
Games and Economic Behavior 97 (2016) 54–63
Contents lists available at ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Fair implementation of diversity in school choice ✩

Inácio Bó

WZB Berlin Social Science Center, Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 October 2014
Available online 29 March 2016

JEL classification:
C78
D63
D78
D82

Keywords:
Mechanism design
Matching
School choice
Affirmative action
Diversity

Many school districts have objectives regarding how students of different races, ethnicity 
or religious backgrounds should be distributed across schools. A growing literature in 
mechanism design is introducing school choice mechanisms that attempt to satisfy 
those requirements. We show that mechanisms based on the student-proposing deferred 
acceptance may fail to satisfy those objectives, but that by using instead the school-
proposing deferred acceptance together with a choice function used by the schools, 
which incorporates a preference for satisfying them, can optimally approximate the 
diversity objectives while still satisfying an appropriate fairness criterion. We provide 
analytical results which show that the proposed mechanism has a general ability to satisfy 
those objectives, as opposed to some currently proposed mechanisms, which may yield 
segregated assignments.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the last five decades a multitude of policies have been implemented, with varying degrees of success, to reduce 
historical and emerging racial, religious, and ethnic segregation at the school level. Most of the policies used to achieve that 
objective aim to either establish maximum quotas for the so-called majority students or to give higher priority to minority 
students in either all or part of the seats available.

Since the seminal work on the subject by Abdulkadiroğlu and Sönmez (2003), a growing number of papers have used 
mechanism design principles to obtain school assignments that achieve some balance between diversity objectives, fairness, 
efficiency, and other properties. One class of such mechanisms, which we denote affirmative action mechanisms, expands the 
set of schools that certain types of students have access to by giving them higher priority and/or reserving some seats in 
the schools to be filled by those students, making the seats otherwise available to everyone.1 One example of an affirmative 
action mechanism is giving higher priority to racial minorities for a number of seats in schools (Hafalir et al., 2013; Ehlers 
et al., 2014; Aygün and Bó, 2013). Another class of mechanisms takes diversity as an objective instead, and accommodates 
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other properties, such as fairness or constrained efficiency. We denote that class of mechanisms diversity implementation
mechanisms. Mechanisms with majority quotas (which enforce a maximum number of “majority type” students in each 
school) or others that enforce certain ratios among types of students are examples of diversity implementation mechanisms.

For problems such as university admission – which is in many cases determined by student performance in tests and 
high-school grades – affirmative action mechanisms could increase the diversity of cohorts by improving the access of 
minority students to more competitive universities. In the case of school choice, however, that it is not necessarily the case. 
Typically, the criteria for admission rely on aspects such as residence location, presence of siblings in the school, special 
needs, etc. That is, minority students are not necessarily disadvantaged with respect to others in their access to desired 
schools, and thus the use of such mechanisms may not help in obtaining more diverse groups of students.

We introduce a new diversity implementation mechanism that differs from others available in the literature in two main 
aspects: the incorporation of diversity objectives as an element of fairness and a more pragmatic interpretation of those 
objectives, where a given distribution of types in a school is used as a desired target instead of a strict objective.

From a theoretical perspective, one key aspect of this paper is our use of the school-proposing deferred acceptance 
procedure while using a choice function for the schools that incorporates a preference for groups of students that satisfy 
the diversity requirements. While college admissions problems are two-sided matching problems in which the welfare and 
incentives of both sides are under consideration, in a school choice problem the seats in the schools are simply objects to 
be allocated to students. Therefore the school’s choice function can be designed in such a way that the property of stability 
and the school-optimality of the stable allocations selected induces the desired properties on the allocation. Moreover, as shown 
in section 3, the change from using the student-proposing to school-proposing deferred acceptance has significant effects 
on the satisfaction of diversity objectives.

1.1. Relation with the literature

The Student-Proposing Deferred Acceptance and the College-Proposing Deferred Acceptance mechanisms (SPDA and 
CPDA) were first introduced by Gale and Shapley (1962). While Dubins and Freedman (1981) show that when using the 
SPDA as a direct mechanism no student or group of students can be made better-off by misrepresenting their preferences, 
Gale and Sotomayor (1985) show that this is not normally the case when using CPDA. Furthermore, Roth (1985) shows that 
there is no stable mechanism that is immune to manipulation by colleges.2

The incentive and welfare properties of both mechanisms come into play in the context of college admissions in Balinski 
and Sönmez (1999). In their model there is no need for strategic or welfare considerations on the part of colleges. As a 
result, the SPDA is suggested as the ideal mechanism for the student placement problem.

The subsequent literature on college admissions and school choice, as well as their applications, focuses on the use of 
the SPDA procedure (see Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005, 2006, 2009). When concerns about 
the diversity of the distribution of students across schools were introduced in the mechanisms, that choice persisted (Ehlers 
et al., 2014; Echenique and Yenmez, 2015; Erdil and Kumano, 2012; Kominers and Sönmez, 2012; Hafalir et al., 2013). As 
shown in section 3, however, those mechanisms may to a great extent fail to affect the distribution of students by type in 
the schools. By combining the use of the CPDA procedure with a choice function used by the schools which represents a 
preference for satisfying the diversity objectives, we are able to obtain assignments that implement (or approximate) those 
objectives in a wider range of scenarios while still satisfying a fairness criterion.

The paper proceeds as follows. Section 2 introduces the model and the SPDiv mechanism. Section 3 presents the ana-
lytical results of the outcomes generated by the SPDiv mechanism and student-proposing affirmative action mechanisms. 
Proofs omitted from the main text can be found in the Appendix.

2. Model

A school choice with diversity problem consists of a tuple 
〈
S, C, T , τ ,q,q,�S ,�C

〉
:

1. A finite set of students S = {s1, . . . , sn}
2. A finite set of schools C = {c1, . . . , cm}
3. A finite set of types T = {t1, . . . , tk}
4. A function τ : S → T where τ (s) is the type of student s. We denote by St (I) the set of students in I ⊆ S of type t , 

that is, St (I) = {s ∈ I : t = τ (s)}.
5. A capacity vector q = (

qc1 , . . . ,qcm

)
where qc is the capacity of school c ∈ C .

6. For each school c, a vector qT
c =

(
qt1

c , . . . ,qtk
c

)
of diversity objectives, where qt

c is the minimum desired number of 

students with type t at school c, where 
∑

t∈T qt
c ≤ qc . Let q = (

qT
c1

, . . . ,qT
cm

)
.

2 Whereas Dubins and Freedman (1981) assume that the colleges’ selection of the students can be represented by ranking them and choosing the most 
preferred ones up to a capacity constraint, similar results are shown for more general choice functions in, among others, Hatfield and Kojima (2010) and 
Abdulkadiroğlu (2005).
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7. Students’ preference profile �S=
(�s1 , . . . ,�sn

)
, where �s is a strict ranking over C ∪{s}, where s represents remaining 

unmatched to any school. If s �s c, school c is deemed unacceptable to student s.
8. Schools’ priority profile �C = (�c1 , . . . ,�cm

)
, which is a collection of complete and strict rankings over the students in 

S ∪ {∅}. If ∅ �c s, student s is deemed unacceptable to school c.

An assignment μ is a function from C ∪ S to subsets of C ∪ S ∪ {∅} such that: (i) μ (s) ∈ C ∪ {s} and |μ(s)| = 1 for every 
student s,3 (ii) |μ(c)| ≤ qc and μ (c) ⊆ S for every school c and (iii) μ (s) = c if and only if s ∈ μ (c).

For a student s, μ (s) is the school to which s is assigned under μ, and for a school c, μ (c) is the set of students that are 
assigned to school c under μ. For a given school choice with diversity problem, we denote by M the set of all assignments. 
A set of students I ⊆ S enables diversity at school c if for all t ∈ T , 

∣∣St (I)
∣∣ ≥ qt

c . An assignment μ fully implements diversity
if for every school c, μ (c) enables diversity at c. If there is an assignment μ∗ ∈ M where μ∗ fully implements diversity, 
we say that diversity objectives are feasible. We say that a student s justifiably claims an empty seat at school c under the 
assignment μ if s is acceptable to c, |μ(c)| < qc and c �s μ (s). An assignment μ is non-wasteful if no student justifiably 
claims an empty seat at some school. An assignment is individually rational if for every student s, μ (s) �s s and for every 
school c and every student s′ ∈ μ (c), s′ �c ∅. A traditionally desirable condition for an assignment to satisfy is that of having 
no student justifiably envying another. We define that formally, using the notion of fairness in Balinski and Sönmez (1999):

Definition 1. A student s justifiably envies student s′ under the assignment μ, where c = μ 
(
s′), if and only if c �s μ (s)

and s �c s′ . An assignment μ satisfies no justified envy if no student justifiably envies another under μ. An assignment μ
is fair if it is non-wasteful and satisfies no justified envy.

Although an assignment that is fair always exists (Gale and Shapley, 1962; Balinski and Sönmez, 1999; Abdulkadiroğlu 
and Sönmez, 2003), Echenique and Yenmez (2015) show that an assignment that is fair and that fully implements diversity 
may not exist. In fact, fair assignments may completely ignore the diversity objectives, as shown in the example below:

Example 1. Consider the following school choice with diversity problem:

S = {s1, s2}
T = {t1, t2} �s1 : c2 c1 �c1 : s2 s1

St1 (S) = {s1} , St2 (S) = {s2} �s2 : c2 c1 �c2 : s2 s1
C = {c1, c2}

Capacities are qc1 = qc2 = 1, diversity objectives are qT
c1

=
(

qt1
c1 ,qt2

c1

)
= (0,0) and qT

c2
=

(
qt1

c2 ,qt2
c2

)
= (1,0). Consider the 

following assignments:

μ =
(

c1 c2
s1 s2

)
μ′ =

(
c1 c2
s2 s1

)

Diversity objectives are feasible, since the assignment μ′ fully implements diversity. The unique fair assignment is μ, 
which doesn’t fully implement diversity.

Notice that the assignment μ doesn’t satisfy the diversity objective of having a student of type t1 at school c2 while at 
the same time student s1, who is of that type, would prefer c2 to her school under μ.

If we take the normative approach to the concept of fairness, as we do in this paper, the fairness criterion should respond 
to the fact that whenever the schools’ priorities are “incompatible” with the diversity objectives, those objectives are ignored 
when using the above concept of fairness. For example, consider a city with two schools: one in a black and the other in 
a white neighborhood, and consider that schools give higher priority to students who live close to the school.4 Then if 
the schools have objectives of having an equal distribution of white and black students, an assignment in which all black 
students go to one school and all white students go to the other school is fair, even if there are students who would prefer to 
change their schools and join students of a different type.5

A mechanism which produces assignments that eliminate those distortions must, therefore, balance the two criteria 
when deciding which students will be assigned to any given school: priorities and diversity objectives. A choice function 
generated by reserves, as defined by Echenique and Yenmez (2015), chooses the set of students that satisfies as many diversity 
objectives as possible while pursuing a school’s priority, and is used by schools in our mechanism. We describe it formally 
below.

3 We will abuse notation and consider μ (s) as an element of C , instead of a set with an element of C .
4 For simplicity assume that only those in the white (black) neighborhood live close to the school in the white (black) neighborhood.
5 This observation also applies to the concept of same-type fairness, as in Ehlers et al. (2014) and Troyan and Fragiadakis (2013), where an assignment is 

fair if there is no justified envy between students of the same type.
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Let Cc : 2S → 2S be the choice function at school c for the school choice with diversity problem 
〈
S, C, T , τ ,q,q,�S ,�C

〉
. 

Fix any S ′ ⊆ S and let I ⊆ S ′ be the set of students acceptable to c among S ′ . Cc
(

S ′) is obtained by the following procedure.

1. Step 0: If |I| ≤ qc , Cc
(

S ′) = I and the procedure ends. Otherwise if |I| > qc , proceed to the steps below.

2. Step 1: If 
∣∣St1 (I)

∣∣ < qt1
c , accept all students in St1 (I). Otherwise accept the top qt1

c students in St1 (I) with respect to 
�c . Denote by �t1 (I) the set of students accepted in this step.

3. Step 1 < � ≤ k: If 
∣∣St� (I)

∣∣ < qt�
c , accept all students in St� (I). Otherwise accept the top qt�

c students in St� (I) with 
respect to �c . Denote by �t� (I) the set of students accepted until step �.

4. Final step: If 
∣∣�tk (I)

∣∣ < qc , accept the top qc − ∣∣�tk (I)
∣∣ students in I\�tk (I) with respect to �c .

The procedure above consists, therefore, of reserving qt
c seats for each type t and filling them with the top students of that 

type with respect to �c (steps 1 to k). If there are not enough students to fill some of the reserved seats, those are made 
available to students of any type, together with the open seats (final step).

The notion of fairness which will result from using the choice function Cc in our mechanism allows for the diversity 
objectives to be grounds for a kind of “justified envy” when those are not being satisfied, as follows:

Definition 2. A student s justifiably demands a seat in school c if c �s μ (s) and either: (i)
∣∣Sτ (s) (μ (c))

∣∣ < qτ (s)
c , (ii) There 

is a student s′ ∈ μ (c) such that τ
(
s′) = τ (s) and s �c s′ or (iii) There is t′ ∈ T and s′ ∈ St′ (μ(c)) such that 

∣∣∣St′ (μ(c))
∣∣∣ > qt′

c

and s �c s′ .
An assignment is fair-with-diversity if it is individually rational, non-wasteful, and if no student justifiably demands a 

seat in any school.

An assignment μ is blocked by a pair if there are a student s and a school c such that c �s μ (s) and s ∈ Cc (μ(c) ∪ {s}). 
If the choice function generated by reserves Cc is used for assigning students to schools, an assignment being individually 
rational and not blocked by a pair is equivalent to it being fair-with-diversity, as shown in the remark below.6

Remark 1. Suppose that a pair (s, c) blocks an assignment μ. This means that c �s μ (s) and s ∈ Cc (μ(c) ∪ {s}). The 
last condition means that either (i) |μ(c)| < qc or (ii)

∣∣Sτ (s) (μ (c))
∣∣ < qτ (s)

c or (iii) ∃ s′ ∈ Sτ (s) (μ (c)) : s �c s′ or 

(iv) ∃s′ ∈ μ (c) :
∣∣∣Sτ

(
s′

)
(μ(c))

∣∣∣ > q
τ
(
s′

)
c and s �c s′ . Since c �s μ (c), condition (i) means that μ is wasteful, and condition 

[(ii) or (iii) or (iv)] means that student s justifiably demands a seat in school c.

The set of fair-with-diversity assignments is a superset of the set of fair assignments that fully implement diversity:

Proposition 1. If μ is fair and fully implements diversity, then μ is also fair-with-diversity.

The proof is simple and therefore omitted. Notice, however, that the assignment μ′ in Example 1 is fair-with-diversity 
and fully implements diversity, but is not fair. The implication in Proposition 1 is, therefore, strict. The following result, 
however, shows that a fair-with-diversity assignment that fully implements diversity might not exist even when diversity 
objectives are feasible:

Proposition 2. There might not be an assignment that is fair-with-diversity and fully implements diversity, even if diversity objectives 
are feasible.

Proof. Consider the following school choice with diversity problem:

S = {s1, s2}
T = {t1, t2} �s1 : c1 c2 �c1 : s1 s2

St1 (S) = {s1} , St2 (S) = {s2} �s2 : c2 c1 �c2 : s2 s1
C = {c1, c2}

Capacities are qc1 = qc2 = 1, diversity objectives are qT
c1

=
(

qt1
c1 ,qt2

c1

)
= (0,0) and qT

c2
=

(
qt1

c2 ,qt2
c2

)
= (1,0). Consider the 

assignments μ and μ′ , where μ (c1) = {s1}, μ (c2) = {s2}, μ′ (c1) = {s2} and μ′ (c2) = {s1}. Diversity objectives are feasible, 

6 While most of the literature denotes an assignment that is individually rational and not blocked by a pair as pairwise stable, in this paper we refrain 
from using that definition, to emphasize the fact that the properties of an assignment which is fair-with-diversity constitute a normative choice of the 
mechanism designer, and not a characteristic of an assignment given the schools’ choice functions.
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since the assignment μ′ fully implements diversity. The unique fair-with-diversity assignment is μ, which doesn’t fully 
implement diversity. �

Even though it is not always possible to obtain an assignment that fully implements diversity, we would like to have 
the alternative of choosing one that is as “close” to that objective as possible. In order to achieve that, we first propose the 
following partial order:

Definition 3. Let >q be the partial order over the set of assignments M such that μ′ >q μ if:

1. For all c ∈ C and t ∈ T such that 
∣∣St (μ(c))

∣∣ ≤ qt
c , 

∣∣St
(
μ′ (c)

)∣∣ ≥ ∣∣St (μ(c))
∣∣ and

2. There are c′ ∈ C and t′ ∈ T such that 
∣∣∣St′ (μ (

c′))∣∣∣ < qt′
c′ and 

∣∣∣St′ (μ′ (c′))∣∣∣ >

∣∣∣St′ (μ (
c′))∣∣∣.

Denote μ′ ≯q μ if μ′ >q μ is false.

In other words, μ′ >q μ if μ′ has fewer seats “reserved” for students of certain types, which are occupied by students 
who are not of those types when compared to μ. Notice that if μ′ >q μ then it cannot be the case that both μ′ and μ
enable diversity in every school. As an example, suppose that there is only one school c with 100 seats and the diversity 
objective says that at least 50 of them should be occupied by minority students. If μ assigns 40 minority students to c
and μ′ assigns 45, then μ′ >q μ. However, if μ′′ assigns 51 minority students to c and μ′′′ assigns 55, both μ′′ ≯q μ′′′ and 
μ′′′ ≯q μ′′ . Increasing the number of minority students after the diversity objective is satisfied does not make an assignment 
greater with respect to >q . We now formally define a fair assignment with maximal diversity.

Definition 4. An assignment μ is fair-with-maximal-diversity if μ is fair-with-diversity and there is no assignment μ′
such that μ′ is fair-with-diversity and μ′ >q μ. A mechanism is fair-with-maximal-diversity if for every school choice with 
diversity problem the assignment it generates is fair-with-maximal-diversity.

An assignment μ is thus fair-with-maximal-diversity if μ either fully implements diversity or μ does not fully implement 
diversity but there is no assignment that is fair-with-diversity and “further satisfies” some diversity objective in some school 
without jeopardizing another in the same or some other school.

We now proceed to show some important properties of the choice function generated by reserves Cc .

Definition 5. A choice function C satisfies the substitutability condition if for all z, z′ ∈ X and Y ⊆ X , z /∈ C (Y ∪ {z}) =⇒
z /∈ C 

(
Y ∪ {

z, z′}).

The condition below, together with substitutability, suffices for the existence of a matching that is individually rational 
and not blocked by a pair (Aygün and Sönmez, 2013).

Definition 6. A choice function C satisfies irrelevance of rejected contracts (IRC) if ∀I ⊂ S, ∀s ∈ S\I , s /∈C (I ∪ {s}) =⇒ C (I) =
C (I ∪ {s}).

Echenique and Yenmez (2015) show that choice rules generated by reserves satisfy substitutability and IRC:

Lemma 1. (See Echenique and Yenmez, 2015.) The function Cc satisfies the substitutability condition and IRC.

Remark 2. Let I ⊆ S and c ∈ C be such that every student in I is acceptable to school c and for every t ∈ T , St (I) ≥ qt
c . Then 

Cc (I) enables diversity at c.

The remark above shows that whenever the set of students available is such that there are subsets of them which enable 
diversity at c, Cc selects one of them. As we show in section 3, however, this does not guarantee that the outcome of a 
deferred acceptance procedure fully implements diversity even when it is feasible.

Lemma 2. Let |Cc (I)| < qc and I ′ ⊆ I be the set of acceptable students for school c in I . Then the following are true: (i) Cc (I) = I ′ , 
(ii) Cc (I ∪ {s}) = Cc (I) ∪ {s} for any s ∈ S if s is acceptable to c and (iii) |Cc (I ∪ J )| > |Cc (I)| for any J ⊂ S such that for every 
s ∈ J , s is acceptable to c and J\I �= ∅.

The results presented in the lemma above come easily from the definition of the procedure for Cc .
The School-Proposing Diversity (SPDiv) mechanism that we propose consists of applying the school-proposing deferred 

acceptance procedure described in Roth (1984) using Cc as the schools’ choice function:
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1. Step 1: Let Sc (1) = S for all c ∈ C
(a) Each school c proposes to the students in Cc (Sc (1)).
(b) Each student s that received a proposal from one or more schools accepts her most preferred acceptable one 

according to �s and rejects the rest of the schools. Let, for all c ∈ C , Rc (1) be the set of students who rejected 
school c at this step.

2. Step k: Let Sc (k) = Sc (k − 1)\Rc (k − 1) for all c ∈ C .
(a) Each school c proposes to the students in Cc (Sc (k)).
(b) Each student s that received a proposal from one or more schools accepts her most preferred acceptable one 

according to �s and rejects the rest of the schools. Let, for all c ∈ C , Rc (k) be the set of students who rejected 
school c at this step.

The procedure terminates at any step T in which no rejections are issued, and the resulting assignment μ is such that for 
every school c, μ (c) = Cc (Sc (T )) as defined above. Students who are not in the choice set of any school are left unmatched.

The following result is based on an extension of a theorem in Roth (1984) for cases in which, as in this paper, choice 
functions are the primitives, instead of preference relations:

Lemma 3. Suppose that students’ preferences are strict and that schools use the choice function Cc. Then the assignment μC which is 
the outcome of the school-proposing deferred acceptance procedure is individually rational and not blocked by a pair. Moreover, μC

is school-optimal in the sense that for each school c and assignment μ which is also individually rational and not blocked by a pair, 
μC (c) = Cc

(
μC (c) ∪ μ(c)

)
.

Lemma 4. Let μ and μ′ be fair-with-diversity assignments. If for every c ∈ C , μ (c) = Cc
(
μ(c) ∪ μ′ (c)

)
then μ′ ≯q μ.

Proof. Suppose not. Then μ′ >q μ and therefore there is c ∈ C and t ∈ T such that 
∣∣St (μ(c))

∣∣ < qt
c and 

∣∣St
(
μ′ (c)

)∣∣ >∣∣St (μ(c))
∣∣. That is, there is at least one student s of type t who is in μ′ (c) but not in μ (c), implying that μ′ (c)\μ (c) �=

∅. By individual rationality, both μ (c) and μ′ (c) contain only acceptable students for c, μ (c) = Cc (μ(c)) and μ′ (c) =
Cc

(
μ′ (c)

)
.

If |μ(c)| < qc , then by Lemma 2 and the fact that μ′ (c)\μ (c) �= ∅, 
∣∣Cc

(
μ(c) ∪ μ′ (c)

)∣∣ > |Cc (μ(c))|. But then ∣∣Cc
(
μ(c) ∪ μ′ (c)

)∣∣ > |μ(c)| which implies μ(c) �= Cc
(
μ(c) ∪ μ′ (c)

)
, a contradiction. Thus, |μ(c)| = qc and the procedure 

for Cc
(
μ(c) ∪ μ′ (c)

)
ends after the final step.

Since 
∣∣St

(
μ′ (c)

)∣∣ >
∣∣St (μ(c))

∣∣, there is at least one student s′ ∈ μ′ (c) such that τ
(
s′) = t and s′ /∈ μ (c). Since ∣∣St (μ(c))

∣∣ < qt
c , student s′ is accepted in the step associated with t in Cc

(
μ(c) ∪ μ′ (c)

)
. As a consequence, s′ ∈

Cc
(
μ(c) ∪ μ′ (c)

)
and thus μ (c) �=Cc

(
μ(c) ∪ μ′ (c)

)
, a contradiction. �

Putting it all together we get our main result7:

Theorem 1. The SPDiv mechanism is fair-with-maximal-diversity.

Proof. Let μC be the outcome of the SPDiv mechanism. By Remark 1, Lemmas 1 and 3, μC is fair-with-diversity. By Lem-
mas 3 and 4, for any fair-with-diversity assignment μ′ , μ′ ≯q μC . As a consequence, μC is fair-with-maximal-diversity. �
3. Comparative analysis

In order to evaluate the assignments in terms of the distribution of students across schools, we define two classes of 
assignments that represent the two extremes: one in which students are completely segregated by their types and one in 
which the distribution of types in the set of students in each school is identical to the distribution of the population as a 
whole. Although it is not necessarily the case that those are the designer’s targets, the ability of the mechanism to attain 
such distribution is a good measure of how successful it is for general objectives. We now define those formally and give 
simple examples of both:

Definition 7. An assignment μ maximizes segregation if for every school c ∈ C , s, s′ ∈ μ (c) =⇒ τ (s) = τ
(
s′).

Definition 8. Diversity objectives mirror the population distribution if for every c ∈ C and t ∈ T , qt
c =

⌊
qc

∣∣St (S)
∣∣

|S|
⌋

. An as-

signment μ minimizes segregation if μ fully implements diversity when the diversity objectives mirror the population 
distribution.

7 In a version of their paper published in September 2014, Ehlers et al. (2014) show simultaneous and independent work presenting this property of the 
school-proposing deferred acceptance mechanism.
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Example 2. Suppose that C = {c1, c2}, S = {s1, s2, s3, s4}, T = {t1, t2}, St1 (S) = {s1, s2} and St2 (S) = {s3, s4}. The assignment 
μ, where μ (c1) = {s1, s2} and μ (c2) = {s3, s4} maximizes segregation, while the assignment μ′, where μ′ (c1) = {s1, s3} and 
μ (c2) = {s2, s4}, minimizes segregation.

We denote the partition of the students by type by S = S1 ∪ · · · ∪ Sk , where for every i ∈ {1, . . . ,k} and s ∈ Si , τ (s) = ti . 
We consider a simplified configuration in which the number of students of each type is the same, that is, |Si | =

∣∣S j
∣∣ for all 

i, j, every school has the same capacity q and the number of seats in schools equals the number of students (|S| = q |C |). 
In order to avoid issues related to fractional values throughout the analysis we will, for any given value of k (the number 
of types of students), assume that the number of students is such that |S| = n1n2k2 and that the number of schools is such 
that |C | = n2k, for some n1, n2 ∈ N. As a result, q = n1k and for every i, |Si | = n1n2k and q|Si ||S| = n1.

Our first result shows that the SPDiv mechanism generates assignments that minimize segregation regardless of students’ 
preference profiles or schools’ priorities.

Theorem 2. Every assignment generated by the SPDiv mechanism minimizes segregation when the diversity objectives mirror the 
population distribution.

We now consider two scenarios with a generalization for multiple types of students in the Deferred Acceptance with 
Minority Reserves (DAMR) mechanism, proposed in Hafalir et al. (2013), which is essentially the student-proposing deferred 
acceptance version of the SPDiv mechanism.8 The first scenario below is one in which students of each type have an 
exclusive set of schools that are preferred by those students to all other schools. This class of preferences accommodates, 
among other things, a situation that is commonly observed: students (and their parents) have a preference for schools that 
historically have a significant proportion of students of their own type.

Scenario 1 (Favorite schools for each type). There is a partition of schools C = C1 ∪ · · · ∪ Ck where |C1| = · · · = |Ck| and for every 
student si ∈ Si and j �= i it follows that ci ∈ Ci and c j ∈ C j implies ci �si c j .

Now we define a scenario in which the set of schools can be partitioned such that the preference among schools in 
different partitions is perfectly correlated across students, but not between schools in them. This is common when, for 
example, schools in wealthier neighborhoods are perceived as being better than those in less wealthy neighborhoods.

Scenario 2 (Tiered schools). There is a partition of schools C = C1 ∪ · · · ∪ Ca, with a ≥ k, where |C1| = · · · = |Ca| and for every student 
s ∈ S, schools ci ∈ Ci and ci+1 ∈ Ci+1 , student s’s preferences are such that ci �s ci+1 .

The following property connects DAMR outcomes with the set of fair-with-diversity assignments:

Lemma 5. Every assignment μ generated by the DAMR mechanism is fair-with-diversity.

Proof. By Lemma 1 and Theorem 1 in Aygün and Sönmez (2012), μ is individually rational and is not blocked by a pair. 
Thus μ is fair-with-diversity. �

We now consider the application of the DAMR mechanism in those different scenarios:

Proposition 3. Every assignment generated by the DAMR mechanism maximizes segregation in Scenario 1.

It is easy to see that the result in Proposition 3 applies not only to the DAMR mechanism, but to any mechanism that uses 
the student-proposing deferred acceptance procedure when the school’s choice function satisfies the substitutability condition
and the law of aggregate demand (property introduced in Alkan, 2002).

Proposition 4. Let μ be an assignment generated by the DAMR mechanism when the diversity objectives mirror the population 
distribution, and let C∗ ⊆ C be the set of schools such that if c∗ ∈ C∗ , μ (c∗) enables diversity in c∗. Then in Scenario 2

∣∣C∗∣∣
|C | ≥ a−1

a .

The lower-bound in the proposition may be binding. As a result, in a situation where there are only two types of students 
(minority and majority), for example, half of the schools may constitute a totally segregated subset of them, as shown in 
the example below.

8 We use a simple extension of the DAMR mechanism to accommodate for more than one type of student (Hafalir et al. (2013) consider only two types: 
minority and majority). This extension can also be found in Echenique and Yenmez (2015) and is a special case of the Deferred Acceptance Procedure with 
Soft Bounds in Ehlers et al. (2014), where there are no upper quotas. See also Kominers and Sönmez (2012) and Westkamp (2013) for more generalizations.
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Example 3. Consider the following school choice with diversity problem:

�s1 : c1 c2 c3 c4
S = {s1, s2, s3, s4, s5, s6, s7, s8} �s2 : c2 c1 c3 c4

T = {t1, t2} �s3 : c1 c2 c3 c4 �c1 : s1 s2 s3 s4 s5 s6 s7 s8
St1 (S) = {s1, s2, s3, s4} �s4 : c2 c1 c3 c4 �c2 : s1 s2 s3 s4 s5 s6 s7 s8
St2 (S) = {s5, s6, s7, s8} �s5 : c1 c2 c3 c4 �c3 : s1 s2 s3 s4 s5 s6 s7 s8

C = {c1, c2, c3, c4} �s6 : c2 c1 c3 c4 �c4 : s1 s2 s3 s4 s5 s6 s7 s8
�s7 : c1 c2 c4 c3
�s8 : c2 c1 c4 c3

Capacities are qc = 2, diversity objectives are qti
c j

= 1, for all i ∈ {1,2} and j ∈ {1,2,3,4}. The assignment generated by 
the DAMR mechanism is μ, as follows:

μ =
(

c1 c2 c3 c4
s1, s5 s2, s6 s3, s4 s7, s8

)

Note that both μ (c1) and μ (c2) enable diversity in those schools but the remaining population is segregated: to school 
c3 only students of type t1 are assigned and to school c4 only students of type t2.

When a = |C |, that is, the set of schools is partitioned such that each partition has only one school, the preferences in 
Scenario 2 are equivalent to a situation in which all students have the same preferences among schools. It is easy to see 
that Proposition 4 leads to the following corollary:

Corollary 1. Every assignment generated by the DAMR mechanism minimizes segregation when all students have the same preferences.

The value of a in Proposition 4 indicates, in a way, the degree of correlation among students’ preferences over schools: 
the larger the value of a, the more similar they are. Proposition 4 therefore shows that the DAMR mechanism may be an 
adequate choice of mechanism in situations where students’ preferences follow, for example, a widely known ranking, but 
less so when preferences are more heterogeneous.

Appendix A. Proofs

Lemma 3
This proof consists of reproducing the steps in the same result given in Roth (1984) under the more general assump-

tion that the primitives are choice functions that satisfy substitutability and IRC instead of choice functions derived from 
preferences over sets of students.

We make use of some definitions and the following results in Roth (1984), which remain valid without assuming IRC:

Lemma 6. (See Roth, 1984.) Let s∗ ∈ S1 and s∗ ∈Cc (S1 ∪ S2). Then s∗ ∈Cc (S2 ∪ {s∗}).

Proposition 5. (See Roth, 1984.) Offers remain open: for every school c, if s ∈ Cc (Sc (k − 1)) and is not rejected by student s in step 
k − 1, then s ∈Cc (Sc (k)).

Proposition 6. (See Roth, 1984.) Rejections are final: If s rejects school c at step k, then for any p ≥ k student s would reject another 
proposal from c. In other words, if s (p) is the set of schools that propose to student s at step p, she would never choose c out of 
{{s} ∪ s (p) ∪ {c}}.

For the next steps of the proof, however, in order to not have to assume that the choice functions are derived from strict 
preferences over sets of students, we derive the results by assuming that the choice function satisfies IRC. We will use the 
following lemma, which comes easily from the definition of the IRC condition:

Lemma 7. Let Cc satisfy IRC and let X ⊆ S and Y = Cc (X). Then, for any Z ⊆ X\Y , Cc (Y ∪ Z) = Cc (Y ).

Proposition 7. The outcome of the school-proposing deferred acceptance procedure above is individually rational and is not blocked 
by a pair.

Proof. Let μC be the outcome of the procedure. First, note that for every student s, μC (s) �s s, otherwise μC (s) would 
have been rejected by s. Now suppose that μC (c) is not individually rational, and therefore Cc

(
μC (c)

) �= μC (c). Then 
there is s such that s ∈ Cc (Sc (T )) but s /∈ Cc

(
μC (c)

)
. But since μC (c) ⊆ Sc (T ) this would violate the substitutability 

of Cc , and therefore Cc
(
μC (c)

) = μC (c). Now suppose that there is a student s and school c such that c �s μC (s) and 
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s ∈ Cc
(
μC (c) ∪ {s}). By assumption and Propositions 5 and 6 above, student s didn’t reject any proposal from school c, 

and therefore s ∈ Sc (T ). Denote RT ≡ Sc (T )\ (Cc (Sc (T )) ∪ {s}). Then Sc (T ) = μC (c) ∪ RT ∪ {s}, and therefore μC (c) =
Cc

(
μC (c) ∪ RT ∪ {s}) = Cc

(
μC (c)

)
. Since students in RT are rejected, by IRC Cc

(
μC (c) ∪ {s}) = Cc

(
μC (c)

)
. Contradiction 

with s ∈Cc
(
μC (c) ∪ {s}). �

Proposition 8. The outcome of the procedure above, μC , is school-optimal in the sense that, for each school c and every assignment μ
which is individually rational and is not blocked by a pair, μC (c) = Cc

(
μC (c) ∪ μ(c)

)
.

Proof. Suppose not. Then there exists an assignment μ∗ and a school c such that μ∗ is individually rational, not blocked 
by a pair, and μC (c) �= Cc

(
μC (c) ∪ μ∗ (c)

)
. We first show that there is at least one student s ∈ Cc

(
μC (c) ∪ μ∗ (c)

)
such 

that s /∈ μC (c) and s ∈ μ∗ (c). If that isn’t the case, since μC (c) �= Cc
(
μC (c) ∪ μ∗ (c)

)
, it must be that Cc

(
μC (c) ∪ μ∗ (c)

)
�

μC (c). But then all students in μ∗ (c) are rejected and by Lemma 7 Cc
(
μC (c) ∪ μ∗ (c)

) = Cc
(
μC (c)

) = μC (c), where the 
second equality is proved in Proposition 7 and therefore constitutes a contradiction. �

We show that no student will reject an achievable school. A school c is achievable to student s if there exists an assign-
ment μ such that μ is individually rational, is not blocked by a pair and s ∈ μ (c). The proof is by induction. By induction 
assumption, up to step k − 1 no student rejected any achievable school. Now suppose that student s rejects school c, which 
is achievable for her, in favor of another school c′ . It must then be that c′ �s c. Moreover, since school c is achievable to s, 
there exists at least one matching μ′ , where μ′ is individually rational and is not blocked by a pair, in which μ′ (s) = c. 
Since up to step k − 1 no student rejected an achievable school, no student in S\Sc′ (k) can be in μ′ (c′) and therefore 
μ′ (c′) ⊂ Sc′ (k). But since student s rejected school c in favor of c′ at step k, it must be that s ∈ Cc′ (Sc′ (k)). Since μ′ is 
individually rational, μ′ (c) = Cc′

(
μ′ (c)

)
. We have, therefore, s /∈Cc′

(
μ′ (c)

)
, μ′ (c′) ⊂ Sc′ (k) and s ∈ Cc′ (Sc′ (k)), which is a 

contradiction with Cc′ satisfying substitutability.
Given that, it must then be that all students who have c as achievable remain available until the last step 

of the algorithm and therefore μ∗ (c) ⊂ Sc (T ). Since μC (c) = Cc (Sc (T )) ⊂ Sc (T ), we can rewrite this as μC (c) =
Cc

(
μC (c) ∪ μ∗ (c) ∪ (

μ∗ (c)\μC (c)
) ∪ (

Sc (T )\μC (c)
))

. By Lemma 7, Cc
(
μC (c) ∪ μ∗ (c) ∪ (

μ∗ (c)\μC (c)
) ∪ (Sc (T ) \

μC (c))) =Cc
(
μC (c) ∪ μ∗ (c)

)
. That is, μC (c) = Cc

(
μC (c) ∪ μ∗ (c)

)
which is a contradiction to our initial assumption.

Theorem 2
Suppose, for the sake of contradiction, that schools’ diversity objectives mirror the population distribution but the as-

signment μ generated by the SPDiv mechanism does not minimize segregation. Then there is a school c ∈ C and a type 
ti ∈ T such that 

∣∣Sti (μ(c))
∣∣ < n1. Then at some step � in the deferred acceptance procedure of the SPDiv mechanism, the 

set of students of type ti that rejected school c has more than (n1 − 1)n2k elements. Without loss of generality, let � be 
the earliest step at which this happens to some school for any type (c may or may not be the only school for which that 
happens during step �). Since students consider all schools acceptable, all those students rejected c because another school 
proposed simultaneously. By Proposition 2 in Roth (1984), if a student receives an offer during a step of the procedure, it 
may change its assignment over time, but will not become unmatched at any subsequent step. Therefore, those students 
who rejected c are assigned to other schools. But then at least one school c′ ∈ C , with c′ �= c proposed to more than n1
students of type ti during step �. This can only happen if some student of type ti is accepted during the final step of the 
procedure for the choice function Cc′ . This implies that at the step associated with some type t j �= ti the number of students 
of type t j that rejected c′ at some step earlier than � is greater than (n1 − 1)n2k. Contradiction with � being the earliest 
step at which this happened.

Proposition 3
It is sufficient to show that, for any given i, every student si ∈ Si is accepted by some school in Ci . Suppose that there 

is a student si ∈ Si that is not assigned to any school in Ci . Since all schools in Ci are preferred by si to any other schools, 
si was rejected by all schools in Ci . Since every student is acceptable by all schools and all students in Si have the same 
type, every school c will simply accept the top qc students according to �c or all students in case the number of those 
pointing to c is lower than qc . Thus, the only way in which a student is rejected by a school is if that school has already 
accepted qc students. Notice that since Cc satisfies the law of aggregate demand (see Echenique and Yenmez, 2015), by the 
end of each step of the procedure the number of accepted students in each school never decreases. Thus, by the end of 
step 1, since si was rejected by her first choice, at least qc students in Si were accepted by schools in C ′

i . By the end of 
step 2, at least 2qc students are accepted, since the school mentioned in step 1 will still accept qc students by the end of 
step 2, and the second-best school for si also accepts qc students. By repeating the argument, by the end of step |Ci |, at least 
|Ci |qc students were accepted in the first |Ci | steps. But notice that during the first |Ci | steps, students in S j could have 
only pointed to schools in C j , for any j ∈ {1, . . . ,k}. Thus there is at least |Ci |qc + 1 students in Si , which is a contradiction 
with 

∑
c∈C ′ qc = |Si |. Therefore, students in Si will all be assigned to schools in Ci and thus μ (s) ∈ Ci =⇒ s ∈ Si .
i
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Proposition 4
Let μ be the assignment generated by the DAMR mechanism. By Lemma 5, μ is fair-with-diversity. Therefore μ is 

non-wasteful and thus every school is assigned qc students and every student is assigned to a school. We show that when 
diversity objectives mirror the population distribution, μ (c) enables diversity in every school c ∈ C1 ∪ · · · ∪ Ca−1. We will 
prove by induction in the sets C1, . . . , Ca−1 when t > 1 since the case a = k = 1 is trivial.

Step 1: we want to show that for every school c ∈ C1, μ (c) enables diversity at c.
Let n3 be the integer such that n3 = |C1| = · · · = |Ca|. Since |C | = n2k, n3a = n2k. And since a ≥ k, n3 ≤ n2. We must 

first show that there are at least n1n3 students of each type t ∈ T in 
⋃

c∈C1
St (μ(c)). Suppose not. Then there is at least 

one school c′ ∈ C1 such that 
∣∣St

(
μ

(
c′))∣∣ < n1. Since 

∣∣St (S)
∣∣ = n1n2k ≥ n1n3k and k > 1, then there is a student s′ such 

that τ
(
s′) = t and μ 

(
s′) /∈ C1. But then c′ �s′ μ 

(
s′) and s′ justifiably demands a seat in c′ , which implies that μ isn’t 

fair-with-diversity and thus we have a contradiction. Moreover, since there are at least n1n3 students of each type t in ⋃
c∈C1

St (μ(c)), there are at least n1n3k students in 
⋃

t∈T

⋃
c∈C1

St (μ(c)). Since qc = n1k and for any i, |Ci | = n3 it follows 
that there are exactly n1n3 students of each type t in 

⋃
c∈C1

St (μ(c)).
Suppose now that there is a school c′ ∈ C1 such that μ (c) doesn’t enable diversity at c′ . Then there is a type t ∈ T such 

that 
∣∣St

(
μ

(
c′))∣∣ < n1. By the result above we know that there is a student s of type t such that μ (s) /∈ C1. By assumption 

on preferences, c′ �s μ (s), implying that s justifiably demands a seat in c′ , a contradiction.
Step k∗: by induction assumption, for every i ∈ {1, . . . ,k∗ − 1} and c ∈ Ci , μ (c) enables diversity in c. The proof follows 

the same argument as for step 1, with the difference that in the instances in which a student s justifiably demands a seat 
in some school c′ ∈ Ck∗ , that student is assigned in μ to some school in Ck′ , where k′ > k∗ , implying that c′ �s μ (s).

Note, however, that when k∗ = a this argument cannot be made any longer, that is, if there is a school c′ ∈ Ck such that ∣∣St
(
μ

(
c′))∣∣ < n1, there may not exist a student s of type t such that c′ �s μ (s).
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