 
more exponential conversion cycles. However, too few cycles in the 
linear phase will lead to trouble with input-referred thermal noise, so 
just a few cycles of the exponential phase should be chosen, enough 
to suppress the quantization noise to a satisfactory level. 

To achieve a resolution of 20-b, suppose the total number of 
conversion cycles is N=256, and the cycle in the linear phase is 
NL=246. The thermal noise penalty factor can be calculated based 
on (13), which is 1.03 [38], almost equal to 1, proving that the linear-
exponential algorithm can suppress thermal noise effectively like the 
first-order IADCs. 

 In summary, the linear-exponential algorithm takes advantage of 
the uniform weightings in first-order structure and accelerated 
accumulation in exponential IADC to get a low thermal noise penalty 
factor, easy DWA, and fast conversion while avoiding the 
disadvantages of slow accumulation in the first-order and 
catastrophic thermal noise/DAC mismatch penalty in exponential 
IADC. 

 

V. Algorithms based on Exponential IADC 

 We can see from the above discussion, non-uniform weights in 
IADCs bring general disadvantages to the high-order and 
exponential structures. However, with such a unique property, one 
can take advantage by intentionally utilizing such non-uniform 
weights in handling the tradeoffs between the quantization noise, 
thermal noise, DAC mismatches sensitivity, and also power 
consumption. The following design examples illustrate the concept. 

 

a) IADC with Integrator Slicing 

 In IADCs, considering the power consumption is dominated by 
the first integrator because of thermal noise, a reconfigurable slicing-
integrator technique was proposed in [32], [33] based on the non-
uniform weightings in high-order IADC, which is shown in Fig. 9. This 
is one of the excellent examples to take advantage of non-uniform 
weights for power saving in integrators.  

 The IADC uses a third-order feedforward structure with a two-
level quantizer to avoid the DAC mismatch issue, whose OSR is 150 
and uses a sampling frequency of 30MHz. The first integrator is 
divided into four slices, which means each sampling and integration 
capacitors are divided into four parts with the same size, and the 
width of MOSFETs in the op-amp is divided by four. Each slice is 
controlled independently within the cycles from k1 to k4 in the timing 
diagram in Fig. 9, while k1/k2/k3/k4 are 40/30/10/70 respectively. 

 Contrary to first-order IADC, as the conversion cycle grows, the 
weightings of third-order IADC drop. Once the resettling signal acts 
on the system, the early-input samples have large weightings, and 
four slices of integrator work together in k1 to take advantage of larger 
input signal power and lower thermal noise in the integrator. As the 
conversion continues, the weightings drop, resulting in lower input 
signal power. Then, the performance requirements of the first 
integrator become not that high anymore, especially in the aspects 

of thermal noise. Three slices are used in k2 to guarantee the SQNR 
while reducing power consumption. Then, it turns into two slices in 
k3. Finally, near the end of the conversion period in k4, the weightings 
of input samples become relatively small, and large sampling 
capacitors are not required to suppress thermal noise. Thus, the 
performance demands of the op-amp become lower. In this situation, 
only one slice is needed to complete the conversion operation. Such 
an arrangement is not possible if first-order IADCs are used. 

 For a third-order IADC, around 80% of power consumption is 
caused by the first integrator, so reducing the power consumption of 
the first integrator is the most efficient way to optimize the overall 
power performance. 

 From the overall measurement results in [32] and [33], if no 
integrator-slicing technique is used, the SNR and SNDR are 88.0dB 
and 87.4dB, respectively, and the power consumption is 1.65mW. 
After turning on the slicing technique, the SNR and SNDR dropped 
0.7 and 0.8dB, respectively, but the power consumption became 
33.3% lower. This led to a Schreier figure of merit (FoMS) 0.96dB 
higher than before.  

 The thermal noise penalty factor is 1.788 if no slicing technique 
is used. With the sliced integrators, assume that the sampling 
capacitance in the k1 stage is Cs. Then, in k1/k2/k3/k4, the sampling 
capacitances are Cs/0.75Cs/0.5Cs/0.25Cs respectively, resulting in a 
thermal noise penalty factor of 2.051. In theory, the SNDR should 
drop 10log10(2.051/1.788)=0.595dB with sliced integrators, which is 
consistent with the measurement results. The integrator-slicing 
technique is a good solution that sacrifices little thermal noise penalty 
to promote much higher power efficiency. There is no DWA 
effectiveness penalty with the single-bit quantizer.  

 This work used an integrator-slicing technique based on the non-
uniform weightings to achieve an energy-efficient third-order IADC in 
180nm CMOS under the supply voltage of 3V. The system achieved 
an SNDR of 86.6dB and a power consumption of 1.098mW in a 
bandwidth of 100kHz. The system finally reached an FoMS of 
166.2dB [32], [33]. 

 

b) IADCs with Positive Feedback 

 To introduce exponential weightings in IADC, a positive feedback 
loop is added between the output and input of the integrator in [34]-
[36].  

 As shown in Fig. 10, in [34], the positive feedback path is disabled 
during the first-order linear phase and activated during the 
exponential phase. Assume Vdiff is the difference between the input 
analog signal and feedback voltage from DAC, and Vres is the residue 
voltage. In the exponential phase, the transfer function can be 
obtained as: 

 j�%
���4� + @������4�k 4"�
1 − 4"� = �����4� (27)
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which can be transformed into: 

 123l_ = 4"�
1 − �1 + @��4"� (28)

 In the work of [34], ke was selected as 0.5. During 128 conversion 
cycles with 18 exponential ones, the thermal noise, as well as the 
DWA penalty factor, is 1.131 according to (13), which is 0.131 larger 
than the ideal factor of the first-order structure. 

 The linear-exponential IADC with positive feedback in [34]  
achieved a peak SNDR of 86.02dB in a 65nm CMOS process under 
the supply voltage of 1.2V. Working with a sampling frequency of 
128MHz, the IADC got a bandwidth of 500kHz, power consumption 
of 20mW, and an FoMS of 160dB. 

 Another linear-exponential IADC was proposed in [35], [36] 
based on a positive feedback loop and cyclic ADC, which is shown 
in Fig. 11. A high-resolution flash ADC and a multibit DAC are used 
to reduce the swing of the op-amp and relax the errors in the second 
stage. In the first step, the IADC works in the first-order mode with 
uniform and large weightings to suppress input-referred thermal 
noise and make the DWA effective. Then, it turns into a cyclic ADC 
with reconfigured positive feedforward loop. The STF during the 
second step can be calculated as: 

 123mnm = 1
1 − �1 + 1.25�4"� (29)

It is apparent from (29) that weightings in the second step are 
exponential, in which the coefficient ke is 1.25. Unlike the linear-
exponential structure in [34], there is no input analog sampling during 
the exponential phase in cyclic mode, resulting in no contribution to 
suppressing thermal noise in the exponential phase. The conversion 
cycle of the first step is selected as 32 and the second step as 8. 
Since the input-referred thermal noise is only suppressed in the 
linear phase, the equivalent penalty factor is observed to be 1.190 
for thermal noise and 1.199 for DWA effectiveness.  

The IADC based on cyclic ADC and positive feedback in [35] and 
[36] was designed in a 180nm process under a supply voltage of 3V. 
The power consumption was 27.7mW. With a bandwidth of 625kHz 
and SNDR of 96.6dB, the IADC reached an FoMS of 170.1dB. 

 

c) Linear-Exponential IADC with Noise Coupling 

 The implementation of exponential integration in [34]-[36] relies 
on positive feedback, which degrades the integrator feedback factor. 
To solve this problem, the noise-coupled structure was proposed in 
[37] and [38] to implement linear-exponential IADC. 

It can be observed in Fig. 12 that noise coupling can be 
implemented via an improved error feedback circuit. The 
quantization noise εq can be obtained in the analog domain by 

subtracting the internal quantizer input from the output digital signal. 
The quantization noise is then transported to the input of the 
quantizer with a delay of 1 clock cycle. Notice that the quantization 
noise is scaled by (1+ke), resulting in an equivalent quantization noise 
of [1-(1+ke)z-1]εq, and the analog exponential integrator with noise-
coupling is mapped in the digital domain in the form of a decimation 
filter. Compared with linear-exponential IADCs with positive 
feedback, this structure has less power penalty since the extra noise-
coupling capacitors and adders are added in the backend and 
consume less power and area. 

The STF in the exponential phase in the noise-coupling structure 
differs from what it was in the positive feedback structure since the 
loop filters are equivalent to being cascaded with a conventional 
integrator and an exponential one. The STF is shown as:  

 123�p = 1
1 − 4"�

1
1 − 24"� 

 = �2 − 1� + �2� − 1�4"� + �25 − 1�4"� + �2H − 1�4"5 + ⋯ (30)

which can be regarded as exponential weightings approximately. 
The penalty factors of thermal noise and DWA effectiveness in  are 
both 1.034. 

 The use of noise-coupling in IADCs also has additional benefits 
in the multibit DAC nonlinearity, as the noise-coupling equivalently 
acts as a dither for the quantizer, which is also demonstrated in [40] 
and [40]. 

 The noise-coupled linear-exponential IADC in [37] and [38] was 
designed in a 65nm process under the supply voltage of 1.2V. With 
a sampling frequency of 10.24MHz and a bandwidth of 20kHz, the 
IADC achieved a peak SNDR of 100.8dB with a power consumption 
of 550μW. An FoMS of 176.4dB is finally obtained.  

 

d) 3rd-order IADC with Reconfigurable Quantizer 

 Multibit oversampling converters are well-known for their 
problems in multibit DAC nonlinearity. Traditionally, techniques like 
the DWA [29] or DAC calibration [42] are utilized to mitigate such 
issues. Also, [43] demonstrated an example of using tailor-made 
architectural innovations to suppress the DAC mismatches, making 
the multibit oversampling converter free from DWA/DAC calibration. 
In the example below, we can see that DWA/DAC calibration-free 
implementation is also possible through architectural advances with 
non-uniform weightings in high-order IADCs. 

 A 3-0 sturdy-multi-stage noise-shaping (SMASH) continuous-
time (CT) IADC with reconfigurable quantizers was proposed in [30] 
and [31], which is shown in Fig. 13. The quantizers are implemented 
by a reconfigurable multibit asynchronous (A) SAR ADC, which can 
be switched between 2-b and 5-b modes to suppress the nonlinearity 
of DAC mismatches according to the non-uniform weightings of third-
order IADC and bring high linearity to the system. The DAC is utilized 
with 1.5b- to 4b tri-level output switching.  

 After the reset signal is applied to the system, the incremental 
SMASH ADC works in a high linearity 1b-1b mode for 40 cycles (3-0 
SMASH, with 1b in the first stage of third-order and 1b in the second 
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stage of zeroth-order). The previous analysis of high-order IADC is 
also suitable for incremental SMASH ADC. In a third-order structure, 
the non-uniform weightings for early-sampled data are relatively high. 
As a result, 1b DAC is utilized in this high-linearity phase, resulting 
in no DAC mismatch contribution in the early samples with higher 
weights. As conversion enters the high quantization noise 
suppression phase of 20 cycles, the DAC is reconfigured to 4b mode. 
The weightings under this mode drop sharply, and the mismatches 
in 4-bit DAC’s impact on the system reduce. With the sharply 
reduced weightings, the nonlinearity of multibit DAC caused by 
mismatches is suppressed. The least significant bit (LSB) of 4b 
operation can lead to small residue quantization noise. Thus, this 
IADC achieved a DWA/calibration-free multibit DAC implementation 
from the architecture level. The thermal noise penalty factor is 1.771 
for a third-order structure.  

 Notice that the SMASH structure in [30] and [31] utilized a tri-level 
encoder, which implies a different consideration in DAC sensitivity. 
Thus the DWA penalty factor is not calculated in Table II. 

 It is worth noting that since the weightings drop more sharply in 
higher conversion cycles, the technique of reconfigurable quantizer 
and DAC is more effective with larger OSR. Furthermore, this 
technique is effective with non-uniform weightings, which is not 
helpful for first-order structure, similar to the IADC with the sliced 
integrator. 

 The 3-0 incremental SMASH ADC in [30] and [31] was 
implemented in a 28nm process. The power consumption of the total 
system is 3.6mW under a 0.9V supply voltage. The system achieved 
a peak SNDR of 81.2dB with a sampling frequency of 120MHz and 
OSR of 60, showing the insensitivity of the DAC mismatches without 
any DAC linearization techniques (DWA/calibrations). The achieved 
FoMS was 165.6dB. 

 

VI. Conclusions 

 The IADC architectures are getting more attention nowadays for 
their outstanding performance in weak-signal detection, multi-
channel multiplexing capability and other high-resolution application 
scenarios. This review paper described the basic order-based IADC 
structures. Then the concept of weightings was introduced to explain 
its influence on thermal noise and DAC mismatches, which are the 
two major problems that limit the performance of IADCs, and then 
led to the concept of penalty factor. The algorithm of exponential 
IADC was explained to obtain accelerated accumulation contrary to 
long conversion cycles in order-based IADCs. To improve the 
catastrophically degraded thermal noise penalty factor in exponential 
IADC, the linear-exponential algorithm was presented. The algorithm 
takes advantage of linear weightings in the first-order phase to 
reduce slowly decreased thermal noise to a satisfying degree and 
accelerated accumulation in the exponential phase to suppress the 
quantization noise in a few conversion cycles quickly. Then we 
discussed several design examples taking advantage of weighting to 
reduce power consumption, and improve the performance over 
thermal noise and DAC mismatches. The performances of discussed 
works are summarized and compared in Table II. These examples 
clearly show that the non-uniform weighting function in IADCs can 
be a good tool for optimizing the performance of IADCs. 
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