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Abstract—Pupillary dynamics have been monitored in 
mobile health for clinical diagnosis and health evaluation. 
However, such signals captured in a mobile scenario would be 
susceptible to noise from the surrounding environment. Pupil 
size data also consist of missing data due to blinks. In addition 
to pupil size, researchers have suggested including multimodal 
information such as gaze and head movements for enhanced 
monitoring cognitive and neural activities. Multichannel signal 
processing is required for the simultaneous processing of these 
signals, while their mutual relations are exploited. This paper 
explores a novel multichannel signal processing technique, 
quaternion singular spectrum analysis (QSSA), for processing 
eye-movement data, which include pupil diameter and gaze 
positions. The performance based on real data is compared with 
traditional methods. This is a novel application of QSSA in 
processing eye movement data for mobile health. 
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I. INTRODUCTION

As the eyes can reflect the health condition and the 
underlying bodily functions, measurement and analysis of 
ocular structures, eye movements, and pupillary dynamics 
have been conducted in mobile health for clinical diagnosis 
and health evaluation [1]. Pupillary dynamics analysis with a 
smart eyewear can become a new mobile health monitoring 
application [2]. However, there are technical challenges that 
need to be tackled before it can be practically realized. First, 
eye dynamics captured in a mobile scenario would be 
susceptible to noise from surrounding environment and 
internal factors such as age and emotion. In an unconstrained 
setting, the most influential determinant of pupil size is the 
brightness level of the environment. Traditional noise filtering 
methods such as moving average filtering [3], median filtering 
[4] and Savitzky-Golay filtering [5] are commonly employed
to remove noise and artifacts of pupillary signals. However,
these filters suffer from signal distortion. Sudden deviations
are over smoothed, and consequently these filters may lead to
physiological parameters being underestimated [6]. On the
other hand, singular spectrum analysis (SSA), a subspace
separation method, has been employed in biosignal denoising
[7]. It has superior performances compared to conventional
linear time-frequency analysis techniques [8]. SSA can
effectively denoise a signal, while maintaining the signal trend 
without introducing signal decay or distortion [9].

Secondly, eye movement always consists of missing data 
caused by blinking. Researchers have used methods such as 
elimination of events or interpolation to tackle the problem 

[10]. However, the elimination method leads to data loss and 
attenuation of statistical power, making it difficult for 
subsequent analysis. As eye blinks are characterized by a 
sudden decrease followed by sudden increase in pupil size, 
changes of pupil size cannot be fully removed using 
interpolation, thus creating noise artifacts in the pupil size 
signal [11]. On the other hand, SSA algorithm can be used to 
have spectral characteristics preserved estimation of missing 
data. Based on iterative SSA, an algorithm has been 
developed for filling of missing data during blinking events 
[12]. It was verified that the trend of the signal could be 
faithfully reconstructed. 

In mobile health with smart eyewear, eye movement data 
are collected in an unconstrained setting while participants 
engage in instrumental activities of daily living (IADL) like 
driving and doing household chores [13]. Clinical studies 
have shown that impairment in the performance of IADL 
corresponds to early stage of mild cognitive impairment [14]. 
In contrast to having only pupil size being monitored for 
diagnosis, researchers have suggested including multimodal 
data for better tracing of cognitive and neural deficits [15]. 
Apart from pupillary dynamics, other information, such as 
gaze positions, head movements, and other biosignals should 
be employed for feature extraction and further analysis to 
holistically reflect mental health status. A multichannel 
signal processing technique is required for the simultaneous 
processing of multiple channels, and for exploiting the 
mutual relationships between the channels. The traditional 
method mainly manipulates each data channel separately and 
it cannot extract and exploit the mutual relation among 
different channels. Recently, quaternion SSA (QSSA) was 
shown to be a more promising way to account for the 
multichannel correlation. Since the work of Enshaeifar et al. 
[16], QSSA has been applied in many fields, for example, 
color image denoising [17], fault diagnosis [18], sleep-stage 
classification [19], and seismic data processing [20]. QSSA 
was found to have better performance as compared with 
traditional separate channel processing techniques.  

This paper aims to explore a novel multichannel signal 
processing technique by using QSSA for processing 
multichannel eye-movement data, including pupillary 
dynamics and gaze positions, in order to tackle the above-
mentioned problems. Sections II and III cover background of 
the SSA algorithm and quaternion valued algebra. Augmented 
QSSA is then introduced in Section IV. The methodologies 
and results of the application in missing data filling and signal 
denoising are shown in Sections V and VI. Section VII 
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presents the results and future work, and Section VIII gives a 
conclusion. 

II. SINGULAR SPECTRUM ANALYSIS 
SSA is a non-parametric and data driven technique for 

time-series analysis. Its ability to provide meaningful results 
without assumption of the data makes it a useful tool in real-
world applications. SSA works by decomposes a signal into 
independent and interpretable components. Some of the 
components are selected and grouped for reconstructing a 
denoised signal. SSA consists of two main stages [7, 19]. The 
first stage decomposes the sequence into components. Let 𝑥𝑥 �
�𝑥𝑥� ⋯𝑥𝑥��� ∈ ℜ� be the vector of a one dimensional sequence 
with length 𝑁𝑁, and let 𝐿𝐿 be the window length, and 1 � 𝐿𝐿 �
�
�. Let � � 𝑁𝑁 � 𝐿𝐿 � 1. Let 𝑆𝑆 𝑆𝑆 ��� be the trajectory matrix 
as follows: 

𝑆𝑆 � �
𝑥𝑥� 𝑥𝑥� 𝑥𝑥�𝑥𝑥� 𝑥𝑥� 𝑥𝑥� ⋯ 𝑥𝑥���𝑥𝑥�⋮ ⋱ ⋮

𝑥𝑥��� 𝑥𝑥� 𝑥𝑥��� ⋯ 𝑥𝑥���
� ∈ ℜ��� 

Let the triplets, 𝑈𝑈,𝑉𝑉 and ∧��  respectively be the left and 
right eigenvectors, and the singular values resulting from the 
singular value decomposition (SVD) on 𝑆𝑆. That is, 

𝑆𝑆 � 𝑈𝑈 ∧ 𝑉𝑉� ����𝑢𝑢�𝑣𝑣�� ��𝑆𝑆�
�

���

�

���
 

, where 𝑅𝑅 � 𝑟𝑟𝑎𝑎𝑎𝑎𝑘𝑘�𝑆𝑆� � 𝐿𝐿.  Then, we have 𝑆𝑆𝑆𝑆� � 𝑈𝑈 ∧ 𝑈𝑈�.  

Constructing the denoised signal in the second stage 
involves first categorizing the components into meaningful 
groups, then performing diagonal averaging. 𝑆𝑆�  is 
categorized into the group of different subspaces components 
and the group of noise components.  

Reconstruct the denoised signal involves retaining the 
underlying subspaces’ components, and discarding the noise 
components, which have smaller singular values. Let 𝑊𝑊� be 
the index set corresponding to the underlying subspaces’ 
components. Let 𝑆𝑆�� be the sum of all 𝑆𝑆� for all 𝑗𝑗 in 𝑊𝑊�. That 
is, 

𝑆𝑆�� � � 𝑆𝑆�
�∈��

�
⎣
⎢⎢
⎡ 𝑠̂𝑠�� 𝑠̂𝑠��

𝑠̂𝑠�� 𝑠̂𝑠�� ⋯ 𝑠̂𝑠�,���
𝑠̂𝑠�,�

⋮ ⋱ ⋮
𝑠̂𝑠���,� 𝑠̂𝑠���,� ⋯ 𝑠̂𝑠���,���⎦

⎥⎥
⎤
 

Then 𝑆𝑆�� is converted to a one dimensional vector through 
diagonal averaging. Let 𝑥𝑥� � �𝑥𝑥�� ⋯𝑥𝑥����  be the one 
dimensional reconstructed vector. Then, we have: 

�
𝑥𝑥�� � 𝑠̂𝑠��

𝑥𝑥�� � �𝑠̂𝑠�� � 𝑠̂𝑠���/2
𝑥𝑥�� � �𝑠̂𝑠�� � 𝑠̂𝑠�� � 𝑠̂𝑠���/3

…
 

III. QUATERNION VALUED ALGEBRA 
Quaternions are 4-D hypercomplex numbers. A 

quaternion 𝑥𝑥 𝑥 𝑥  is defined as 𝑥𝑥 � 𝑟𝑟� � 𝑖𝑖𝑟𝑟� � 𝑗𝑗𝑟𝑟� � 𝑘𝑘𝑟𝑟� , 
where 𝑟𝑟�, 𝑟𝑟� , 𝑟𝑟� , 𝑟𝑟�  are all real numbers, and the imaginary 
units �𝑖𝑖, 𝑗𝑗, 𝑘𝑘� have the following properties: 

𝑖𝑖𝑗𝑗 � 𝑘𝑘 � �𝑗𝑗𝑖𝑖
𝑗𝑗𝑘𝑘 � 𝑖𝑖 � �𝑘𝑘𝑗𝑗
𝑘𝑘𝑖𝑖 � 𝑗𝑗 � �𝑖𝑖𝑘𝑘

𝑖𝑖� � 𝑗𝑗� � 𝑘𝑘� � 𝑖𝑖𝑗𝑗𝑘𝑘 � �1.
 

Quaternions therefore form a noncommutative normed 
division algebra ℍ, that is, in general for 𝑥𝑥,𝑦𝑦 𝑦𝑦 , 𝑥𝑥𝑦𝑦 � 𝑦𝑦𝑥𝑥. 
The conjugate of a quaternion 𝑥𝑥 is 𝑥𝑥∗ � 𝑟𝑟� � 𝑖𝑖𝑟𝑟� � 𝑗𝑗𝑟𝑟� � 𝑘𝑘𝑟𝑟�, 
and 𝜂𝜂 is a pure unit quaternion iff 𝜂𝜂� � �1. The involution 
of a quaternion 𝑥𝑥  over a pure unit quaternion 𝜂𝜂  is 𝑥𝑥��� �
�𝜂𝜂𝑥𝑥∗𝜂𝜂 . It represents the reflection of 𝑥𝑥  over the plane 
spanned by �1, 𝜂𝜂� . Three involutions 𝑥𝑥���, 𝑥𝑥���, 𝑥𝑥��� of  𝑥𝑥 
corresponding to 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 components are defined as: 

𝑥𝑥��� � 𝑟𝑟� � 𝑖𝑖𝑟𝑟� � 𝑗𝑗𝑟𝑟� � 𝑘𝑘𝑟𝑟� 

𝑥𝑥��� � 𝑟𝑟� � 𝑖𝑖𝑟𝑟� � 𝑗𝑗𝑟𝑟� � 𝑘𝑘𝑟𝑟�  
𝑥𝑥��� � 𝑟𝑟� � 𝑖𝑖𝑟𝑟� � 𝑗𝑗𝑟𝑟� � 𝑘𝑘𝑟𝑟�  

To exploit correlation between data channels, augmented 
statistics can be used to incorporate the complementary 
covariance matrices and to exploit second-order information 
[16]. The augmented quaternion vector,  𝑥𝑥� �
�𝑥𝑥� , 𝑥𝑥���� , 𝑥𝑥���� , 𝑥𝑥������  is used to find the augmented 
covariance matrix as follows: 

 

𝑅𝑅��,�� �

⎣
⎢
⎢
⎢
⎢
⎡ 𝑅𝑅�,� 𝑅𝑅�,����
𝑅𝑅�,����
��� 𝑅𝑅�,�

���
𝑅𝑅�,���� 𝑅𝑅�,����
𝑅𝑅�,����
��� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,����

���
𝑅𝑅�,�
��� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,�

��� ⎦
⎥
⎥
⎥
⎥
⎤
, 

, where the covariance matrix 𝑅𝑅�,� � �𝑥𝑥𝑥𝑥�  and the three 
complementary covariance matrices 𝑅𝑅�,���� � �𝑥𝑥𝑥𝑥���� , 
𝑅𝑅�,���� � �𝑥𝑥𝑥𝑥����  and 𝑅𝑅�,���� � �𝑥𝑥𝑥𝑥����  can be identified. 
Because 𝑅𝑅��,��  involves both the covariance and pseudo-
covariance matrices, the complete second order information in 
the quaternion-valued data are incorporated. 

IV. QUATERNION SINGULAR SPECTRUM ANALYSIS 
SSA can be performed on a quaternion valued signal as 

follows [19]. Let 𝑆𝑆�, 𝑆𝑆�, 𝑆𝑆�  and 𝑆𝑆�  be the real valued 
components, and the 𝑖𝑖, 𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘  imaginary valued 
components of the trajectory matrix 𝑆𝑆, respectively. That is, 
𝑆𝑆 � 𝑆𝑆� � 𝑖𝑖𝑆𝑆� � 𝑗𝑗𝑆𝑆� � 𝑘𝑘𝑆𝑆� .  Likewise, 𝑆𝑆���, 𝑆𝑆���  and 𝑆𝑆���  are 
the i, j, and k involutions of 𝑆𝑆, respectively. That is, 

𝑆𝑆��� � �𝑖𝑖𝑆𝑆̅𝑖𝑖 � 𝑆𝑆� � 𝑖𝑖𝑆𝑆� � 𝑗𝑗𝑆𝑆� � 𝑘𝑘𝑆𝑆� 

𝑆𝑆��� � �𝑗𝑗𝑆𝑆̅𝑗𝑗 � 𝑆𝑆� � 𝑖𝑖𝑆𝑆� � 𝑗𝑗𝑆𝑆� � 𝑘𝑘𝑆𝑆� 

𝑆𝑆��� � �𝑘𝑘𝑆𝑆̅𝑘𝑘 � 𝑆𝑆� � 𝑖𝑖𝑆𝑆� � 𝑗𝑗𝑆𝑆� � 𝑘𝑘𝑆𝑆� 

Let 𝑆𝑆� � �𝑆𝑆�  𝑆𝑆����   𝑆𝑆����   𝑆𝑆������ ∈ ℍ���� , then, the 
quaternion covariance matrix 𝑅𝑅��,�� can be denoted as: 
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𝑆𝑆�𝑆𝑆�� �

⎣
⎢
⎢
⎢
⎢
⎡ 𝑅𝑅�,� 𝑅𝑅�,����
𝑅𝑅�,����
��� 𝑅𝑅�,����

𝑅𝑅�,���� 𝑅𝑅�,����
𝑅𝑅�,����
��� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,����

���
𝑅𝑅�,���� 𝑅𝑅�,����

���

𝑅𝑅�,����
��� 𝑅𝑅�,���� ⎦

⎥
⎥
⎥
⎥
⎤
∈ ℍ�����, 

Through quaternion valued singular value decomposition 
(QSVD) on 𝑆𝑆�, we get: 

 
 𝑆𝑆� � � �� � 𝑉𝑉� � ∑ √𝜎𝜎�𝑢𝑢�𝑣𝑣�� � ∑ 𝑆𝑆������������  
 
 𝑆𝑆�𝑆𝑆�� � � � �� 

𝑆𝑆�� are categorized into finite number of groups. Then in 
each group, diagonal averaging of the sum of the components 
is performed. Let 𝑊𝑊� be the index set corresponding to the 
underlying subspaces’ components. Let 𝑆𝑆��� be the sum of all 
𝑆𝑆�� for all 𝑗𝑗 in 𝑊𝑊�. That is, 

𝑆𝑆��� � � 𝑆𝑆��
�∈��

�
⎣
⎢⎢
⎡ 𝑠̂𝑠�� 𝑠̂𝑠��
𝑠̂𝑠�� 𝑠̂𝑠�� ⋯ 𝑠̂𝑠�,�

𝑠̂𝑠�,���
⋮ ⋱ ⋮

𝑠̂𝑠�,� 𝑠̂𝑠�,��� ⋯ 𝑠̂𝑠�,� ⎦
⎥⎥
⎤
 

Let 𝑥𝑥� � �𝑥𝑥�� ⋯𝑥𝑥���� be the one dimensional reconstructed 
vector. Through diagonal averaging on 𝑆𝑆���, we have: 

�
𝑥𝑥�� � 𝑠̂𝑠��

𝑥𝑥�� � �𝑠̂𝑠�� � 𝑠̂𝑠���/2
𝑥𝑥�� � �𝑠̂𝑠�� � 𝑠̂𝑠�� � 𝑠̂𝑠���/3…

 

V. METHODOLOGIES 
In this section, the QSSA multichannel signal processing 

technique is applied on pupillary dynamic processing. It 
involves blinks gap filling and signals denoising in an 
unconstrained setting. The pupil size dataset was provided by 
Kret et al. [22]. The data was acquired with Eyelink system 
from SR Research Limited.   

A. Blinks Gap Filling 
To test the blinks gap filling performance, 6 samples of 

pupil-size data were chosen as shown in Figure 1. A total of 
14 equal interval length (1000 time samples) segments 
without blinks were selected. 17 blinks per segment starting 
from 100th time sample to 900th time-sample were generated. 
For each generated blink, the length of data missing was 50 
time samples, during which the pupil-size values were set to 
zero. In total, there are 238 blinks for performance evaluation. 
After generating the blink samples, iterative SSA was 
performed to fill in the gaps by using the reconstructed signal 
based on the first three decomposed components.  

In each iteration, the mean square error (MSE) of the filled 
segment as compared with the previous iteration was 
computed. If the MSE was lower than a stopping criteria, such 
as 1 � 10�� , or if the number of iteration was more than a 
preset limit, for example, 60, the SSA algorithm would stop 
and the filled value of the last iteration would be the result of 
blink gap filling. Figure 2 illustrates an example of blink gap 
filling by iterative SSA. The red lines show the filled results 
from different iterations. To compare the performance of the 
iterative SSA algorithm, a 4-points cubic spline interpolation 
was employed. Meanwhile, white Gaussian noise having 

different signal to noise ratio (SNR) was added to the pupil-
size data for better simulation of the real environment in 
mobile scenario. For each SNR, 50 trials were conducted, and 
the mean MSE was calculated for comparison.  

 
Fig. 1. The pupil size data of each sample. 

 
Fig. 2. Example of iterative SSA on segment of sample “26iCB1” with 40dB 
additive Gaussian noise. The green line is the original pupil-size data. The 
blue line shows the blink being generated by setting a length of 50 time-
samples to zero value. The red lines show the filled values of different 
iterations. 

To handle multichannel eye-movement data including 
pupil diameter, gaze x and y positions, iterative QSSA was 
implemented. Per iteration, these 3 signals were combined to 
form a pure quaternion (only imaginary parts) and only the 
first component was used for reconstruction. After converting 
the reconstructed quaternion signal into separate real-valued 
signals, the blink gap was filled with the reconstructed data in 
the corresponding signals. 

B. Denoising 
As mentioned in Section I, for multichannel signal 

processing, QSSA was also be proven to have better 
performance for denoising but without quantitative analysis. 
Here, the denoising performance of QSSA is evaluated as 
compared with common single-channel filtering techniques 
such as median filtering and Savitzky-Golay filtering. 
Meanwhile, the importance of the number of components 
being selected based on singular values and their relation to 
denoising performance will also be studied. In the experiment, 
4 pupil-size data samples are selected from Kret’s dataset.  

The missing data in the samples were filled by iterative 
QSSA as mentioned previously. A white Gaussian noise was 
added to the gap-filled data with different SNR level from 
10dB to 40dB for performance evaluation. Then, the noisy 
signals were handled by the above methods separately. MSE 
between the denoised signals and original signals was 
computed in order to evaluate denoising performance. In 
QSSA, the four signals were first combined into a quaternion 
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valued signal, and went through the procedures as mentioned 
in Section IV. The quaternion valued signal was decomposed 
into signal part and noisy part according to the singular values, 
only signal part was reconstructed to form the denoised signals. 

VI. RESULTS 

A. Blinks Gap Filling 
Figure 3 shows an example of blink gap filling. The 

iterative SSA’s result (red line) was closer to the original 
signal (green line) as compared with the one by cubic-spline 
interpolation (cyan line). The reconstruction signal from SSA 
included the trend and periodic components of the original 
signal which preserved the overall structure of the data much 
better than cubic spline interpolation. Table I presents the 
overall results. When the SNR is high, as SNR=50dB, there 
are 169 samples (71% of total no. of samples) in which MSE 
between iterative SSA reconstructed signal and the original 
signal, denoted as MSEISSA, is less than the MSE between 
cubic spline interpolated signal and the original signal, 
denoted as MSECS. As seen in the table, the iterative SSA 
method outperforms cubic-spline interpolation, especially 
when the SNR is low. Figure 4 shows an example of blink gap 
filling in multichannel eye-movement data by iterative QSSA. 
As seen in the figure, there are abrupt changes before and after 
the blink, QSSA not only fills the gap with preserving overall 
structure but also removes artifacts caused by blinking. 

TABLE I. BLINK GAP FILLING PERFORMANCE EVALUATION 

Total 238 
samples for 
evaluation 

No. of samples (%) 
MSEISSA a < MSECS b MSECS < MSEISSA 

SNR = 50dB 169 (71%) 69 (29%) 
SNR = 40dB 222 (93.3%) 16 (6.7%) 
SNR = 30dB 237 (99.6%) 1 (0.4%) 

a. MSEISSA denotes the MSE between the iterative SSA reconstructed signal and the original signal. 
b. MSECS denotes the MSE between the cubic spline interpolated signal and the original signal. 

 
Fig. 3. An example of the blink gap filling test. The iterative SSA result 
denoted as red line is more close to the original pupil-size data (green line) as 
compared with the cubic spline interpolation (cyan line). The MSE of iterative 
SSA and cubic spline interpolation are 10.5648 and 276.3463 in this trial. 

 
Fig. 4. Iterative QSSA applied on multichannel eye-movement data, 

including pupil diameter, gaze x and y positions. 

B. Denoising 
As shown in Figure 5, the denoising performance of QSSA 

outperforms other methods especially for small SNR. 
Furthermore, when the SNR=10dB, as shown in Figure 6, the 
MSE of QSSA is found to have a minimum around the turning 
point of singular values. That means the proper number of 
components for separation of the signal part and the noise part  
only based on the singular values can be easily identified. 
However, for large SNR, when SNR=40dB as shown in 
Figure 7, the selection of number of components are critical 
for the denoising performance but the minimum MSE of 
QSSA cannot be easily identified by singular values only as in 
small SNR. Therefore, additional criteria are needed for 
proper selection.  

 
Fig. 5. The denoising performance of QSSA over different SNRs is 
evaluated to outperform other methods, especially for small SNR. 

 
Fig. 6. For small SNR, e.g. in this case SNR=10dB, the MSE of QSSA is 

found to have a minimum around the turning point of eigenvalue. 

 
Fig. 7. For large SNR, in this case SNR=40dB, the relation between the 

number of components and eigenvalues is not easily interpreted. 

VII. DISCUSSION 
Although the performance of applying QSSA in blinks gap 

filling and denoising for multichannel eye-movement signal 
processing is better than traditional separate-channel methods, 
QSSA also has shortcomings in real implementation. First, the 
singular values cannot be a universal method to select the 
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number of components for subspace separation. One 
promising method is to analyze the spectral properties of 
singular vectors for better subspaces separation [7]. As SSA 
can be interpreted as a filtering process and the singular 
vectors can be viewed as a bank of eigenfilters, similarly for 
QSSA as quaternion valued eigenfilters, the spectral 
properties of these eigenfilters reflects valuable information 
for subspaces separation as well as feature extraction. More 
studies should be conducted [23-24].  

One of the main drawbacks of QSSA is the long 
computation time [18]. The heavy computation loading leads 
to high demand for computer performance. The heaviest 
burden in QSSA is the QSVD operation which involves 
complex quaternion valued matrix decomposition. Recently, 
a Lanczos-based method has been proposed to enhance 
computation efficiency of partial SVD triplets of large-scale 
quaternion matrices [25]. This method is shown to have better 
performance as compared with state-of-the-art methods 
theoretically. Its practical implementation was shown to 
reduce the computation time dramatically as compared with 
single channel operation [18]. Therefore, by using Lanczos-
based QSVD, QSSA will be more computational efficient and 
suitable for real-time processing.  

VIII. CONCLUSION 
This paper provides a preliminary exploration of QSSA, 

a novel multichannel signal processing technique, in 
analyzing pupillary dynamics for mobile health. Real pupil 
size data are used to investigate the performance in the 
application of blinks gap filling and signals denoising. The 
results show that QSSA outperforms traditional methods. 
However, these results are preliminary and a validation on a 
larger dataset is needed. Suggestions for the enhancement of 
applying QSSA have been proposed. One way is to have 
better criteria for subspaces separation and feature extraction 
by exploring the spectral properties of quaternion valued 
eigenfilters. Another way is to employ Lanczos-based QSVD 
method to shorten the computation time. To the best of our 
knowledge, this is the first application of QSSA on pupillary 
dynamics data for mobile health monitoring. 
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