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A B S T R A C T   

Additive manufacturing technology has greatly improved the design flexibility and accelerated the optimization 
verification of structure that cannot be easily and economically produced by traditional subtractive 
manufacturing processes. However, common defects such as surface roughness and porosity, affect the quality 
and reliability of the components, hindering their wide application. In this study, an integrated framework 
incorporating high-fidelity powder-scale mechanistic model and physics-informed machine learning is developed 
to predict the built quality of aluminum and to determine the hierarchy importance of mechanistic variables for 
different printing qualities in a multi-classification problem in the processing space. The influence of different 
processing parameters on the built quality is explored by the mechanistic model. A decision tree is constructed 
and the quality prediction index (QPI) connecting five variables and the printing quality is established. The 
hierarchy importance of the mechanistic variables is determined by the QPI and three machine learning in-
ductions. The most important factor for balling, good printing quality, keyhole and lack of fusion defects are Fo, 
TP, fr and Tp, respectively. As the mechanistic variable values are the comprehensive results of multiple pro-
cessing parameters, this hierarchy ranking not only deepens the scientific understanding of different phenom-
enology, but also provides new insights and strategies for the process optimization.   

1. Introduction 

Additive manufacturing (AM) technology that produces parts layer 
by layer from a three-dimensional computer-aided design model is a 
potentially disruptive technology among many industries [1,2]. The 
process provides the extreme flexibility of design and fabricating fine 
structures compared to the traditional subtractive manufacturing pro-
cesses [3,4]. Among the many AM technologies, laser powder bed fusion 
(LPBF) is the most typical and adopted method for the manufacturing of 
metallic components [5]. 

The suitability to produce components by LPBF depends on two as-
pects, described in terms of printability, which is considered to be a 
global indicator of the resistance to micro/macro defect formation that 
compromises the part integrity for an alloy-process combination [6]. (i) 
One is the intrinsic factors that affect the microstructure, including the 

range of solidification, secondary phase, etc. [7–12]; (ii) The other 
aspect is extrinsic processing factors that affect the overall consistency of 
the printed parts [13–16]. The printing quality of LPBF manufactured 
parts is affected by more than 130 processing parameters, among which 
the most commonly investigated are laser power, scanning speed, 
hatching distance, layer thickness and preheating temperature [17–21]. 
The common defects found in parts are porosity and surface roughness, 
which formation are governed by the complex relationship between 
high-velocity vapor, powder movement and molten pool dynamics, and 
can be detrimental to structural integrity and mechanical performance, 
leading to the premature failure [22–26]. AM research has been largely 
focused on studies to deepen the knowledge of the process by under-
standing and finding useful combinations of these external factors. 

So far, many researchers have studied the printability from the 
perspective of molten pool characteristics as many phenomena and de-
fects occur at the molten pool scale, both the time and spatial scale [27, 
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28]. By combing the in-situ thermal imaging and ex-situ characterization, 
Scime et al. [29] developed a method to map the molten pool defects to 
the laser power and scanning speed, and related such defect occurrence 
to the major features of the molten pool geometry. Zhao et al. [30] 
identified the keyhole porosity boundary in the power-scanning speed 
map by using high-speed X-ray imaging, which separated the processing 
parameters for fabricating nominally fully dense parts from those with 
pores. In-situ imaging techniques offer a unique ability to observe the 
molten pool without interfering the experimental producers [31–33]. 
They are very challenging and expensive due to the high temporal and 
spatial resolution required, as well as massive data processing for 
identifying the process window. Numerical simulation has the potential 
to be a viable and cost-effective alternative to address the challenge and 
is increasingly used to study the molten pool dynamics, which can also 
provide unique insights into molten pool evolution and defect formation 
mechanisms, as well as solutions for process optimization [34–37]. Wu 
et al. [38] attributed the spattering to the high momentum of the molten 
metal, high recoil pressure, shear force and low surface tension by 
computational fluid dynamics modeling. Papazoglou et al. [39] 
demonstrated that balling is resulted from the energy density and 
Plateau-Rayleigh capillary instability. Panwisawas et al. [40] estab-
lished the additive manufacturability map based on the porosity, cooling 
rate and volatile mass loss by a multiphysics model. Johnson et al. [6] 
proposed a printability metric for LPBF by a finite element thermal 
model, which is defined as the volume in the laser power-scanning speed 
space. 

In a multi-variable process, the impact of individual processing 
variable on the part quality is often concealed by the influence of other 
variables and the complexity of the process, making it difficult to un-
cover the hierarchy of the important variables. Moreover, the mapping 
relations between raw variables and final quality cannot provide an in- 
depth understanding of the physics behind the phenomenon. Therefore, 
more and more researchers have sought to the combination of numerical 
simulation with data-driven machine learning techniques via several 
mechanistic variables that embodies the effects of alloy properties and 
processing parameters, making calculations tractable [41–45]. For 
example, Du et al. [43] proposed a quantitative framework to uncover 
the mechanism of balling defects in AM by combining the 
physics-informed machine learning, mechanistic model and 
peer-reviewed experimental data. Six important causing variables were 
identified, which were calculated and then used in machine learning to 
obtain the hierarchical importance of defect formation variables. They 
also used multiple machine learning algorithms and numerical simula-
tions to identify the mechanistic variables leading to friction stir welding 
tool failure, and the maximum shear stress was determined to be the 

dominate cause [46]. Jiang et al. [42] implemented the augmented 
machine learning strategy and a mechanistic model, as well as historical 
experimental data to explore the conditions for reducing the lack of 
fusion (LOF) voids in LPBF, and the hierarchical influence of the five 
important variables on the LOF defects was uncovered. A similar 
approach was adopted by Mondal et al. [41] to investigate cracking in 
AM parts. The effects of five variables related to the physics of cracking 
were evaluated and a cracking susceptibility index to predict crack 
formation before printing was established. But in their mechanistic 
models, the free surface evolution and the randomly packed powder bed 
are not included, which will affect the calculation results, such as the 
thermal history, molten pool dynamics and morphology. Besides, till 
now, the relationships between the multiple processing variables, mul-
tiple mechanistic variables, and printing quality in a multi-classification 
problem involving in the processing space have not been reported. 

In this work, the quality prediction index (QPI) is established to 
predict the built quality of aluminum based on a comprehensive 
framework containing high-fidelity powder-scale mechanistic model 
and physics-informed machine learning in a multi-classification prob-
lem in the processing space. The influence of different processing vari-
ables on the printing quality is explored. Five mechanistic variables are 
determined and calculated by the mechanistic model. The solidified 
track quality is predicted, and the hierarchical importance of mecha-
nistic variables is explored by different machine learning algorithms, 
which will greatly promote the scientific understanding behind different 
track phenomena and provide a framework for the selection of printing 
parameters. 

2. Methodology 

LOF occurs when the incident laser energy is insufficient to melt the 
substrate to a significant depth, which can result in large or very sharp 
voids within the built part [47,48]. When the molten pool is unstable 
with a large aspect ratio, balling occurs under Kelvin–Helmholtz insta-
bility or Plateau-Rayleigh instability, increasing the surface roughness 
and even affecting the powder spreading during the subsequent layer 
processing [49,50]. Intensive evaporation and depression take place 
under huge heat input, which will lead to compositional inhomogeneity 
and even porosity [35,51]. According to the literature in this field [6,29, 
52], the built qualities can be classified by molten pool characteristics, 
including LOF, balling and keyhole. The classification thresholds for the 
formation of the above three phenomena are d/t 〈 0.5, l/w1 〉 2.1, and 
d/w2 〉 0.45, respectively. Among them d represents the molten pool 
depth, t is powder layer thickness, l is the molten pool length, w1 is the 
molten pool width from the top view and w2 is the width on the upper 

Nomenclature 

d: depth of molten pool 
t: powder layer thickness 
l: length of molten pool 
w1: width of molten pool from the top view 
w2: width of the molten pool on the upper surface of substrate 
α: thermal diffusivity 
V: scanning speed 
P: laser power 
T: temperature 
p: pressure 
Fd: drag force coefficient 
n→: surface normal vector 
hc: heat transfer coefficient 
σ: Stefan-Boltzmann constant 
ε: radiation emissivity 

μ: viscosity 
g: gravitational acceleration 
Ug: velocity of shielding gas 
Ul: maximum fluid convective velocity 
Tp: dimensionless peak temperature 
Fo: Fourier number 
Ma: Marangoni number 
td: solidification time 
R: Richardson number 
fr: ratio of recoil pressure and surface tension 
v→: velocity vector 
h: enthalpy 
k: thermal conductivity 
F: volume of the fluid 
q: laser heat flux 
ts: time  
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surface of substrate, respectively. The corresponding good type is the 
remaining region after eliminating the regions corresponding to the 
above-mentioned three types of phenomena in the processing space. 

2.1. Physics-informed machine learning 

In a complex system like LPBF process, there are a vast range of 
processing parameters that affect the overall quality of the manufac-
tured parts, and most research has mainly focused on finding useful 
combinations of these external factors to obtain better printing quality. 
The use of data-driven machine learning techniques can establish the 
relationships between different processing parameters and built quality, 
in which raw variables are the most convenient input as they can be 
easily obtained directly during the experiment. Furthermore, engineers 
can easily control these variables to achieve desired product properties. 
However, the influence of single parameter will be affected by the 
complex interdependence of the many processing variables, and the in- 
depth understanding physics and the roles of the raw variables in part 
quality cannot be easily obtained and analyzed. Based on the wide 
knowledge on metallurgy and mechanisms of various phenomena, the 

combination of numerical simulation with data-driven machine learning 
through mechanistic variables provides a good solution for the problem 
above, which can significantly reduce the amount of trial-and-error 
based experimental data. These mechanistic variables can also be 
called “causing variables” as they provide the insights on the physical 
mechanisms behind the phenomena, which embody the effects of alloy 
properties and processing parameters. 

The methodology overview of this work is presented in Fig. 1, 
including three essential components: LPBF process, mechanistic model 
and machine learning. The raw variables are used in the mechanistic 
model to determine the built quality in terms of the molten pool 
morphology, and to calculate the mechanistic variables (dimensionless 
peak temperature, Richardson number, ratio of recoil pressure and 
surface tension, solidification time and Fourier number). These mecha-
nistic variables used in machine learning can predict the built quality, 
and will assist in the optimization of LPBF processes and reduce common 
defects such as balling, porosity and surface roughness. 

Fig. 1. Overview schematic of the approach proposed and used in this work. The axis labelled as ‘Prediction’ represents the predicted output of the machine learning. 
‘B’, ‘G’, ‘K’, and ‘L’ represent balling, good, keyhole and LOF, respectively. 
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2.2. Modeling 

The powder bed is generated via the commercial software Particle 
Flow Code (PFC). The high-fidelity computational fluid dynamics (CFD) 
model is established using the commercial software Flow 3d, shown in 
the upper right corner of Fig. 1. And the model has been well validated in 
our previous work [4,53]. The dimensions of the computational domain 
is 1200 × 480 × 400 μm3 (length × width × height), with a mesh size of 
4 μm. The thermophysical and mechanical properties of the materials 
used in this simulation can be found in ref. [4]. The thermal history, 

molten pool dynamics and the evolution of the free surface can be ob-
tained by solving conservation equations, shown in Eqs. (1)–(4). 

∇⋅( v→) = 0 (1)  

∂ v→

∂t
+ v→ ⋅∇ v→= −

1
ρ∇p + μ∇2 v→− Fd v→+ G→ (2)  

ρ
[

∂h
∂t

+( v→⋅∇)h
]

= ∇⋅(k∇T) (3) 

Fig. 2. (a) Schematic to illustrate the effects of the mechanistic variables on the balling, keyhole and LOF defects. The subfigure in the center shows the schematic of 
LPBF process and different views. (b) Flowchart of the machine learning. 
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∂F
∂t

+∇⋅
( →

ν F
)
= 0 (4)  

here v→ (m⋅s− 1) is the velocity vector. t (s) is the time, ρ (kg⋅m− 3) is the 
density, p (Pa) is the pressure and μ (m2⋅s− 1) is the kinematic viscosity. 
Fd (s− 1) is the drag force coefficient. G→ (m⋅s− 2) is the body acceleration 
due to body force. h (J⋅kg− 1) is the enthalpy, k (W⋅ m− 1⋅K− 1) is the 
thermal conductivity and T (K) is the temperature. F is the volume of the 
fluid. 

The laser heat source is regarded as a part of the surface heat flux 
boundary condition, The main energy transfer modes in the upper free 
surface include convection, radiation and evaporation, expressed as: 

k
∂T
∂ n→

= q − qconv − qrad − qevap (5)  

qconv = hc
(
T − Tref

)
(6)  

qrad = σε
(

T4 − T4
ref

)
(7)  

qevap = φLvPatm

̅̅̅̅̅̅̅̅̅̅̅
1

2πRT

√

exp
[

Lv(T − Tb)

TRTb

]

(8)  

here q (J⋅m− 2⋅s− 1) is the laser heat flux absorbed by the free surface, n→ is 
the surface normal vector and hc (W⋅ m− 2⋅K− 1) is the heat transfer co-
efficient. σ (W⋅ m− 2⋅K− 4) is the Stefan-Boltzmann constant and ε is the 
radiation emissivity. For other surfaces, only convection and radiation 
are considered. 

k
∂T
∂ n→

= − qconv − qrad (9)  

2.3. Calculation of mechanistic variables based on multi-physics model 

The occurrence of different phenomena is mainly related to the heat 
transfer and fluid flow in the molten pool. Based on the knowledge on 
metallurgy and mechanisms behind various phenomena, six mechanistic 
variables were initially selected to represent the comprehensive impact 
of processing variables on the solidified track quality, which includes 
dimensionless peak temperature (Tp), Fourier number (Fo), Marangoni 
number (Ma), solidification time (td), Richardson number (R), and ratio 
of recoil pressure and surface tension (fr). The scientific basis for 
choosing these causing variables is discussed in the following para-
graphs and illustrated in the schematic in Fig. 2(a). 

Dimensionless peak temperature (Tp). The transient temperature 
field is an important prerequisite for the mechanism research during the 
interaction of laser-matter. A dimensionless number Tp is defined as the 
ratio of the peak temperature in the molten pool to the liquid temper-
ature of the alloy, which reflects the heat absorption and tells the state of 
the molten pool. A low Tp means insufficient heat input, leading to 
discontinuous molten pool and lack of fusion defects. A proper Tp is an 
indirect indicator of a continuous and large molten pool. In this case, the 
molten pool can penetrate deeply into the substrate, and adjacent tracks 
can form successful bonding, which is conducive to the formation of 
good tracks [42]. Too large Tp value suggests the peak temperature 
much higher than the boiling point, and serious evaporation will occur 
according to the Clausius–Clapeyron relation, leading to the composi-
tion inhomogeneity and formation of keyhole, or even a keyhole pore. 
Therefore, Tp can be an indicator of the built quality. 

Fourier number (Fo). The heat conduction and storage will have an 
influence on the molten pool state and dynamics, as well as the final 
built quality. The heat conduction and dissipation can be described by a 
dimensionless quantity Fo. Its physical meaning is the ratio of heat 
conduction or diffusion rate to heat storage rate. A high Fo indicates the 
faster heat dissipation and smaller heat storage, increasing the 

vulnerability to balling and LOF defects. A small Fo is favorable of 
continuous molten pool and good built quality. However, too small Fo 
may lead to heat accumulation and overheating, resulting in keyhole 
phenomenon. Therefore, Fo can be an indicator of the built quality. It is 
defined as: 

Fo = α/Vl (10)  

where α (m2⋅s− 1) is the thermal diffusivity, V (m⋅s− 1) is the scanning 
speed. The molten pool length can be calculated by a mechanistic model. 

Marangoni number (Ma). The molten pool shape and dimensions are 
largely influenced by the inside fluid convection, which is mainly driven 
by the surface tension gradient on the top of the molten pool, can be 
characterized by the Ma. A higher Ma indicates a stronger convective 
flow, which is beneficial for the fluid to diffuse evenly and maintaining 
the continuity of the molten pool. It will also increase the molten pool 
dimensions, improve the remelting and bonding with adjacent tracks, 
and reduce LOF defects. The Ma is expressed as: 

Ma = −
dγ
dT

w1▵T
μα (11)  

in which dγ
dT is the surface tension gradient, w1 (m) and μ (kg⋅m− 1⋅s− 1) 

are the molten pool width on the top surface and viscosity, respectively. 
ΔT (K) is the temperature difference between the peak temperature in-
side molten pool and the solidus temperature of the alloy, which can be 
calculated by a mechanistic model. 

Solidification time (td). The liquid existing time which allows the 
molten metal to spread, and wet the powder and substrate, will signif-
icantly affect the built quality. For example, under the condition of rapid 
solidification, the fluid cannot spread evenly, and the molten pool 
breaks into isolated balls and forms discontinuous tracks, which will 
increase the surface roughness and the vulnerability to void formation. 
The solidification time of the molten pool can be determined by the ratio 
of the molten pool length to the scanning speed. 

Richardson number (R). Balling or hump may form due to the molten 
pool segregation under the effect of Helmholtz instability or Plateau- 
Rayleigh instability [25,39], which is caused by the velocity difference 
between the shielding gas and the fluid convection at the top surface of 
the molten pool. This hydrodynamic instability can be characterized by 
the dimensionless R. Due to the high instability of the molten pool, the 
sensitivity to balling defects increases with R, and it can be calculated 
by: 

R =
gl

(
Ug − Ul

)2 (12)  

where g (m⋅s− 2) is the gravitational acceleration, Ug (m⋅s− 1) is the ve-
locity of shielding gas and is assumed to be the scanning speed, and Ul 
(m⋅s− 1) is the maximum fluid convective velocity, which can be ob-
tained by the mechanistic model. 

Ratio of recoil pressure and surface tension (fr). Surface tension 
maintains the integrity of the molten pool, while the recoil pressure is 
the driving force for the fluid separation to generate the depression at 
the top surface of the molten pool under high heat input. When the heat 
input is extremely low and evaporation does not occur, the surface 
tension is the main driving force to keep the track integrity. For the cases 
with high heat input, the temperature in the molten pool will exceed the 
boiling point of the alloy, decreasing the surface tension but increasing 
the recoil pressure exponentially [54,55], and a keyhole may be formed. 
Therefore, the ratio of recoil pressure and surface tension can be used to 
indirectly characterize the different track phenomena. The surface ten-
sion is the product of the surface tension coefficient of the alloy and the 
perimeter of the molten pool on the top surface. The molten pool 
perimeter and the recoil pressure can be calculated by the mechanistic 
model. 
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2.4. Implementation of machine learning and data used in the analysis 

The purpose of machine learning is to find the mapping relationship 
between feature variables and target variables, and then realize the 
prediction. The standard flowchart of machine learning is shown in 
Fig. 2(b). In this work, the feature variables are those mechanistic var-
iables which can be obtained according to the definition equations, in 
which the unknown variables such as temperature, velocity, force et al. 
are the calculation results of the heat transfer and fluid flow model. They 
are the input data of the machine learning. The labels including four 
kinds of built quality (LOF, balling, good and keyhole) based on the 
molten pool morphology are the output results. The machine learning 
analysis is based on 58 data points, and each data point corresponds to a 
different combination of mechanistic variables and the final printing 
quality. Among the many machine learning algorithms, decision tree 
(DT) model shows great superiority for data-classifying problems. Sup-
port vector machine (SVM) is useful for solving non-linear and high- 
dimensional classification problems and establishing a relationship be-
tween the input and output based on a function, as well as predicting for 
a set of input parameters. While the logistic regression (LR) can give an 
algebraic equation correlating the feature variables and the target var-
iables, and reveal the hierarchy importance of the feature variables. 
Here, these three algorithms are adopted to predict the built quality of a 
single track and establish a relationship between the mechanistic vari-
ables and the built quality, as well we determine the hierarchy impor-
tance of the mechanistic variables. The range of processing parameters 
and mechanistic variables for all data are shown in Table 1. The pro-
cessing parameters and mechanistic variables for all cases are given in 
the Supplementary information in table s1. As the data point is small, the 
13-fold cross-validation method is utilized to improve the prediction 
robustness. 

The hierarchy importance of the mechanistic variables on the built 
quality is based on three feature selection indexes: (i) information gain, 
(ii) information gain ratio and (iii) Gini index, which are calculated by 
the three commonly used machine learning algorithms ID 3, C4.5 and 
CART, respectively. As the information gain and information gain ratio 
are computed from the entropy, a higher value indicates a higher 
importance of the mechanistic variable. While the Gini index is calcu-
lated based on the impurity, thus, a more important mechanistic vari-
able will present a smaller Gini index. The method for computing the 
three indexes is described in Supplementary Information. A decision tree 
is created based on the CART algorithm to provide a qualitative tool to 
predict built quality, and the mechanistic variable with the lowest Gini 
value is selected as the root node. The tree contains multiple nodes and 
each node corresponds to a mechanistic variable. The data is split ac-
cording to the threshold until the rest data belongs to the same category. 

2.5. Experiment 

The powder material used in this study is TB-AlSi10Mg (6 wt% TiB2- 
AlSi10Mg), and fabricated by gas atomization. To explore the effects of 

powder sizes on the surface roughness, the single layer experiments are 
conducted on the machine Prox DMP 200 (3D system, USA), which is 
equipped with a maximum laser output power of 300 W, a wavelength of 
1070 nm and a focused laser beam diameter of 75 μm. Two different 
sizes of powder with D50 = 15.60 μm and 39.22 μm are investigated. The 
powder bed thickness is 30 μm. The detailed fabrication process can be 
referred in Ref. [4,56]. 

3. Results and discussion 

The effects of different preheating temperatures, powder layer 
thickness and powder size on the printing quality are evaluated in this 
section. As the mapping relationship between raw variables and the final 
built quality cannot reveal the corresponding physics behind the phe-
nomenon, five mechanistic variables for physics-informed machine 
learning are finally determined via Pearson correlation analysis for the 
multiple classification problem. The index for different phenomena is 
established by logistic regression, and the hierarchy importance of the 
mechanistic variables are determined by the feature selection indexes of 
ID 3, C4.5 and CART algorithms. 

3.1. Effects of processing parameters on the molten pool characteristic 

In this section, the influence of different processing parameters on 
the built quality is explored. 

3.1.1. Preheating temperature 
The effects of preheating temperature on the molten pool charac-

teristic are shown in Fig. 3, in which the ratio of molten pool depth to 
powder thickness, the ratio of molten pool length to width, and the ratio 
of molten pool depth to width are the indicators of LOF, balling and 
keyhole, respectively. For the case of 225 W-1400 mm⋅s− 1, it belongs to 
LOF category at room temperature (300 K), and with the increase of 
preheating temperature (300 K→500 K), it gradually changes to the 
good category. The solidified track height also increases with the in-
crease of the preheating temperature, which can be attributed to that a 
higher temperature leads to increased melting degree of the powder 
(increased molten metal flux). While the standard deviation decreases as 
the temperature increases, indicating that for the LOF condition, a 
reasonable preheating can obtain a smoother surface. For the processing 
parameters of 300 W-1800 mm⋅s− 1, they all belong to balling judged by 
the clarification criterion. The aspect ratio of the molten pool and the 
standard deviation of the solidified track height increase with the in-
crease of the preheating temperature, indicating that the balling is more 
and more evident. Or in other words, for the case of balling under room 
temperature, it becomes more pronounced as the preheating tempera-
ture increases. 

The effects of preheating temperatures on the porosity and solidified 
track quality can be observed in Fig. 4. For the printing parameter which 
causes LOF defects at ambient temperature, the increase of preheating 
temperature can effectively lower the porosity. While for the printing 
parameter that balling occurs at room temperature, the surface fluctu-
ations of the solidified track become severer with increased 
temperature. 

Based on the classification criterion on the basis of molten pool 
morphology, the roles of raw processing parameters in determining the 
final quality can be obtained, but the physics behind different phe-
nomena is not clear. Preheating will change the heat accumulation in the 
molten pool. The LOF phenomenon corresponds to low heat input and 
small molten pool, and balling is due to the instability of the molten 
pool, which is related to fluid flow. Therefore, an attempt is made to 
analyze the physical mechanism of the influence of preheating on the 
characteristics of the molten pool through Tp and Ma, which measures 
the fluid flow intensity, shown in Fig. 5. 

For the case of 225 W-1400 mm⋅s− 1 categorized into LOF, it can be 
observed that as the preheating temperature increases, the Tp of the 

Table 1 
Range of processing parameters and mechanistic variables.  

Raw variables Range Causing variables Range 

Laser power (W) 90 – 600 Fourier number 0.040 – 
1.06 

Scanning speed 
(mm⋅s− 1) 

600 – 
4000 

dimensionless peak 
temperature 

1.85 – 4.65 

Preheating 
temperature (K) 

300, 400, 
500 

Ratio of recoil pressure and 
surface tension 

0 – 127.77 

Layer thickness (μm) 0, 25, 30, 
40 

Marangoni number 185 – 2120 

Powder size, D50 

(μm) 
33, 41 Richardson number 2.93E-5 – 

1.4E-4   
Solidification time (s) 2.8E-5 – 

2.9E-4  
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molten pool also increases, resulting in larger melting degree of the 
powder and the larger molten pool. The Ma indicates the degree of fluid 
flow in the molten pool, in which a higher Ma means a stronger 
convective flow, resulting in the fluid diffusing evenly and a larger 
molten pool, weakening the LOF defects. It is apparent from Fig. 5 that 
Ma increases with the increasing of the preheating temperature, indi-
cating a strong fluid flow, which is more favorable to fluid spreading and 
filling the LOF voids, leading to the change from LOF to good. For the 
case of 300 W-2200 mm⋅s− 1, the Tp decreases as the preheating tem-
perature increases, which can be attributed to that higher preheating 
temperature causes more intense evaporation and greater the heat loss. 
However, the results in Fig. 3 show that with the increase of preheating 
temperature, the molten pool dimension increases instead, which im-
plies that the complex dynamics in the molten pool cannot be charac-
terized only by the peak temperature. The dimensionless analysis 
reveals that Ma increases with a higher preheating temperature, indi-
cating that the fluid flow in the molten pool is more intense, resulting in 
the larger molten pool and more pronounced balling phenomenon. 

3.1.2. Powder size 
The powder size is also an important variable in the LPBF process as 

it affects the powder flow, heat absorption in the molten pool and thus 
impacts the built quality [57,58]. Here, two different sizes of powder 
with D50 = 33 μm and 41 μm are simulated to explore their effects on the 
molten pool characteristics and solidified track height, which is a 

response of the surface quality, as shown in Fig. 6. The aspect ratio of the 
molten pool indicates the stability of the molten pool, where a larger 
value means a higher vulnerability to balling. It can be seen from Fig. 6 
that the larger the powder particle size, the larger will be the aspect ratio 
of the molten pool. Moreover, for the balling phenomenon, a larger 
standard deviation of the solidified track height means a more serious 
surface fluctuation, indicating the more significant balling. The results 
in Fig. 6 show that the standard deviations for the powder with D50 = 41 
μm are larger than those of the powder with D50 = 33 μm, indicating that 
a larger particle size increases the vulnerability to balling. Our experi-
mental results in Fig. 7 uncover that the surface roughness increases 
with the increase of scanning speed, which can be attributed to that 
higher speed results in lower melting degree. Besides, it also reveals that 
the surface built with larger particles possesses higher surface rough-
ness. Therefore, it can be inferred that under the reasonable heat input, 
small powder can assist in better quality prints. 

3.1.3. Layer thickness 
The powder layer thickness is an important variable in the LPBF 

process, as thin powder bed will lower the printing efficiency, while a 
thicker layer of powder will require greater heat input to make sure the 
molten pool penetrating into the substrate to form a good bonding. 
Based on the above discussion, balling phenomenon occurs under the 
printing parameter of 300 W-2200 mm⋅s− 1 with a layer thickness of 30 
μm. Therefore, in order to obtain an apparent surface phenomenon, this 

Fig. 3. The effects of different preheating temperatures on the molten pool characteristics, (a) ratio of molten pool depth to powder thickness, (b) ratio of molten 
pool length to width, (c) ratio of molten pool depth to width, and (d) solidified track height. The powder thickness is 30 μm, and the powder size of D50 = 33 μm. The 
dotted lines in (a) – (c) indicate that the corresponding phenomenon occurs when the characteristic value of the molten pool is higher or lower than the threshold. 
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power-scanning speed combination is used to explore the effects of 
different layer thicknesses on the molten pool characteristics and the 
solidified track height. Fig. 8 shows that the molten pool aspect ratio 
decreases with the increase of layer thickness, and the balling effect 
weakens, which gradually turns to LOF instead. When the layer thick-
ness is 40 μm, the large standard deviation of the track height is due to 
the incompletely melted powder, because a thick powder layer lowers 
the effective heat transfer efficiency, causing low melting degree and 
small molten pool, resulting in severe surface fluctuations [59,60]. This 
also indicates that under the same heat input, the thinner powder layer 
leads to more unstable molten pool, which is prone to balling/hump. In 
practice, increasing the layer thickness can improve the efficiency, but a 
layer too thick will lead to incomplete melting. Therefore, it is necessary 
to find a balance between printing efficiency and printing quality. 

3.2. Printability prediction using physics-informed machine learning 

The combination of numerical simulation and physics-informed 
machine learning will provide a better understanding on the physics 
of the different phenomena in a multi-variables process. The choice of 

Fig. 4. Effects of different preheating temper-
atures on LOF voids, (a1) (a2) 300 K, (b1) (b2) 
400 K and (c1) (c2) 500 K with the power- 
scanning speed combination of 225 W-1400 
mm⋅s− 1. Effects of different preheating tem-
peratures on balling formation, (d) 300 K, (e) 
400 K and (f) 500 K with the power-scanning 
speed combination of 300 W- 2200 mm⋅s− 1. 
The red arrows show the initial position of the 
laser and the solid white lines indeicate the 
solidus line. (a1)-(c1) are the cross-sections at y 
= − 115 μm, and (a2)-(c2) are the cross-sections 
at y = − 35 μm. The laser moves along the line 
of y = − 75 μm towards the positive of x-axis.   

Fig. 5. Effects of different printing parameters on the dimensionless tempera-
ture and Marangoni number. Considering the dynamic change of the molten 
pool, the peak temperature is an average of the peak temperatures extracted 
every 20 μs. 
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Fig. 6. The Effects of different powder sizes on the molten pool characteristics and solidified track height with D50 = 33 μm and 41 μm, respectively, (a) ratio of 
molten pool depth to powder thickness, (b) ratio of molten pool length to width, (c) ratio of molten pool depth to width, (d) solidified track height. 

Fig. 7. The effects of powder sizes on the surface roughness in single layer experiments, (a) distribution of two kinds of powder size, with D50 = 15.60 μm and 39.22 
μm, respectively. (b) Effects of different scanning speed on the surface roughness with the laser power 240 W. 
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mechanistic variables can be done via the Pearson correlation coeffi-
cient, which is used in statistics to measure the linear correlation of two 
variables. Six mechanistic variables are selected based on wide knowl-
edge on metallurgy and mechanisms of various phenomena [42–45]. 
The Pearson correlation analysis (Fig. 9) shows that Ma and Tp has a 
strong correlation, which is up to 94%, and the correlation between Ma 
and the fr also reaches 87%. Thus, Ma is discarded and other five vari-
ables are used for the machine learning analysis. Although the largest 
correlation (Tp and fr) in the remaining variables also reaches 78%, in 
the analysis of small sample data, it will just enhance the redundancy. 
Therefore, it is considered reasonable given that these two variables are 
important for the analysis of molten pool dynamics, similar analytical 
variables are used in relevant literature [43]. 

This is a multi-classification problem, including LOF, balling, good 
and keyhole. The built quality for different printing parameters is clas-
sified based on the molten pool morphology. Five mechanistic variables 
are computed via a multi-physics model, and then applied to different 
machine learning methods to establish the correlation between the built 
quality and the mechanistic variables, and to predict the built quality for 
given printing parameters. A decision tree is constructed to predict built 

quality based on the calculated mechanistic variables (Fig. 10). For any 
given printing parameters, the classification can be made by comparing 
the values of the mechanistic variables with the thresholds at each node. 
The decision starts from Fo, which is determined by the Gini index, and 
continues by checking the values of other variables until a final decision 
is made on the classification. The resulting prediction is proved to be 
accurate by the confusion matrix in Fig. 11(a), in which the accuracy is 
up to 0.862. Despite that the decision tree provides a visual tool to 
predict the built quality, there is no quantitative correlations between 
these five mechanistic variables and the final built quality. These cor-
relations can provide guidance for adjusting the variables in quality 
monitoring. Poly-support vector machine can provide an algebraic 
equation of a hyperplane, which contains five mechanistic variables. For 
a given printing parameter, the corresponding quality classification can 
be obtained by substituting the computed five mechanistic variable 
values. However, the multiple classification corresponding to different 
values of the five mechanistic variables makes the equation of the hy-
perplane cumbersome. Moreover, the presence of five input variables 
hinders the visual representation of the hyperplane. 

The equations can be obtained by logistic regression model to con-

Fig. 8. Effects of layer thickness on the (a) ratio of molten pool length/width and ratio of depth/powder thickness, (b) solidified track height and (c) track-height 
color map from the top view with a laser power of 300 W and scanning speed of 2200 mm⋅s− 1. The number in the upper left in (c) shows the powder layer thickness. 

Fig. 9. Pearson matrixes of the (a) six and (b) five mechanistic variables to show the correlation coefficient.  
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nect the five mechanistic variables and different phenomena. The data 
fitting with Sigmoid function is used to predict the built quality. For a 
given printing parameter combination, the built quality prediction (QPI, 
quality prediction index) can be determined by: 

QPI = max
(

1
1 + e− yi

)

i = B, G, K, L (13)  

yB = − 0.375Tp − 0.76Fo − 2.425 × 10− 4R − 4.606 × 10− 5td + 0.112fr

− 0.0341
(14)  

yG = 1.274Tp + 0.763Fo + 2.898 × 10− 4R − 6.022 × 10− 5td − 0.107fr

− 2.818
(15)  

yK = 0.372Tp + 0.260Fo + 2.327 × 10− 4R − 4.138 × 10− 6td + 7.716fr

− 3.123
(16)  

Fig. 10. A decision tree constructed based on the normalized values of the five mechanistic variables to predict the built quality.  

Fig. 11. Confusion matrixes of different machine learning methods to predict the built quality, (a) decision tree, (b) poly-support vector machine and (c) logis-
tic regression. 
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yL = − 1.27Tp − 0.264Fo − 2.8 × 10− 4R + 1.104 × 10− 4td − 8.188e − 2fr

+ 5.975
(17)  

in which Tp, Fo, R, td and fr represent the dimensionless peak temper-
ature, Fourier number, Richardson number, solidification time (s) and 
the ratio of recoil pressure and surface tension. The detailed prediction 
procedure is to obtain the yi values corresponding to the four phenom-
ena by substituting five computed mechanistic variables into Eqs. (14- 
17). Then, the four yi values are introduced into the Sigmoid function, 
and the predicted result is the phenomenon corresponding to the largest 
function value. However, the prediction accuracy of 60.3% is the lowest 
among the 3 classification algorithms (Fig. 11 and Table 2). 

3.3. Hierarchical influence of the mechanistic variables 

The comparative influence of the five mechanistic variables on the 
built quality can be determined by the coefficients in the fitting equa-
tions by logistic regression, which can be concluded from the Sigmoid 
function that the coefficients of each variable are proportional to the 
probability of the corresponding phenomenon occurrence. Positive co-
efficients indicate that the variables promote the corresponding phe-
nomenon, while negative values indicate the opposite effect, which will 
decrease the phenomenon susceptibility with higher variable values. It 
can be seen from Fig. 12 that Tp, Fo and fr are very important to the built 
quality, ranking in the top three of the five variables. But for each 
phenomenon, the most important factors are different. For balling, Fo is 
the most important factor, followed by Tp and fr. The Fo indicates the 
ability of thermal disturbance to propagate deeply into the interior in an 
unsteady process, and a larger value means greater thermal disturbance, 
implying that the thermal disturbance in the molten pool plays a major 
role in the occurrence of balling, which in turn also uncovers that the 
balling physics is closely related to the disturbance in the molten pool. 
For the good phenomenon, the most important factor is found to be Tp, 
followed by the Fo and fr, indicating that reasonable heat combined with 
moderate thermal disturbance in the molten pool, will promote the fluid 
diffusing evenly, and lead to better printing quality. In the case of 
keyhole phenomenon, fr is the most important factor, indicating that 
keyhole is mainly controlled by the competition between the recoil 
pressure and surface tension. It appears when recoil pressure prevails 
and splits the free surface of molten pool as the recoil pressure promotes 
the keyhole opening while surface tension maintains the integrity of the 
molten pool upper surface. In addition, Tp is also very important due to 
the fact that keyhole only forms if the temperature exceeds the boiling 
point and evaporate intensively. Tp is the most important factor for LOF 
defects, which is the manifestation of insufficient heat input and sug-
gests that increasing the heat absorption by the molten pool can reduce 
the LOF defects, for example preheating, larger power and small scan-
ning speed. As the mechanistic variable values are the comprehensive 
results of multiple processing parameters, this hierarchy importance 
also provides new insights into the process optimization not just 

adjusting the power and scanning speed. 
The hierarchy importance of the five mechanistic variables can also 

be determined by three classification indices, including information 
gain, information gain ratio and Gini index (Fig. 13). The information 
gain and gain ratio values for the fr and Fo rank the top two, indicating 
the importance of these two variables in built quality. The Gini values 
for these two variables is at the bottom of the ranking, which further 
identifies them as the most important contribution to printing quality. 
Relatively speaking, R has the least influence. These results are consis-
tent with the order of importance based on the logistic regression 
equation, and the comparison of the influence of each variable on the 
quality is helpful to select the appropriate variable value and obtain a 
good built quality. 

4. Conclusions 

In this work, a comprehensive framework containing high-fidelity 
powder-scale mechanistic model and physics-informed machine 
learning is established to predict the built quality and to determine the 
hierarchy importance of mechanistic variables for different built quali-
ties in a multi-classification problem in the processing space. The major 
findings are as follows:  

1. Preheating has an influence on the molten pool characteristics and 
solidified track quality. For the LOF defects, reasonable preheating 
temperature lowers the LOF voids and obtains smoother surface. 
While for the balling defects, preheating promotes the surface 
fluctuations.  

2. The simulated results indicate that a higher surface roughness is 
obtained when the average powder size increases from 33 μm to 41 
μm, and similar results are observed in experiments. The surface 
quality can be improved by using small size powder with reasonable 
heat input.  

3. A thicker powder bed will lower the heat transfer efficient, 
increasing the vulnerability to LOF defects.  

4. Five mechanistic variables are determined by Pearson correlation for 
the analysis of the physical mechanism of different phenomena, 
including dimensionless peak temperature, Fourier number, 
Richardson number, solidification time and the ratio of recoil pres-
sure and surface tension. A decision tree is constructed and an index 
of QPI connecting the five variables and the built quality is estab-
lished, which can realize the prediction for given printing 
parameters.  

5. The hierarchy importance of the mechanistic variables is determined 
by the QPI and three machine learning inductions. Fo ranks first for 
balling phenomenon, implying that thermal disturbance in the 
molten pool plays a dominate role in balling formation. For the good 
built quality, the most important factor is Tp, followed by Fo and fr, 
suggesting that reasonable heat absorption combined with moderate 
thermal disturbance promoting the better printing quality. The top 
ranking of fr for keyhole phenomenon indicates that keyhole is 
mainly controlled by the competition between the recoil pressure 
and surface tension. Tp is the most important factor of LOF defects, 
meaning that increasing the heat absorption can reduce the LOF 
defects, for example preheating. As the mechanistic variable values 
are the comprehensive results of multiple processing parameters, this 
hierarchy ranking not only deepens the scientific understanding of 
different phenomenology, but also provides new insights and stra-
tegies for the process optimization. 
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I. Karaman, A. Elwany, R. Arróyave, Assessing printability maps in additive 
manufacturing of metal alloys, Acta Mater 176 (2019) 199–210. 

[7] T.H.C. Childs, C. Hauser, M. Badrossamay, Selective laser sintering (melting) of 
stainless and tool steel powders: experiments and modelling, P. I. Mech. Eng. B-J. 
Eng. 219 (2006) 339–357. 

[8] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 
3D printing of high-strength aluminium alloys, Nature 549 (2017) 365–369. 

[9] M.L. Qu, Q.L. Guo, L.I. Escano, A. Nabaa, K. Fezzaa, L.Y. Chen, Nanoparticle- 
enabled increase of energy efficiency during laser metal additive manufacturing, 
Addit. Manuf. 60 (2022), 103242. 

[10] M.L. Qu, Q.L. Guo, L.I. Escano, J.D. Yuan, S.M.H. Hojjatzadeh, S.J. Clark, 
K. Fezzaa, T. Sun, L.Y. Chen, Controlling melt flow by nanoparticles to eliminate 
surface wave induced surface fluctuation, Addit. Manuf. 59 (2022), 103081. 

[11] M.L. Qu, Q.L. Guo, L.I. Escano, A. Nabaa, S.M.H. Hojjatzadeh, Z.A. Young, L. 
Y. Chen, Controlling process instability for defect lean metal additive 
manufacturing, Nat. Commun. 13 (2022) 1079. 

[12] D. Tomus, P.A. Rometsch, M. Heilmaier, X. Wu, Effect of minor alloying elements 
on crack-formation characteristics of Hastelloy-X manufactured by selective laser 
melting, Addit. Manuf. 16 (2017) 65–72. 

[13] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, 
Denudation of metal powder layers in laser powder bed fusion processes, Acta 
Mater 114 (2016) 33–42. 

[14] Q.L. Guo, C. Zhao, L.I. Escano, Z. Young, L.H. Xiong, K. Fezzaa, W. Everhart, 
B. Brown, T. Sun, L.Y. Chen, Transient dynamics of powder spattering in laser 
powder bed fusion additive manufacturing process revealed by in-situ high-speed 
high-energy x-ray imaging, Acta Mater. 151 (2018) 169–180. 

[15] W.H. Wang, W.H. Lin, R. Yang, Y.N. Wu, J. Li, Z.B. Zhang, Z.R. Zhai, Mesoscopic 
evolution of molten pool during selective laser melting of superalloy Inconel 738 at 
elevating preheating temperature, Mater. Design 213 (2022), 110355. 

[16] Z. Wu, M. Asherloo, R. Jiang, M.H. Delpazir, N. Sivakumar, M. Paliwal, J. Capone, 
B. Gould, A. Rollett, A. Mostafaei, Study of printability and porosity formation in 
laser powder bed fusion built hydride-dehydride (HDH) Ti-6Al-4 V, Addit. Manuf. 
47 (2021), 102323. 

[17] U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, On 
the limitations of volumetric energy density as a design parameter for selective 
laser melting, Mater. Des. 113 (2017) 331–340. 

[18] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi- 
physics modeling of single/multiple-track defect mechanisms in electron beam 
selective melting, Acta Mater. 134 (2017) 324–333. 

[19] P. Zagade, B.P. Gautham, A. De, T. DebRoy, Analytical estimation of fusion zone 
dimensions and cooling rates in part scale laser powder bed fusion, Addit. Manuf. 
46 (2021). 

[20] C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J. 
W. Brooks, H.C. Basoalto, Mesoscale modelling of selective laser melting: thermal 
fluid dynamics and microstructural evolution, Comp. Mater. Sci. 126 (2017) 
479–490. 

[21] G.R. Nazami, S. Sahoo, Influence of hatch spacing and laser spot overlapping on 
heat transfer during laser powder bed fusion of aluminum alloy, J Laser Appl 32 
(2020). 

[22] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion 
additive manufacturing: physics of complex melt flow and formation mechanisms 
of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45. 

[23] S.M.H. Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L. 
I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Pore elimination 
mechanisms during 3D printing of metals, Nat. Commun. 10 (2019) 3088. 

[24] T. Yu, J.D. Zhao, Quantitative simulation of selective laser melting of metals 
enabled by new high-fidelity multiphase, multiphysics computational tool, 
Comput. Method. Appl. M. 399 (2022), 115422. 

[25] C.L.A. Leung, D. Luczyniec, E. Guo, S. Marussi, R.C. Atwood, M. Meisnar, 
B. Saunders, P.D. Lee, Quantification of interdependent dynamics during laser 
additive manufacturing using X-ray imaging informed multi-physics and 
multiphase simulation, Adv. Sci. 9 (2022), 2203546. 

[26] Y. Huang, T.G. Fleming, S.J. Clark, S. Marussi, K. Fezzaa, J. Thiyagalingam, C.L. 
A. Leung, P.D. Lee, Keyhole fluctuation and pore formation mechanisms during 
laser powder bed fusion additive manufacturing, Nat. Commun. 13 (2022) 1170. 

[27] Y. Chen, H. Wang, Y. Wu, H. Wang, Predicting the printability in selective laser 
melting with a supervised machine learning method, Mater. (Basel) 13 (2020) 
5063. 

[28] R. Seede, D. Shoukr, B. Zhang, A. Whitt, S. Gibbons, P. Flater, A. Elwany, 
R. Arroyave, I. Karaman, An ultra-high strength martensitic steel fabricated using 
selective laser melting additive manufacturing: densification, microstructure, and 
mechanical properties, Acta Mater. 186 (2020) 199–214. 

[29] L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures 
indicative of flaw formation in a laser powder bed fusion additive manufacturing 
process, Addit. Manuf. 25 (2019) 151–165. 

[30] C. Zhao, N.D. Parab, X. Li, K. Fezzaa, W. Tan, A.D. Rollett, T. Sun, Critical 
instability at moving keyhole tip generates porosity in laser melting, Science 370 
(2020) 1080–1086. 

[31] C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, In situ X- 
ray imaging of defect and molten pool dynamics in laser additive manufacturing, 
Nat. Commun. 9 (2018) 1355. 

[32] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A. 
D. Rollett, Keyhole threshold and morphology in laser melting revealed by 
ultrahigh-speed X-ray imaging, Science 363 (2019) 849–852. 

[33] A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R. 
M. Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, J.R.I. Lee, 
Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys 
captured by in situ X-ray imaging, Mater. Today Adv. 1 (2019), 100002. 

[34] J. Jakumeit, G. Zheng, R. Laqua, S.J. Clark, J. Zielinski, J.H. Schleifenbaum, P. 
D. Lee, Modelling the complex evaporated gas flow and its impact on particle 
spattering during laser powder bed fusion, Addit. Manuf. 47 (2021), 102332. 

[35] S.A. Khairallah, A.A. Martin, J.R.I. Lee, G. Guss, N.P. Calta, Controlling 
interdependent meso-nanosecond dynamics and defect generation in metal 3D 
printing, Science 368 (2020) 660–665. 

[36] M. Samantaray, S. Sahoo, D. Thatoi, Modeling of thermal and solidification 
behavior during laser additive manufacturing of AlSi10Mg alloy powders and its 
experimental validation, J Laser Appl 31 (2019). 

[37] M. Samantaray, D. Nath Thatoi, S. Sahoo, Finite element simulation of heat transfer 
in laser additive manufacturing of AlSi10Mg powders, Mater. Today: Proceed. 22 
(2020) 3001–3008. 

[38] D. Wu, X. Hua, Y. Ye, L. Huang, F. Li, Y. Huang, Experimental and numerical study 
of spatter formation and composition change in fiber laser welding of aluminum 
alloy, J. Phys. D: Appl. Phys. 51 (2018), 185604. 

[39] E.L. Papazoglou, N.E. Karkalos, A.P. Markopoulos, A comprehensive study on 
thermal modeling of SLM process under conduction mode using FEM, Int. J. Adv. 
Manuf. Tech. 111 (2020) 2939–2955. 

[40] C. Panwisawas, Y. Gong, Y.T. Tang, R.C. Reed, J. Shinjo, Additive 
manufacturability of superalloys: process-induced porosity, cooling rate and metal 
vapour, Addit. Manuf. 47 (2021), 102339. 

[41] B. Mondal, T. Mukherjee, T. DebRoy, Crack free metal printing using physics 
informed machine learning, Acta Mater. 226 (2022), 117612. 

[42] M. Jiang, T. Mukherjee, Y. Du, T. DebRoy, Superior printed parts using history and 
augmented machine learning, npj Comput. Mater. 8 (2022) 10. 

[43] Y. Du, T. Mukherjee, T. DebRoy, Physics-informed machine learning and 
mechanistic modeling of additive manufacturing to reduce defects, Appl. Mater. 
Today 24 (2021), 101123. 

[44] Y. Du, T. Mukherjee, P. Mitra, T. DebRoy, Machine learning based hierarchy of 
causative variables for tool failure in friction stir welding, Acta Mater. 192 (2020) 
67–77. 

[45] Q. Wu, T. Mukherjee, A. De, T. DebRoy, Residual stresses in wire-arc additive 
manufacturing – Hierarchy of influential variables, Addit. Manuf. 35 (2020), 
101355. 

[46] Y. Du, T. Mukherjee, T. DebRoy, Conditions for void formation in friction stir 
welding from machine learning, npj Comput. Mater. 5 (2019) 68. 

L. Guo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124596
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0001
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0001
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0001
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0002
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0002
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0002
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0003
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0003
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0004
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0004
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0004
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0005
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0005
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0005
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0006
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0006
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0006
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0007
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0007
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0007
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0008
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0008
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0009
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0009
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0009
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0010
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0010
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0010
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0011
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0011
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0011
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0012
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0012
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0012
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0013
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0013
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0013
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0014
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0014
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0014
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0014
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0015
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0015
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0015
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0016
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0016
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0016
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0016
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0017
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0017
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0017
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0018
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0018
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0018
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0019
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0019
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0019
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0020
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0020
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0020
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0020
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0021
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0021
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0021
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0022
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0022
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0022
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0023
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0023
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0023
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0024
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0024
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0024
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0025
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0025
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0025
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0025
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0026
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0026
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0026
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0027
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0027
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0027
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0028
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0028
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0028
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0028
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0029
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0029
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0029
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0030
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0030
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0030
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0031
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0031
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0031
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0032
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0032
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0032
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0033
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0033
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0033
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0033
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0034
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0034
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0034
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0035
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0035
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0035
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0036
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0036
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0036
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0037
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0037
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0037
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0038
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0038
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0038
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0039
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0039
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0039
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0040
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0040
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0040
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0041
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0041
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0042
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0042
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0043
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0043
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0043
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0044
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0044
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0044
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0045
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0045
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0045
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0046
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0046


International Journal of Heat and Mass Transfer 216 (2023) 124596

15

[47] L. Sinclair, C.L.A. Leung, S. Marussi, S.J. Clark, Y. Chen, M.P. Olbinado, A. Rack, 
J. Gardy, G.J. Baxter, P.D. Lee, In situ radiographic and ex situ tomographic 
analysis of pore interactions during multilayer builds in laser powder bed fusion, 
Addit. Manuf. 36 (2020), 101512. 

[48] E.W. Jost, J.C. Miers, A. Robbins, D.G. Moore, C. Saldana, Effects of spatial energy 
distribution-induced porosity on mechanical properties of laser powder bed fusion 
316 L stainless steel, Addit. Manuf. 39 (2021), 101875. 

[49] C. Tang, K.Q. Le, C.H. Wong, Physics of humping formation in laser powder bed 
fusion, Int. J. Heat Mass Transfer 149 (2020), 119172. 

[50] Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser 
powder bed additive manufacturing, in: 26th Solid Freeform Fabrication 
Symposium, Austin, Texas, 2015, pp. 1154–1165. 

[51] S.M.H. Hojjatzadeh, N.D. Parab, Q.L. Guo, M.L. Qu, L.H. Xiong, C. Zhao, L. 
I. Escano, K. Fezzaa, W. Everhart, T. Sun, L.Y. Chen, Direct observation of pore 
formation mechanisms during LPBF additive manufacturing process and high 
energy density laser welding, Int. J. Mach. Tool. Manu. 153 (2020), 103555. 

[52] T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Printability of alloys for additive 
manufacturing, Sci. Rep. 6 (2016) 19717. 

[53] L. Guo, H. Wang, H. Liu, Y. Huang, Q. Wei, C.L.A. Leung, Y. Wu, H. Wang, 
Understanding keyhole induced-porosities in laser powder bed fusion of aluminum 
and elimination strategy, Int. J. Mach. Tool. Manu. 184 (2023), 103977. 

[54] S.A. Khairallah, T. Sun, B.J. Simonds, Onset of periodic oscillations as a precursor 
of a transition to pore-generating turbulence in laser melting, Addit. Manuf. Lett. 1 
(2021), 100002. 

[55] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, 
V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M. 
F. Toney, T. van Buuren, M.J. Matthews, Dynamics of pore formation during laser 
powder bed fusion additive manufacturing, Nat. Commun. 10 (2019) 1987. 

[56] Y.K. Xiao, Z.Y. Bian, Y. Wu, G. Ji, Y.Q. Li, M.J. Li, Q. Lian, Z. Chen, A. Addad, H. 
W. Wang, Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy 
processed by selective laser melting, J. Alloys Compd. 798 (2019) 644–655. 

[57] J. Zhang, D. Gu, Y. Yang, H. Zhang, H. Chen, D. Dai, K. Lin, Influence of particle 
size on laser absorption and scanning track formation mechanisms of pure tungsten 
powder during selective laser melting, Engineering 5 (2019) 736–745. 

[58] D. Gu, Y. Yang, L. Xi, J. Yang, M. Xia, Laser absorption behavior of randomly 
packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al 
matrix composites, Opt. Laser Technol. 119 (2019), 105600. 

[59] J. Nandy, H. Sarangi, S. Sahoo, A review on direct metal laser sintering: process 
features and microstructure modeling, Laser. Manufact. Mater. Process. 6 (2019) 
280–316. 

[60] S. Sahoo, Direct metal laser sintering of AlSi10Mg alloy parts: modeling of 
temperature profile, Mater. Today: Proceed. 35 (2021) 118–123. 

L. Guo et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0047
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0047
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0047
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0047
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0048
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0048
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0048
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0049
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0049
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0050
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0050
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0050
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0052
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0052
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0052
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0052
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0053
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0053
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0054
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0054
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0054
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0055
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0055
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0055
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0056
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0056
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0056
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0056
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0057
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0057
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0057
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0058
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0058
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0058
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0059
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0059
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0059
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0060
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0060
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0060
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0061
http://refhub.elsevier.com/S0017-9310(23)00741-X/sbref0061

	Deepening the scientific understanding of different phenomenology in laser powder bed fusion by an integrated framework
	1 Introduction
	2 Methodology
	2.1 Physics-informed machine learning
	2.2 Modeling
	2.3 Calculation of mechanistic variables based on multi-physics model
	2.4 Implementation of machine learning and data used in the analysis
	2.5 Experiment

	3 Results and discussion
	3.1 Effects of processing parameters on the molten pool characteristic
	3.1.1 Preheating temperature
	3.1.2 Powder size
	3.1.3 Layer thickness

	3.2 Printability prediction using physics-informed machine learning
	3.3 Hierarchical influence of the mechanistic variables

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


