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Abstract. In this paper we consider the existence and stability of multi-spike solu-
tions to the fractional Gierer-Meinhardt model with periodic boundary conditions.
In particular we rigorously prove the existence of symmetric and asymmetric two-
spike solutions using a Lyapunov-Schmidt reduction. The linear stability of these
two-spike solutions is then rigorously analyzed and found to be determined by the
eigenvalues of a certain 2 x 2 matrix. Our rigorous results are complemented by
formal calculations of N-spike solutions using the method of matched asymptotic
expansions. In addition, we explicitly consider examples of one- and two-spike
solutions for which we numerically calculate their relevant existence and stability
thresholds. By considering a one-spike solution we determine that the introduction
of fractional diffusion for the activator or inhibitor will respectively destabilize or
stabilize a single spike solution with respect to oscillatory instabilities. Furthermore,
when considering two-spike solutions we find that the range of parameter values
for which asymmetric two-spike solutions exist and for which symmetric two-spike
solutions are stable with respect to competition instabilities is expanded with the in-
troduction of fractional inhibitor diffusivity. However our calculations indicate that
asymmetric two-spike solutions are always linearly unstable.
AMS subject classifications: 35R11, 35B32, 60K50, 35B25

Key words: Gierer-Meinhardt system, eigenvalue, stability, fractional Laplacian, localized solu-
tion.

1. Introduction
The Gierer-Meinhardt (GM) model is a prototypical activator-inhibitor reaction-
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diffusion system that has, since its introduction by Gierer and Meinhardt in 1972 [5],
been the focus of numerous mathematical studies. In the singularly perturbed limit for
which the activator has an asymptotically small diffusivity the GM model is known to
exhibit localized solutions in which the activator concentrates at a discrete collection
of points and is otherwise exponentially small. The analysis, both rigorous and formal,
of the existence, structure, and linear stability of such localized solutions has been the
focus of numerous studies over the last two decades (see the book [32]). The GM model
in a one-dimensional domain has been particularly well studied using both rigorous
PDE methods [28,31] as well as formal asymptotic methods [13, 26]. More recent
extensions to the classical one-dimensional GM model have considered the effects of
precursors [15,34], bulk-membrane-coupling [7], and anomalous diffusion [20,21,33].
It is the latter of these extensions which motivates the following paper which focuses
on extending the results obtained in [20, 33] for the fractional one-dimensional GM
model.

The analysis of localized solutions to the GM model fits more broadly into the study
of pattern formation in reaction-diffusion systems. Such reaction-diffusion systems
have widespread applicability in the modelling of biological phenomena for which dis-
tinct agents diffuse while simultaneously undergoing prescribed reaction kinetics (see
the classic textbook by Murray [19]). While these models have typically assumed a nor-
mal (or Brownian) diffusion process for which the mean-squared-displacement (MSD)
is proportional to the elapsed time, a growing body of literature has considered the
alternative of anomalous diffusion which may be better suited for biological processes
in complex environments [18, 23, 24] (see also [1, Section 7.1]). In contrast to nor-
mal diffusion, for anomalous diffusion the MSD and time are related by the power law
MSD « (time)® where an exponent satisfying @ > 1 or a < 1 corresponds to superdif-
fusion or subdiffusion respectively. Studies of reaction-diffusion systems with subdif-
fusion and superdiffusion suggest that anomalous diffusion can have a pronounced
impact on pattern formation (see [14] as well as [6] and the references therein). In
particular studies have shown that both superdiffusion and subdiffusion can reduce the
threshold for Turing instabilities when compared to the same systems with normal dif-
fusion [6,11]. Likewise it has been shown that the Hopf bifurcation threshold for spike
solutions to the GM model with normal diffusion for the inhibitor and superdiffusion,
mainly with Lévy flights, for the activator is decreased [20] whereas it is increased in
the case of subdiffusion for the inhibitor and normal diffusion for the activator [21].

In this paper we consider the existence and stability of localized multi-spike solu-
tions to the periodic one-dimensional GM model with Lévy flights for both the activator
and the inhibitor. In particular we consider the fractional Gierer-Meinhardt system with
periodic boundary conditions

2
ug + ¥ (—A)Stu +u — Yoo for ze€(-1,1),
v
T+ D(—A)20 4+ v —u? =0 for =€ (-1,1), (1.1)
u(z) =u(zr+2), viz)=v(x+2) for zeR,
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where 0 < ¢ < 1 and the parameters 0 < D < oo and 7 > 0 are independent of . We
assume the exponents satisfy i < s1 < 1and % < s9 < 1. The (nonlocal) fractional
Laplacian (—A)?® replaces the classical Laplacian as the infinitesimal generator of the
underlying Lévy process for s < 1 and is defined for all 2-periodic functions by

(—A C/ :U—ac|1+23 C/ (7)| Ks(x — z)dz, (1.2a)
where

2255 (s + 1/2)

C= AT )

1
= !1+28+Z<\z+2j\1+28+\2—2j11+25>’ a2

and for which the equality in (1.2a) follows from the periodicity of ¢(z). The sys-
tem (1.1) is a prototypical model in which we can study the interplay of short range
activation, long range inhibition, and intermittent periods of directed motion in the
underlying stochastic processes (i.e. Lévy flights). One of the goals of this paper is
to investigate the interplay of these three effects in the singularly perturbed limit for
which rigorous and formal methods can be used to obtain detailed descriptions of the
structure and stability of localized solutions. On a more technical note the properties of
certain relevant Green’s functions in this fractional case lead to a connection between
localized solutions in the classical Gierer-Meinhardt model in a different numbers of
spatial dimensions. We remark that the system (1.1) closely resembles the system con-
sidered in [20] with the primary difference being that we consider the effects of Lévy
flights for both the activator and the inhibitor.

Before outlining the structure of this paper we outline our contributions as follows.
Using a Lyapunov-Schmidt type reduction we rigorously prove the existence of sym-
metric and asymmetric two-spike steady solutions of (1.1) satisfying

2

21 (—A) Iyt — — =0 for z¢€(—1,1), (1.3a)
v

D(=A)*2v+v—u*=0 for x € (-1,1), (1.3b)

u(z) =u(z+2), viz)=v(x+2) for zeR, (1.30)

and determine their linear stability by considering the spectrum of certain 2 x 2 ma-
trices. In addition we use the method of matched asymptotic expansions to formally
construct N-spike quasi-equilibrium solutions and derive a system of ordinary differ-
ential equations governing their slow dynamics. We furthermore illustrate the effects
of anomalous diffusion on the stability of one- and two-spike solutions by calculating
thresholds for oscillatory and competition instabilities. In particular our results indi-
cate that Lévy flights for the activator and inhibitor have, respectively, a destabilizing
and stabilizing effect on the stability of single spike solutions. On the other hand we
demonstrate that the stability of symmetric two-spike solutions with respect to compe-
tition instabilities is independent of s and is stabilized when the inhibitor undergoes
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Lévy flights. Finally, we show that asymmetric two-spike solutions are always linearly
unstable with respect to competition instabilities.

The remainder of this paper is organized as follows. In Section 2 we outline the
key rigorous results established in this paper pertaining to the existence and stability
of two-spike solutions. Then in Section 3 we collect preliminary results which are used
in the subsequent sections. In Section 4 we use the method of matched asymptotic
expansions as well as full numerical simulations to illustrate the effects of fractional
diffusion on the structure and stability properties of one- and two-spike solutions. We
then provide proofs of the existence and stability results in Section 5 and Section 6
respectively. Finally, in Section 7 we make some concluding remarks.

2. Main results: existence and stability

In this section we state the main results of this paper, which include the existence of
two spike solutions (symmetric and asymmetric) to the steady problem of the fractional
Gierer-Meinhardt system and their stability. Instead of studying the system (1.3), we re-
place u(z) by c.u(z) and v(z) by c.v(x), and introduce the scaling = = ey for Eq. (1.3a).
Then we can write system (1.3) as

2
u
(—A)zu—i—u—?:O for yE(—%,é),

D(=A)v+v—ceu? =0 for ze(—1,1), 2.1
u(ey) = uley +2), v(z) =v(x+2) for z,yeR

= (f w2<y>dy>_1

and w being the unique solution of

with

(—AYw+w—w?=0, w)=w—z). (2.2)
From now on, we shall focus on Eq. (2.1) and provide its existence and stability results.

Remark 2.1. To simplify the presentation, in the proof of Theorems 2.1 and 2.2 we
have restricted our attention to the case s; = so = s. The arguments can be also
applied for more general cases where s; € (3,1) and s5 € (3, 1).

In order to state the main results, we introduce the Green’s function associated to
the steady problem with periodic boundary and make three assumptions on the Green’s
function that will be used for the rigorous proof and stability analysis. For z € (—1,1),
let Gp(z, z) be the function satisfying

{ D(=A)Gp(z,z) + Gp(x,2) =6(x —z) for z€(=1,1), 2.3)

Gp(x,z) = Gp(x +2,2) for z € R,
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having the Fourier series expansion
1 K eitrle=2) 1 & cos(fn(x — 2))
G = - = _
p(e,7) 2@_2 1+ D(fn)? 2+Z; 1+ D(tn)>

Let —1 < p{ < p < 1 be 2 points in (—1,1) where the spikes concentrate. We
introduce several matrices for later use. For p = (p1,p2) € (—1,1)? we let Gp be the
2 x 2 matrix with entries

(Gp)ij = Gp(pi,pj)- 2.4

Let us denote (% as V,,. When i # j, we can define V,,,Gp(p;, p;) in the classical way,
while if i = j, since Gp(x,x) is a constant due to the periodic boundary condition, we
have V,,Gp(p;, pi) = 0. Next, we define the matrix associated with the first and second
derivatives of G as follows:

VGp(p) = (Vp.Gppi,pj)), V?Gp(p) = (Vp,Vp,Gp(pis pj))- (2.5)
We make the following two assumptions.

(H1) There exists a solution (é?, ég) of the following equation:
2 2
d Go) ) () =&, i=12 (2.6)
j=1
(H2) } ¢ A(B), where \(B) is the set of eigenvalues of the 2 x 2 matrix B with entries
(B)ij = Gp (P?,P?)é?- 2.7)

By the assumption (H2) and the implicit fgnction t}}eoren}, for p = (p1,p2) near
p? = (»},p9), there exists a unique solution £(p) = (£1(p),&2(p)) for the following
equation:

2
j=1
We define the following vector field:

F(p) == (Fi(p), Fx(p)),

where
Fi(p ZVPZGD P& =D Vu,Go(pi,p), i=1,2. (2.9)
j=1 Ve
Set )
M(p) =& 'Vp, Fi(p). (2.10)

The final assumption concerns the vector field F(p).
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(H3) We assume that at p° = (p?, p9)
F(p’ =0 and rank(M(p?)) = 1. (2.11)

Next, let us calculate M(p®). Particularly, we shall show that it admits a zero
eigenvalue. To compute the matrix M(p?), we have to derive the derivatives of £. It is
easy to see that {(p) is C'! in p and from (2.8) we can calculate

2 2
Vp,&i =23 Gopip)&Vp, &+ Y Vi, Go(pip)S;

=1 =1
2
2> Gp(pip)& V& + Vi, Go(pi 0))E; if i+#j, (2.12)
_ ) =

2 2
23" Gopim)éVn&+ S Vi, Golpi )&, i i=j,
=1 =1

where we used 0,,Gp(p;, pi) = 0. Therefore, if we denote the matrix

VE = (V&) (2.13)
we have ,
VEP) = (I - 2GpH)~ (VGp) H? + O ( > ij(p)y> , (2.14)
j=1
where a superscript T' denotes the transpose and where H is given by
H(p) = (&i(p)dij)- (2.15)
Let A
52
Q= (q;) = (VpivijD(PhpQ) ; 5—1251‘3‘)- (2.16)

We can compute M (p?) by using (2.12),
M(P°) = HH(V2Gp + Q)H? + 2H 'VGpH(I — 26pH) ' (VGp) M2, (2.17)

where AT means the transpose of A. Using (2.11), we can further simplify the matrix
M(p) as the following:

M(p” :((5(1))_1Vp1Vp1GD(p1,P2)(£8)2 (é?)_lvmvplGD(pl,p?)(ég)2> 2.18)
(58)_1vplvp2GD(p2,P1)(€?)2 (53)_1%2%2@1)(1?2,1?1)(5?)2

It is easy to see that the summation of both rows is zero, thus M(p") is singular and
admits a zero eigenvalue. While the left non-zero eigenvalue can be represented as
follows:

)‘M(po) = (é(l))_lvplvplGD(pla]h)(53)2 + (ég)_lvmvszD(p%pl)(é?)Q- (2.19)

Our first result is the following.
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Theorem 2.1. Assume that (H1) and (H3) are satisfied. Then for ¢ < 1 the problem
(1.1) has a two-spike solution which concentrates at p5, p5. In addition,

2 5
~ T — ps N )
UENC€Z£?W<TZ>7 Ug(p‘g)NCEZ£?, 1=1,2,
=1

and
11

(pi,pg)—><—§,§> as e —0.

Remark 2.2. In Theorem 2.1 the spike height may be the same or different yielding,
respectively, symmetric and asymmetric two-spike solutions. In both cases the spike
locations must satisfy V,:Gp(pi,p;) = 0 and by numerically evaluating the Green’s
function this implies that |pj — p5| = 1. As described in more detail in Section 4.4 the
limiting system (2.8) can then be solved explicitly as

1
Gp(0,0) + Gp(1,0)’

21 22

S=co0 T

0 _ 0 _
=8 = Gp(0,0) Gp(0,0)

for the symmetric and asymmetric cases respectively and where z; and z, are defined

in terms of 6 = 32883 in (4.13).

Finally, we study the stability of the 2-spikes solution constructed in Theorem 2.1.

Theorem 2.2. Assume that ¢ < 1 and let (u.,v.) be the solutions constructed in Theo-
rem 2.1 and B be defined in (2.7).

1. If mingeyg) o > %, then there exists 1 such that (uc,v.) is linearly stable for 0 <
T < 70-

2. If mingerpy o < %, then there exists 7y such that (u.,v.) is linearly unstable for
0<71<17p.

Remark 2.3. We shall prove Theorem 2.2 in Section 6. Generally we have to study
both large and small eigenvalue problems for the steady state. We shall see that the
matrix associated with the small eigenvalues is degenerate: one eigenvalue is zero due
to the translational invariance of the spike profiles. On the other hand, the other small
eigenvalue is always stable. The stability of the 2-spike solution therefore depends only
on the matrix B, which naturally appears in the study of large eigenvalue problem.

Remark 2.4. The rigorous existence proof and analysis of the large eigenvalues can
be extended to N > 2-spike solutions. However, in this case it is not clear how to
determine the sign of the eigenvalues of M(p) given by (2.10) and hence the linear
stability with respect to the small eigenvalues. For this reason we restrict our attention
to the case of N = 2 spike solutions for which the linear stability can be completely
rigorously determined.
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Remark 2.5. The restriction s; > I arises in the NLEP stability proof. Specifically
this condition arises in the calculation following (A.15). It is not clear from our proof
whether the stability of the NLEP for v > 1 can be extended for values of s; < %. On the
other hand the behaviour of the Green’s function satisfying (2.3) as  — z is markedly
different if sy > 3, so = 3, or s < 1. The proceeding rigorous and formal analysis is
therefore restricted to the case of sy > %

3. Preliminaries

In this section we collect several key preliminary results needed for the existence
and stability proofs in Sections 5 and 6 as well as for the formal calculations in Sec-
tion 4.

Letting w be the ground state solution satisfying

_ s a2 :
{( AYw+w—w?*=0 in R, 3.1

w(z) =0 as |z| — oo,

we have the following result [4] (also see [33, Proposition 4.1] and the references
therein).

Proposition 3.1. Eq. (3.1) admits a positive, radially symmetric solution satisfying the
following properties:

(a) There exists a positive constant bg depending only on s such that

bs

w(z)

Moreover w'(x) < 0 for x > 0 and

(14 2s)bs

w/(x) = —W(l + 0(1)) as T — oQ.

(b) Let Ly = (—A)° + 1 — 2w be the linearized operator. Then we have
0
Ker(Lg) = span {a—:} .

(c) The eigenvalue problem
(—AYdp+¢—2wdp+ap=0
has a unique positive eigenvalue o > 0.

Next we consider the stability of a system of nonlocal eigenvalue problems (NLEPs).
We first establish the following result which we prove in Appendix A.
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Theorem 3.1. Consider the following nonlocal eigenvalue problem:

-1
(—A)d+ ¢ — 2w + ’y/ wodx </ w2dm> w? 4+ ag = 0. (3.2)
R R

(1) If v < 1, then there is an eigenvalue « to (3.2) such that R(«) > 0.

(2) Ify>1land s > i, then for any nongero eigenvalue « of (3.2), we have

%(Oé) < —cy < 0.

(3) If vy # 1 and o = 0, then ¢ = ¢y, w for some constant cy.

In our application to the case when 7 > 0, we have to deal with the situation when
the coefficient v is a function of T«. Letting v = v(7«) be a complex function of T, we
suppose that

70)eR, |y(ra)|<C for ar>0, T2>0, (3.3)

where C' is a generic constant independent of 7, o. Then we have the following result.

Theorem 3.2. Consider the following nonlocal eigenvalue problem:

-1
(=AY + ¢ —2wep + ’y(Toz)/ wodz </ w%lx) w? 4+ ag = 0, (3.4)
R R

where v(T«) satisfies (3.3). Then there is a small number 19 > 0 such that for T < T,
(1) if v(0) < 1, then there is a positive eigenvalue to (3.4);
(2) if v(0) > 1 and s > 1, then for any nonzero eigenvalue o of (3.4), we have

%(Oé) < —cg < 0.

Proof. The above theorem follows from Theorem 3.1 by a perturbation argument. To
make sure that the perturbation works, we have to show thatif ag > 0and 0 < 7 < 1,
then |a| < C, where C is a generic constant (independent of 7). In fact, multiplying
(3.4) by ¢ - the conjugate of ¢ - and integrating by parts, we obtain that

L (508 + 1082 — 2uiof) e

= _Q/RW —W(Ta)/[ngzbd:c(/szdac)l/Ruﬂad:C. (3.5)

From the imaginary part of (3.5), we obtain that

|| < Cily(ra),
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where a = ar + v/—1ay and O] is a positive constant (independent of 7). By assump-
tion (3.3), |y(ra)| < C and so |a;| < C. Taking the real part of (3.5), we note that
the left-hand side of (3.5) is not smaller than C fR |¢|?dx for some C' € R, then we
obtain that ar < C5 where Cs is a positive constant independent of 7 > 0. There-
fore, || is uniformly bounded and hence a perturbation argument gives the desired
conclusion. O

We now consider the following system of linear operators:

-1
L® = (-A)® + & — 2uwd + 2B (/ w(I)dx) (/ w2dx> w?, (3.6)
R R

where B is given by (2.7) and

® = (¢1,2)T € (H*(R))>.

The conjugate operator of L under the scalar product in L?(R) is

-1
LY = (=AY + U — 20V + 287 (/ wQ\IJdﬂc> (/ dex> w, (3.7)
R R

where
2

U= (Y1, ¢2)" € (H*(R))".
We then have the following result.
Lemma 3.1. Assume that (H2) holds. Then
Ker(L) = Ker(L*) = Xo & Xo, (3.8)
where Xy = Span{w’(z)}.

Proof. We first prove Ker(L) C Xy @ Xo. Suppose L® = 0. By the fact that Gp is
symmetric and H(p) is a diagonal matrix, we can diagonalize B. Let

P'BP =7,
where P is an orthogonal matrix and .7 is a diagonal matrix, i.e.,
(o1 O
j - ( 0 O'2>
with suitable real numbers ¢;,7 = 1,2. Defining ® = P® we have

-1
(=A)D + D — 2uwd + 2 (/ w2dx> (/ chidx> w? = 0. (3.9)
R R
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For i = 1,2 we look at the i-th equation of system (3.9)

-1
(—A)si)i + &, — 20d; + 20; (/ w2d:v> </ wfi)id:v> w? = 0. (3.10)
R R

By Theorem 3.1(3), Eq. (3.10) implies ®; € X since by condition (H2) we know that
20'1' 75 1.

We proceed similarly to prove Ker(L*) C Xy @ Xo. Using o(B) = o(B7) the i-th
equation of the diagonalized system is as follows:

-1
(=AY, + U, — 20T, + 20; (/ w2dx> (/ w%idm) w = 0. (3.11)
R R

Multiplying the above equation by w and integrating over the real line, we obtain

(1-— 20i)/ w?W; = 0, (3.12)
R

which together with the fact that 20; # 1 implies that

Thus all the nonlocal terms vanish and we have LyWU; = 0 for i = 1,2, which in turn
implies that ¥; € X, fori = 1,2. On the other hand, it is obvious that Xo® X, C Ker(L)
and Xy @ Xy C Ker(L*). Therefore, we conclude that (3.8) holds. O

Lemma 3.2. The operator L : (H?*(R))? — (L?(R))? is invertible if it is restricted as

follows:
2

L: (Xo® Xo)" N (H*(R))? = (Xo ® Xo)* N (L2(R))%
Moreover, L~ is bounded.
Proof. This follows from the Fredholm Alternatives Theorem and Lemma 3.1. [
Finally we study the eigenvalue problem (see (3.6) for the definition of L)
Ld +ad =0, (3.13)
for which we have the following lemma.

Lemma 3.3. Assume that all the eigenvalues of I3 are real. Then we have

(1) If 2min,c, 3o > 1 then for any nonzero eigenvalue of (3.13) we have f(a) <
—cg < 0.

(2) If there exists o € o(B) such that 20 < 1, then there exists a positive eigenvalue of
(3.13).
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Proof. We first prove (1). Let (®, «) satisfy (3.13) and 2min,¢, (30 > 1. Suppose
ar > 0and « # 0. Similar to Lemma 3.2 we diagonalize (3.13)

-1
(—Af¢+¢—2w¢+2</uﬂm> (/ugﬁ>w?+mpzm (3.19)
R R

and the i-th equation of system (3.14) becomes

1
R R

The first conclusion follows by Theorem 3.1(2) and the fact that 20; > 1. We conclude
that either ;1 = &5 = 0 or a < —¢y < 0. Since ® does not vanish and « < 0, thus (1)
is proved.

Next we prove (2) and assume that 20; < 1 for some o; € o(5). Then the equation
corresponding to o; becomes

-1
(—A)S(I)i + ‘I)Z — 2’(1)(1)2 + 20; </ ’U)2> </ ’U)(I)Zd$> w2 + OZ(I)Z‘ =0.
R R

By Theorem 3.1(1) we know that there exists an eigenvalue « > 0 and an eigenfunc-
tion ®( such that

-1
Lo®g + 20; </ deac> </ w@odx> w? + ap®y = 0. (3.16)
R R
Let us take ®; = &g and ®; = 0 for j # i. Then (®, «) satisfies (3.13) which estab-
lishes (2). O

4. Formal analysis of N-spike equilibrium solutions and their linear
stability

Although the fractional Laplacian (—A)® is nonlocal, the method of matched asymp-
totic expansions can nevertheless be used to construct leading order asymptotic approx-
imations to equilibrium solutions of (1.1). Indeed, assuming —1 < p; < --- < py < 1
(N > 1) are well separated in the sense that p; + 1 = O(1), 1 — py = O(1), and
|piv1 —pil = O(1) foralli =1,..., N — 1 then it is clear from the definition (1.2b) that

O(1), Jj#1,
Ks(pitey—pj—eg) =4 1 1 g =0(1).
s(pi +ey—pj —€p) €1 L__ o, j=i Y, 7 (1)
elt2s |y — g|it2s

Moreover, for any bounded and periodic function ¢(x) such that ¢(x) ~ ®(y) for z =
pi+eyandy = O(1)

(=A)*¢(z) ~ 7> (=A)*® + O(1),

~ B(y) — By
(—A)SCI)ECS/_OO wdﬂ,
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which effectively separates the inner region problems in the method of matched asymp-
totic expansions. In the remainder of this section we use the method of matched asymp-
totic expansions to formally construct multi-spike equilibrium solutions to (1.1) and
determine their linear stability.

4.1. Multi-spike solutions and their slow dynamics

With the separation of inner region problems as outlined above, the construction of
quasi-equilibrium solutions follows closely that for the classical case when s; = s, =1
as detailed in [13]. In particular letting —1 < p; < --- < py < 1 be given as above,
then we obtain the inner expansions

un~e (s (y) +o(1), v~e ' (&§+0(1) for x=p+ey, y=O(1)

foreachi =1,..., N where wys, satisfies the core problem (3.1) with s = sy and & > 0
is an undetermined constant. Therefore for all -1 <z < 1

N
u(z) ~ et Z Eiws, (5_1|m —pil) + o(e 1), (4.1a)
i=1

where the corrections due to the algebraic decay of the core solution do not contribute
until O(¢2%1). Moreover, in the sense of distributions we calculate the limit u? —
e twg, Z;.Vzl £30(x — pj) as e — 0T from which it follows that for all x such that |z —
pi| > eforalli =1,..., N the inhibitor is given by

N 00
v~ 6_1(4‘)31 Zng’GD(x,pj) + 0(5_1)a Wsy = /0 Wsy (y)Qdya (4.1b)

J=1

where Gp(-,-) is the Green’s function satisfying (2.3) with s = s5. Since v — ¢~ 1(&; +
o(1)) as x — p; we obtain the nonlinear algebraic system

£ —wy,Gpt? =0, (4.2a)

where
N

. (4.2b)

£=(&.....&n)", Go = (Gplpi,p)))

If N = 2 we recover the system (2.6), and if N = 1 we obtain ¢; = [ws, Gp(p1,p1)] L.
Given a fixed configuration —1 < p; < --- < py < 1, the algebraic system (4.2)
can be solved for the unknown constants &1, . .., £y yielding quasi-equilibrium solution
to (1.1) given by (4.1). We emphasize that the resulting solutions is not, for arbitrary
spike locations, a stationary solution of (1.1). Indeed, while the solution (4.1) is sta-
tionary over an O(1) timescale the spike locations drift slowly over an O(¢~2) timescale
according to the system of differential equations (see Appendix D for details)

2 —1 E 2 —
o & AVAS i D7), 6 = s 4.3
_t = —¢ KR 152 : igj pZGD(p p]) Rgy = 3foo | ws1/ |2 / ( )
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where V,, denotes the derivative with respect to the first argument and we remark
that this is to be solved concurrently with the algebraic system (4.2). In particular, if
—1 <p; <--- <pn <1 are chosen so that

> &V Gp(piypi) =0 (4.4)
J#i
forall: =1,..., N, then (4.1) is an equilibrium solution of (1.1). Theorem 2.1 and the
proof found in Section 5 rigorously establish the existence of the equilibrium solution
constructed in this section for N = 2.

4.2. Linear stability of multi-spike solutions

We now consider the linear stability of the N-spike equilibrium solutions con-
structed above which we denote by u. and v,.. Substituting v = u. + e*¢ and v =
ve + eM1p where |¢|, || < 1 into (1.1) and linearizing we obtain

eXU—A)1+ ¢ — 20  Muep v+ Ao =0, —1<z<], (4.5a)
D(=A)*24p + 1 — 2uedp + 7MY =0, —l<z<l, (4.5b)

where we assume in addition that both ¢ and ¢ are 2-periodic. We focus first on the case
where A\ = O(1), the so-called large eigenvalues, and make a brief comment on the case
of small eigenvalues for which A\ = O(¢?) at the end of this section. Proceeding with
the method of matched asymptotic expansions as in the previous section we deduce
that ¢ ~ ¢;(y) + o(1) when z = p; + ey and y = O(1) for each i = 1,...,N. It
follows that ¢ ~ Z;V:l ¢;(e (x — pj)) + o(1) for all -1 < 2 < 1 and furthermore
Ue) — Zjvzl & 70 ws, (y);(y)dyd(z — p;) as e — 0 in the sense of distributions.

Substituting this into (4.5b) we deduce that

N o
vle) =236 [ wa )6;dsGhlz.py)
j=1 e
where G, (z, z) is the eigenvalue dependent Green’s function satisfying

D(=A)2GH +(1+7NGH =6d(z —2), —-1<zz<1 (4.6)

with periodic boundary conditions. It follows that for x = p; + ey Eq. (4.5a) becomes

N )
Logi + 2w}, > ¢ / ws, ()05 (y)dyG (pi pj) + Api = 0
j=1 e
for each i = 1,..., N where L is the linear operator of Proposition 3.1 with s = s;.

This system of equations is conveniently rewritten as the system of NLEPs

9 ffooo wslf)‘fbdy

Loq)+2w51 foo w2 dy
—0o0 81

+ 20 =0, (4.7a)
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where
$1(y) LG p1p1) o ENGH(p1,pN)
® ], &= : : , & =wy&. (4.7b)
on(y) §GY N, p1) - ENGH(pN,DN)

Letp; and x; be the eigenpairs of £ satisfying £*p; = x)py foreach k =0,1,..., N—1.
We can further diagonalize (4.7a) by setting ® = ®;p; to get the decoupled system of
NLEPs

2 f fooo Wsy (I)kdy

Lo‘I)k + QXQU)
S widy

+ AP, = 0. (4.8)
An N-spike equilibrium solution is linearly stable with respect to the large eigenvalues
provided that all eigenvalues of (4.8) satisfy %(A\) < 0 forall K =0,..., N — 1. Finally,
we remark that the NLEP (4.8) can be further reduced to the algebraic equation

1 > wsy (Lo + X))~ tw? d
Ap(N) = = + Fo (V) =0, .7-"51()\)52f°° (Lo 2) Y 49
Xk f—oow81dy

which will in general require the numerical evaluation of Fj, (\).

The stability of a multi-spike equilibrium solution with respect to the small eigen-
values is closely related to the slow dynamics given by (4.3). In particular, whereas the
large eigenvalues correspond to amplitude instabilities occurring on an O(1) timescale,
the small eigenvalues are linked to the linear stability of the spike pattern with respect
to the slow dynamics (4.3) and therefore occur on an O(s~2) timescale. In the case of
two-spike equilibrium solutions Theorem 2.2 rigorously establishes the linear stability
with respect to the large eigenvalues. On the other hand, as discussed in Section 6
two-spike equilibrium solutions are always linearly stable with respect to the small
eigenvalues. In the remainder of this section we consider explicitly the asymptotic
construction and linear stability of one- and two-spike solutions.

4.3. Example: symmetric N-spike solutions

By appropriately choosing the spike locations we can explicitly calculate an N-spike
solution that is symmetric in the sense that the local profile of each spike is identical.
Specifically, letting

N-1 -1
Di = -1+ Nﬁl(zi - 1)7 gi - gc = <w81 Z GD(2N1k7O)> (410)
k=0

forall i = 1,..., N, it is then straightforward to show that (4.2) is satisfied and the
spike locations are stationary solutions of the slow-dynamics (4.3). Since the resulting
matrix £* defined by (4.7b) is circulant and its eigenpairs are explicitly given by
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2mk 2n(N =Dk \ T
I)£E<1761N7...7¢3Z N ) ,
N-1 o (N1 -t @11
X X i2md 0 .
Xi= ) Hie's Hi |

foreachk=0,...,N — 1.

For the remainder of this example we focus exclusively on the calculation of the
Hopf bifurcation threshold for a one-spike solution. In particular, by using the winding
number argument in [27], we seek conditions under which (4.9) with k£ = 0 admits an
unstable solution (i.e with ®()\) > 0). Letting Cg = {i\;| — R < A\; < R} U{Re" | —
Z < 6 < I} be traversed counterclockwise and noting that |xg| > 0 for all A with
R(N\) > 0 whereas F;, (\) has a simple pole on the positive half-plane corresponding to

the principal eigenvalue of L, we find that the number Z of unstable solutions to (4.9)

can be determined by
L i ]'{ dAofd )\ 71,
c

271 R—o0 0

Noting that x3 ~ O(A/?271) and therefore Ag(\) ~ O(A'"1/252) for [A| > 1 we

deduce that the change in argument of Ay over the semi-circle part of the contour is

(1- ﬁ)w from which it follows that

3 1 , 00
7 = 5 Isy —arg.A(z)\[)|)\I_0
We note that arg A(iA;) — 1(1 — ﬁ) as A\; — oo whereas Ay(0) = —1 since Ly 'w? =

—wsg, . Furthermore, numerical evidence suggests that R.4y(iA;) is monotone increasing
in A7 and so there exists a unique value 0 < A} < oo such that RAy(iA}) = 0. It then
follows that either Z = 2 or Z = 0 depending on whether 3 Ay(iA}) > 0 or SAH(iA}) <
0 respectively. The Hopf bifurcation threshold can thus be calculated by numerically
solving A (i\;) = 0 for 7 = (D, s1,s2) and A\; = A\p(D, s1, s2). By first considering
the limit D — oo for which x — (1+7))~! we calculate the Hopf bifurcation threshold
77°(s1) and accompanying eigenvalue A\?°(s;), both of which are independent of s, and
are plotted in Fig. 1(a). In particular we observe that 7,° is monotone increasing with
s1 and therefore the introduction of Lévy flights for the activator destabilizes the single
spike solution as previously observed in [20]. This behaviour persists for finite values
of D > 0 but we observe that the Hopf bifurcation threshold is monotone decreasing
with s, and therefore introducing Lévy flights for the inhibitor stabilizes the single
spike solution. This behaviour is illustrated in Fig. 1(b) for which we plot the Hopf
bifurcation threshold as a function of D for select values of s; and s,. We remark in
addition that the Hopf bifurcation’s dependence on the inhibitor diffusivity D remains
qualitative unchanged with the introduction of Lévy flights: 7,(D, s, s2) decreases
monotonically with D.
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Th and Ap for D— = (D, 51, 52) £u(0, t)
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Figure 1: Hopf bifurcation threshold for a one-spike solution in (a) the shadow limit D — oo, and (b)
for finite D > 0 at select values of s; = 0.4,0.8 and sz = 0.7,0.9. (c) Single spike height obtained from
numerical simulations with parameters ¢ = 0.02, D = 2, and 7 = 1.5 and exponent sets (s1, s2) = (0.8,0.7),
(0.8,0.9), and (0.4,0.7) for the top, middle, and bottom plots respectively.

To illustrate the above observations, mainly the destabilization (resp. stabilization)
of the single-spike solution with decreasing s; (resp. s»), we numerically solve (1.1)
starting with a single spike solution centred at p; = 0 with ¢ = 0.02,D = 2, and
7 = 1.5 for three distinct pairs of exponents (s, s2) = (0.8,0.7), (0.8,0.9), (0.4,0.7). See
Appendix B for details on the numerical calculation. From the numerically calculated
threshold we find 7(2,0.8,0.7) ~ 2.306,7,(2,0.8,0.9) ~ 1.096, and 75,(2,0.4,0.7) =~
1.399 and therefore with 7, = 1.5 we anticipate the single spike solution to be stable
for the first exponent set and unstable for the latter two. The plots of (0, ¢) in Fig. 1(c)
support these predictions.

4.4. Example: symmetric and asymmetric two-spike solutions

When s; = sy = 1 it has been shown that the one-dimensional Gierer-Meinhardt
model may exhibit asymmetric solutions consisting of spikes with different heights [26,
31]. The gluing method for constructing such asymmetric N-spike solutions relies
crucially on the locality of the classical Laplace operator. However, since the fractional
Laplace operator (—A)® is nonlocal for s < 1, we cannot use this gluing method to
construct asymmetric multi-spike solutions and we are therefore restricted to solving
the nonlinear algebraic system (4.2) directly. In this example we restrict our attention
to the case of N = 2 for which a complete characterization of all two-spike solutions
can be obtained directly from the algebraic system (4.2).

Assuming without loss of generality that —1 < p; < ps < 1, we first calculate from
(4.3) that

d(p2 —p1) 22 &+&

Rs
dt §1&2

where G5 (z,0) = dG’fiiiZ’o). By numerically evaluating Gp(z,0) (see Appendix C) we

observe that it is monotone decreasing for 0 < z < 1, attains its global minimum at
z = 1, and is monotone increasing for 1 < z < 2. Any stationary solution of (4.3)

Gp(lp2 — p|,0),
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Figure 2: (a) Bifurcation diagram showing the rescaled spike heights z; = ws, Gp(0,0)&; versus 6. Solid
(resp. dashed) lines indicate the resulting two-spike solution is linearly stable (resp. unstable) with respect
to competition instabilities. (b) The competition instability threshold for a symmetric two-spike solution.
(c) Spike heights at z = —0.5 (solid blue) and = 0.5 (solid orange) obtained from numerical simulations
with initial condition consisting of a symmetric two-spike solution and with parameter values of s; = 0.8,
e =0.02, 7 = 0.05, and D = 1.2D;(s2) where s = 0.9 (top), 0.8 (middle), and 0.7 (bottom). The dashed
orange line indicates the (common) spike height obtained with the same parameters but with D = 0.8D2(sz2).

must therefore satisfy p, — p; = 1 and furthermore any such solution is linearly stable
with respect to the slow-dynamics with the exception of having a neutral eigenvalue
corresponding to translational invariance. Defining

21 = WSIGD(O, 0)51, Zo = WslGD(l,O)é-Q,

the algebraic system (4.2) can be rewritten as

21— 28 =025 =0, zp—0z7 —25=0. (4.12)
This system always admits the symmetric solution for which z; = 2z, = 2. where z. =
(1 + )~ ! recovering the result from the previous example for N = 2. One the other
hand, assuming z; # z5 we may subtract the first equation from the second to obtain
zp = (1 — #)~! — z;. Substituting this expression for z; back into the first equation in

(4.12) yields a quadratic in z; which is readily solved to obtain

1/2 130 1/2 130
= = (14 = 1= (1 .
1-9( * 1+9>’ = 1-9( 1+9>

z] = (4.13)

We immediately deduce that an asymmetric two-spike solution exists if an only if § < %
and we obtain the bifurcation diagram shown in Fig. 2(a). Interestingly, the structure of
two-spike solutions depends only on the ratio # depending only on D and the inhibitor
exponent ss.

We conclude this section by considering the linear stability of two-spike solutions
with respect to competition instabilities, neglecting the possibility of Hopf bifurcations
by assuming that 7 is sufficiently small. In view of (4.8) and Theorem 3.1 it suffices to
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. z1 922
50 o (92’1 Z9 > )
When z; = 23 = 2 it is easy to see that & has eigenvectors py = (1,1) and p; = (1,—1)
with corresponding eigenvalues x3 = 1 and x§ = %. Since ) > 1 by Theorem 3.1
the £ = 0 mode is always linearly stable. On the other hand the £ = 1 mode is stable

if and only if x§ > % and in particular the symmetric solution is linearly stable when

0 < % and unstable otherwise. Finally, when z; and 29 are given by (4.13) it can be

shown that the eigenvalues of & are given by

1/2 402 =30 + 1 1/2 402 =30 + 1
0 __ 0 _ _
X°_1—9<1Jr 110 > X1 1—9(1 116 )

consider the eigenvalues of

from which we deduce that x§ > 1 and x{ < 3_4‘/3 < % forall 0 < 6 < % There-
fore by Theorem 3.1 the £ = 1 mode is linearly unstable. In Fig. 2(a) we indicate the
values of 6 where the two-spike solution is linearly stable (resp. unstable) with re-
spect to competition instabilities by solid (resp. dashed) curves. By numerically solving
0 = % for D as a function of s, we can calculate the competition instability thresh-
old D = Ds(ss) for the symmetric two-spike solution and this is shown in Fig. 2(b).
Interestingly, the competition instability threshold is independent of the exponent s;.
On the other hand, similarly to the case of a single spike solution there will be an
s1 dependence for the Hopf bifurcation thresholds but this will be qualitatively simi-
lar to that found for the single spike solution and for this reason we do not explored
this further here. In Fig. 2(c) we illustrate the onset of competition instabilities when
s1 = 0.8, = 0.02,7 = 0.05, and for values of s, = 0.9,0.8,0.7 and D = 1.2 x Ds(s2)
by performing full numerical simulations of (1.1) (see Appendix B for details). We
remark that the accuracy of the leading order approximation to the competition insta-
bility calculated above grows increasingly inaccurate as s, — 0.5 for a fixed value of
e > 0. Indeed, as described in more detail in the derivation of the slow dynamics found
in Appendix D, the first order correction to the quasi-equilibrium solution is O(g25271)
and this tends to O(1) as s, — 5. When s, = 1 the Green’s function is known to have
a logarithmic singularity (see [33, Lemma 2.2.]) and we anticipate that the method
of matched asymptotic expansions will lead to an asymptotic expansion in powers of
v = —@ as is often the case for singularly perturbed reaction-diffusion systems in

two-dimensions [2, 16].

5. Rigorous proof of the existence results

In this section we shall prove the existence theorem, i.e., Theorem 2.1. We divide
the discussion into three sections. In first subsection, we give an approximate solution.
Then we apply the classical Lyapunov-Schmidt reduction method to reduce the infinite
dimensional problem to a finite dimensional problem in second subsection. In last
subsection we solve the finite dimensional problem and thereby prove the Theorem 2.1.
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5.1. Study of the approximate solutions

Let -1 < p? < pg < 1 be two points satisfying the assumptions (H1)-(H3). Let
€0 = (£9,£9) be the solution of (2.6) and let p° = (p?,pJ). We shall construct an
approximate solution to (2.1) which concentrates near these 2 points.

Let —1 < p; < p2 < 1 be such that p = (p1, p2) € B.2s—1(p°). Set

1 1
rozl—omln{p1+1 1—pb, §{p?—p3|}
and define a cut-off function x(z) such that x(z) = 1 for |z| < 1 and x(z) = 0 for

|z| > 2. Letting
i €Y — P
wi(y) = w (y - g) X <u> ; (5.1)
g o

where w is the ground state solution of (3.1), it is then straightforward to check that
(—A)swi(y) + wily) — wi(y) = hot., (5.2)

’%) Let é(p) = (51,52) be defined
[u] be the solution of

where h.o.t. refers to terms of order !¢ in L?(—
as in (H1). Fix any function u € HQS(—%, %) and le

{D(—A)ST[u] +Th] —cu? =0, z€(-1,1),
Tul(x) = Tul(x + 2), z €R,

Ce = <€ /R wQ(y)dy>1. (5.4)

Letting p € B.2s—1(p") we define

2
We,p = Z &wiy)
i=1

o=

(5.3)

where

and using (5.3), we compute

T ‘= T[w57p] (i)

1
=ccc [ Gp(piey)w? o (y)dy = ec: Z@ 1 GD (pi> ey)w} (y)dy

= ec. 25] (GD(pz,pg)/ 2(y)dy> +P; = Z Gp(pi,p;)E; + Pi, (5.5)

j=1 j=1

where Gp(z,y) is defined in (2.3) and P; is a number with order £2*~!. Thus, we have
obtained the following system of equations:

2
7= Gp(pi,p;)&; + Pi. (5.6)

J=1
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According to the assumption (H1)-(H3) and the implicit function theorem, we have the

above equation has a unique solution
T; :éz"i_ﬁz, 7= 172’ 191 :0(528—1).

Hence, X
T[w57p] (pi) =& + 0(52371)-

Now for x = p; + ez we calculate
T'(we p(x) — T'[we,p(pi)

:06/1 [Gp(z,¢) — Gp(pi, ()] 2p<§> dg

-1

~e? [ (6ol 0= Gl ot (£) ¢

+C€Z£/_ [Gp(x,¢) = Gp(pi, §)]w] <C>dC

€
JF#i

= c.el? /R (Gp(ey — e2) — Gp(ey)|w(y)dy

+CEZ£/ [Gp(x,¢) = Gp(pi, ¢)|w; g d¢ + h.o.t.
J#i -
= Pi(z) + 52 <é]2'ZVpiGD(pz‘,pj) + O(azQ)) + h.o.t.,
J#i

where
Pi(2) = coo€? /R (G (ey — e2) — Gp(ey)|w?(y)dy
is an even function and of order 251,
Next we define )
s v
Sful = (A +u

for which we calculate

2
= Z Angz -~ 7 | 4+ hot.=FE +Ey+hot in L? <—

(5.7)

(5.8)

(5.9

11
ee)’
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(o) (Fe) (Ren)

Twegl @) 2~ Tloeglp)  Tlwegl(®)

where

Z@ w? —

Using (5.6) we calculate

2 2
2 (Zlgj“h) £2 2
~ j: o S—
P 2 TG 2 ("%— Gt ) KR )

j=1 j=1

and therefore
HE1HL2(_§,§) = 0(e*7). (5.10)

In addition since x is close to p; we see that F; can be decomposed into two parts: one
part of order ¢2*~! and symmetric in = — p;, and the other part of order . Next we
calculate

:Z fjwj( e ~ (Twe p)(x) — Twe p)(pi)

j= 1
5 o [ Twep](pi) — Twepl(x)\"
(1 > (P )
2 ~
vy G "
R Z (TTwepl(pi))* <1+Z< wg,p 1o )) )
2 ~

- 5; T[(f;ﬁ ;51 2Vp.Gp(pi, pr) + h-o.t.

= Fo1 + Ey + h.ot., (5.11)

where Fy = O(e?*71) is symmetric in « — p;,i = 1,2, and HEQQHB(%@ = O(e). We
have thus established the following lemma.
Lemma 5.1. For x = p; + €z, |ez| < ro, we have the decomposition for S[w, p|(z),
Slwep) = S1,1 + 51,2,
where
S11(z) = ew? ZéfzvpiG(pi,pl) + h.o.t.,

1#i
(Giw)?
(T'we,p)(pi))?
and R;(z) is even in z and [|S1 2]l ;21 1) < Ce?*~L. Furthermore,

S12(2) = Ri(z) + h.o.t.,

Slwep|] = h.ot. for |x—pi| >rg, i=1,2.
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5.2. The Lyapunov-Schmidt reduction method

In this subsection, we use the Lyapunov-Schmidt reduction method to solve the

problem
2

9
Slwep +61= > ¢ wj (5.12)
7=1

for real constants c; and a perturbation ¢ € H 23(—%, %) which is small in the corre-
sponding norm. To proceed, we first need to study the linearized operator

2

f/e,pﬁb = Sé [we,plo = (_A)gsﬁb +¢ - 2T1[U;};pp] ¢+ (T[ZZZ])Q (T/[we,p]¢)-

For a given function ¢ € L*(—1,1) we introduce 7" [w. p]¢ as the unique solution of

{ D(=A)* (T'[we pl¢) + T'[we plep — 2ccwe pd = 0, x € (~1,1), (5.13)

(T"[we plo) () = (T"[we pl¢) (= + 2), zER.

The approximate kernel and co-kernel are respectively defined by

o ow;| . 25 11
Kep := Span{—ay ‘3—1,2} CH <_E’g>’
o ow;| . 9 11
Cep .—Span{—ay ‘3—1,2}CL <_5’5>'

From the definition of the linear operator L in (3.6) we recall that by Lemma 3.2 we
know that

L:(Xo® Xo)™ N (H*R))? = (Xo ® Xo)* N (LA(R))?

is invertible with a bounded inverse. We shall see that the linear operator L is a limit

of the operator L. ;, as ¢ — 0. Flrst we introduce the projection 72 L2(—E, —) — Cl
and study the operator L., := 71 o L.p. Letting e — 0 we shall show that L. :
ICép — Cafp is invertible with a bounded inverse provided ¢ is small enough. This

result is contained in the following proposition.

Proposition 5.1. There exists positive constants z, 3_, C' such that for all € € (0,2), (p1,p2)
€ (—1,1)* with min(|1 + py|, [T = pal, [p1 — p2|) >4,

\|Le,p¢||L2(,é,é) > CHd’HH?S(—%,%)'

Furthermore, the map
Lep: K, = Cp (5.14)

is surjective.
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Proof. The proof follows the standard method of Lyapunov-Schmidt reduction which
was also used in [9,10,29-31]. Suppose the proposition is not true. Then there exist
sequences {cy }, {Pk}, ¢F satisfying e, — 0 as k — oo, p¥ € (—1,1)2, min(|1 + p¥], |1 —
PE|, ok —ph|) > 6, and ¢F = ¢., € ICjk o+ forall & > 1 such that

H¢ HH2S 1 l = 17 HLEk7pk¢kHL2(_l7l) — O as k — Q. (5.15)

We define ¢¥,i = 1,2 and ¢4 as follows:

o (y) = ¢"(y)x <6y _pi> , =12

70
11
#(y Z¢k ) y€<—gvg>-

Although each ¢¥ is defined only in (—= ) by a standard result they can be extended
to R such that their norms in H?* (R) are stlll bounded by a constant independent of ¢
and p for € small enough. In the following we shall study the corresponding problem in
R. To simplify our notation, we keep the same notation for the extension. Since {¢}} is
bounded in HZ:(R), it has a weak limit in H2 (R) and therefore also a strong limit in
L2 (R) and L2 (R). We denote the limit by ¢;. Then ® = (¢1, ¢2)” solves the system

loc

(5.16)

L® = 0.

By Lemma 3.1, ® € Ker(L) = X, @ Xo. Since ¢F L ICELIC i by taking k¥ — oo we get

® € (Xo @ Xo)* and therefore & = 0.
By elliptic estimates we get [|¢¥||y2sz) — 0 as k — oo for i = 1,2. Furthermore,
¢% — ¢3 in H?(R), where ¢3 solves

(~A)P*¢+¢=0 in R. (5.17)

Therefore, we conclude ¢3 = 0 and ||¢5|| m2swr) — 0 as k — +oo. This contradicts
llF || (-1 1) = = 1. To complete the proof of Proposmon 5.1, we just need to show

that the operator conjugate to L. (denoted by L? ) is injective from Kép to Cafp.
Note that L |, = 7. p 0 f/;p with

T * — (—_A)S _ o _Wep / ﬁ
LI g = (A + ¢ QT[w@p]w + 1" [we p] <(T[w57p])2 1/’) :

The proof for L |, follows exactly the same as the one of L. ;, and we omit the details.
O

Now we are in position to solve the problem

T2 p 0 Se(Wep + @) = 0. (5.18)
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Since L. p |x. is invertible (call the inverse L;%,) we can rewrite the above problem
’ £,p ’
as

¢ = —(L;%, o 7Tel7p 0 SS(QUE,p)) - (Le_,é) © 7T5l7p o Ne,p(¢)) = Me,p(¢)7 (5.19)
where
Nep(®) = Se(we,p + ¢) — Se(wep) — Sé(we,p)¢

and the operator M., is d.eﬁned by ¢ € HQS(—%, %) We are going to show that the
operator M. p, is a contraction map on

9
g €

11
Boo = {0 et (<22} [0 sy <o (5.20)

if 0 and ¢ are small enough. We have by the discussion in last section and Proposi-
tion 5.1 that

‘|Me,p(¢)||H2s(_%,§) <cC (HWEL,p © Ne,p(ﬁb)”m(ﬁ,g) + Hﬂép © Ss(Mem)HL?(ﬁé))
< C(c(o)o +e*71), (5.21)

where C' > 0 is a constant independent of o > 0, > 0 and ¢(o0) — 0 as ¢ — 0.
Similarly we show that

IMep(61) = Mep(¢2)ll r2s 1,1y < Ce(0)a) [ d1 = all s (1 1y,

where ¢(0) — 0as o — 0. If we choose o = £ for & < 2s—1 and ¢ > 0 sufficiently small
then M, ;, is a contraction map on B.,. The existence then follows by the standard
fixed point theorem and ¢. j, is a solution to (5.19). We thus proved

Lemma 5.2. There exists € > 0,0 > 0 such that for every pair of e,p with0 < ¢ < Z,p €
(-1,1)2, and ~
min {1 + p1,1 — po, |p1 —p2|} > 0,

there is a unique ¢ , € K2, satisfying S.(w.p + ¢z p) € Ce p. Furthermore, we have the
estimate

H¢57PHH2S(—%7%) < Ce®
forany o < 2s — 1.

More refined estimates for ¢. ,, are needed. We recall from the discussion in last
section that S{w. p] can be decomposed into the two parts S;; and S if « is close
to the center of spike, where S is in leading order an odd function and S; > is in
leading order an evenly symmetric function. We can similarly decompose ¢, ;, as in the
following lemma.

Lemma 5.3. Let ¢, p be defined in Lemma 5.2. Then for x = p; + €z, |ez| < §,1 = 1,2,
we have the decomposition

Gep = bep1 + Pep2, (5.22)
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where ¢, p 2 is an even function in z which satisfies

11
Pepo=0(>"1) in H? (—g, g> : (5.23)
and
. 2s 11
$epp =0() in H i (5.24)
Proof. We first solve
2 .
Slwep + bepal = Slwzpl+ Y S12 (y—2) e Cp (5.25)
j=1
for ¢. p2 € K2,,. Then we solve
2 )
S[we,p + ¢€,p,2 + ¢€,p,1:| - S[we,p + ¢57p,2:|+ Z 5171 <y - z']) G C€7p, (5.26)
j=1

for ¢. p1 € ICg{p. Using the same proof as in Proposition 5.1, both equations (5.25) and
(5.26) have unique solution provided ¢ < 1. By uniqueness, ¢, p = ¢cp.1 + @< p 2, and
it is easy to see that ¢, p 1 and ¢. p 2 have the required properties. O

5.3. The reduced problem

In this subsection, we solve the reduced problem which finishes the proof of The-
orem 2.1. By Proposition 5.1 for every p € B...—1(p”) there exists a unique solution
¢ep € K&, such that

Slwep + ¢ep) € Cep- (5.27)

To complete the proof of Theorem 2.1 we need to determine p® = (p, p5) near p° such
that Swe p + ¢« p) L Cc p, which in turn implies that S{w. p + ¢- p] = 0. To this end, let

We = (We(p), We2(p)) : Bzt (p°) — B2,

where L

1 [F ow; .
Wei(p) =€ ! Slwep + ¢a,p]8—ydyv i=1,2.

o =

Then W,(p) is a map which is continuous in p and our problem is reduced to finding
a zero of the vector field W, (p). Let us now calculate W.(p)

Bwi

1
Wa,i(p) =1 Se [wap + ¢a,p]8—ydy

o =
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1
1 [ Ay _ (wep + dep)? ] Ow;
o /; [( A (e Gep) 4 (Wep + 0un) = 7, | oy @
1
1 [T Ay _ (we,p + dep)? Ow;
=€ /_é [( A)(we,p + dep) + (Wep + Pep) Twe.p] Ay dy
_ 1 /% [(w&p + ¢ep)? _ (wep + ¢=p)? | Qw; dy
-1 Tlwe,p] + Yep T'we p) dy
=1, + I, (5.28)
where I, I, are defined by the last equality and 7). , satisfies
D(_A)S¢€,p + ¢s,p - 2Cews,p¢e,p - Cegbg,p = 0. (5.29)

For I, we have by Lemma 5.3

o =

e e ow;
L = et </ B [( A)S(wep + ¢ p) + (ws,p + ¢z—:,p) - %] aw dy (5.30)

+ /51 (We,p + Pep)” p E (T[ws,p] (pi + y) — Twe pl(pi)) ow; dy) + o)

pr pz a
XN —_ (&W{_—%J’)T 8wid
</ A A i o o Kl

- (gzwz + ¢e P, ) o, -
- 1</ : o oo T (Teel(pe+ 29) = Thoepl(p) 0 dﬂ) + O,

Note that, by Lemma 5.3, we have

1

E S 8wl

/_l [(_A) Gep t+ Pep — 2wWide p] dy dy
1 0
= [, epagy (CA Wit wi —w) dy + O(E+) = O(=+>), (5.31)
and
L, ow o s
/lgbgpawd _2/ ¢€p1¢6p28 dy+hot—(9(2) (5.32)

Now by Lemma 5.3 and Egs. (5.30) and (5.31) we have

ow;

B=e [ (gl e2) = Tl (p) o

Ty + 0>

- F ow; .
= [ (Pi(z) ted 5a2‘ZVmGD(Pi’Pj>> 5, + O

J#
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1 : _
= —g/ng(y)dyZ@ZVpZ.GD(pi,pj) + 0> ). (5.33)
J#i

Similarly, we calculate

T[w57p] + Yep T[w57p] Jy

_ -1 /% [(wap + ¢€,p)2 (we,p + ¢€,p)2 Jw; dy

1
€

1 2 )
:—5_1/ (w€7p+¢e,p) 1/}8 %dy_i_o(&js—l)

1 (T'[we,p])? P oy
e [f 1ouwd o
- 1@/% g%(wavp—wavp(m))dﬁog? by, (5.34)

Since ). ,, satisfies (5.29), a similar argument to that used in Lemma 5.3 gives

Ve p(Di +€2) — Ve p(pi)

=c /11 (Gp(pi +€2,¢) — Gp(pi,Q)) <2wa,p (g) bep <g> + 62, (g)) ¢

= 0(5 Z éjz»zvpiGD(pi,pj)> + Pz(z) + h.o.t., (5.35)
J#i
where Pz(z) is an even functionin z = y — %. Substituting (5.35) into (5.34) we obtain
that

I = O<Zé§vpiGD(pi,pj)> +o(e*™). (5.36)
J#
Combining the estimates for I; and I5, we obtain
1 A _
Weilp) = —5 /R w(y)dy Y&V, Co(pips) (14 0(1)) + OE* )
J#

- _éFi(p) /]R w?(y)dy + O 1), (5.37)

where F;(p) is defined in (2.9). From (H3) we have F(p") = 0 and from numerical
calculations of the Green’s function we deduce that pJ — p! = 1. By symmetry we con-
clude that if there exists p = (p1, p2) such that either one of W, ;(p) = 0 or W, 2(p) =0
then W.(p) = 0. For W, ; we have

1 i
Weilp) = =3 /Rw?’(y)dy (01 = P93V, Vi G (00, 29)

‘|‘(P2 - pg)gvmvplGD (p?,pg))
+O(p—p°P + 62371)‘
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By assumption (H3) we have V,, V,, Gp(p},p9) # 0. As a consequence, we can apply
Brouwer’s fixed point theorem to show that for ¢ < 1 there exists a point p® such that
W.(p®) = 0 and p® € B.2.-1(p"). Thus we have proved the following proposition

Proposition 5.2. For ¢ sufficiently small there exist points p® with p¢ — p° such that
W.(p®) = 0.

Proof of Theorem 2.1. By above proposition, there exists p¢ — p° such that W, (p®) =
0. In other words, S{we ps + ¢ ps] = 0. Let u. = c-(we,pe +de pe), Ve = T [We pe + e pe .
By the Maximum principle, u. > 0 and v. > 0. Moreover (u.,v.) satisfies all the
properties of Theorem 2.1. O

6. Rigorous proof of the stability analysis

The linear stability of the two-spike solution constructed above is determined by
two classes of eigenvalues: the large and small eigenvalues satisfying A. = O(1) and
Ae — 0 as ¢ — 0 respectively. In the following two subsections we consider each case
separately.

6.1. Stability analysis: large eigenvalues

In this subsection, we consider the stability of the steady state (u.,v.) constructed
in Theorem 2.1. Linearizing around the equilibrium states,

U= u; + e (@), v =0 + heet = Tue] + e, (6.1)

and substituting the result into (GM) we deduce the following eigenvalue problem:

S Ue g _
(_A)y(b&‘ + ¢ — 2T[u€] be + (TTu))? Ve + Acpe = 0, (6.2a)

D(_A)s¢€ + Y — 2c:Uc P + TAY: = 0, (6.2b)

where ). is some complex number. In this section, we study the large eigenvalues, i.e.
those for which we may assume that there exists ¢ > 0 such that |\.| > ¢ > 0 for ¢
small. If R(\.) < —c then we are done (since these eigenvalues are always stable) and
we therefore assume that #()\.) > —c. For a subsequence ¢ — 0 and A. — )¢ we shall
derive a limiting NLEP satisfied by \g.

We first present the case 7 = 0. In the end, we shall explain how we proceed when
7 > 0 is sufficiently small. By Eq. (6.2b), we have . = T"[u.](¢.). Let us assume that
ngSEHHQs(féé) = 1 and we cut off ¢. as follows:

¢=i(y) = ¢e(y)x (ﬂ) , (6.3)

To
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where x(x) is a given in (5.1) of Section 5. Using Lemma 5.3 together with R(\.) > —¢,
the asymptotic expansion of u. given in Theorem 2.1, and the algebraic decay of w
given in Proposition 3.1, we get that

2 11
6= ey +hot. in H* (——, —> . (6.4)

i=1 €€
Then by standard procedure we extend ¢. ; to a function defined on R such that
19e,illrze(m) < Clldeillraa_1,1y, 7= 1,2 (6.5)
Without loss of generality, we may assume that ||¢c||z2sr) = 1 and by taking a sub-
sequence of ¢, we may also assume that ¢.; — ¢; strongly as e — 0in L? N L*> for

i = 1,2, on compact subsets of R. Therefore we also have

wee; — we; as e — 0, stronglyin L*(R). (6.6)

1
—. [ Gl QJu. <§) " <§> . 6.7)

Now we use the expansion of u. to calculate the value of . at z = p{ for each i = 1,2

1 2 .
Ve (p;) = 2. Gp(p;, ¢ Z <C p]>X<€<T;pJ> Ge <C> d¢ + h.o.t.

-1 0

It is known that

2
:260525 GD(pZ,pJ)/qubjdy—koe(l). (6.8

j=1

Substituting (6.8) into Eq. (6.2a) and letting ¢ — 0, we obtain the nonlocal eigenvalue
problem

1 2
(=A)¢i + ¢; — 2we; + 2 (/R w2(y)dy> </RZ£]'GD(piypj)w¢jdy> w?
j=1
+ )\O¢z = 0, = 1, 2. (69)
We can rewrite (6.9) in matrix form as
-1
(~A)P*® + — 2wd + 2 (/ w2(y)dy> (/ wB(I)dy) w? + Xo® = 0, (6.10)
R R

where B is the matrix introduced in (2.7) and ® = (¢1, )" € (H?**(R))?. We then
have the following conclusion
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Theorem 6.1. Let A\, be an eigenvalue of (6.2) such that R(\.) > —c for some ¢ > 0.

(1) Suppose that for suitable sequence €, — 0 we have \., — X\g # 0. Then X\ is an
eigenvalue of the problem given in (6.9).

(2) Let Aoy # 0 with R(\g) > 0 be an eigenvalue of the problem given in (6.9). Then for
e sufficiently small, there is an eigenvalue A, of (6.1) with A\, — \gas e — 0.

Proof. The proof of (1) follows from a similar asymptotic analysis to that used in
Section 5.

To prove part (2) of Theorem 6.1 we follow the argument given in [3, Section 2].
We assume that Ay # 0 is an eigenvalue of problem (6.9) with R(\g) > 0 and we first
note that from the equation for ., we can express 1. in terms of ¢. as in (6.7). Then
we rewrite Eq. (6.2) as

Uu u2
Qbe = —Re()\e) |:2 EQSE - _;’I;Z)E:| )
Ve VZ
where R.().) is the inverse of (—A)® 4 (14 )\.) in H?*(R) and ¢, = T [u.](¢.) is given
in Eq. (6.2b). The key observation is that R.()\.) is a Fredholm type operator if ¢ is
sufficiently small. The rest of the argument follows as in [3]. O

By diagonalizing B we see that the eigenvalue problem (6.10) can be reduced to
the nonlocal eigenvalue problems

bid . R
%w%”m =0, ¢i€H*R), i=12, (6.11)
R

where o and o5 are the two eigenvalues of B.
We now study the stability of (6.2) for large eigenvalues explicitly. Suppose that

(—=A)2i + ¢i — 2w + 204

2 min o < 1. (6.12)
oeX(B)

Then by Theorem 3.1(1) there exists an unstable eigenvalue of (6.10) and there-
fore by Theorem 6.1 there exists an eigenvalue A\, of (6.2) such that R(\.) > ¢y for
some positive number ¢j. This implies that (u,v.) is unstable. On the other hand if
2mingeyg) o > 1 then by Theorem 3.1(2) any nonzero eigenvalue ) is stable. There-
fore by Theorem 6.1 for £ small enough all nonzero eigenvalues \. of (6.2) for which
|Ae| > ¢ > 0 holds, satisfy #(\.) < —¢ < 0 for € small enough.

Finally we comment that when 7 # 0 and 7 is small. We shall apply the results of
Theorem 3.2. In this case, the matrix 5B will have to be replaced by the matrix B,
which depends on 7¢. In particular the Green’s function GG is replaced by the Green’s
function G, satisfying

D(=APGH + (1 +7X)G) =0, GH(x+2,2) =CG)(x,2). (6.13)

It is then easy to check that the eigenvalues of B;,_ satisfy the same properties as those
of B provided that 7 is sufficiently small.
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6.2. Stability analysis: small eigenvalues

We now study the eigenvalue problem (6.2) with respect to small eigenvalues.
Namely, we assume that \. — 0 as ¢ — 0. Let

lie = We,pr + Pepe, Ve = T|We,ps + e pel, (6.14)

where p® = (pf, p5). After rescaling, the eigenvalue problem (6.2) becomes

PR u?
(_A)Z¢€ + e — — e + e + Acpe =0,

e 02

D(_A)s'l/}e + e — 2¢ccUcPpe + TA: = 0,

(6.15)

where ¢, is given by (5.4). We take 7 = 0 for simplicity. As 7). < 1 the results in this
section are also valid for 7 finite, this is due to the fact that the small eigenvalue are of
the order O(£?), we shall prove it in this subsection.

We cut off @, as follows:

ealy) = X (ﬂ) auly), i=12, 6.16)

7o

where x(z) and r( are given in Section 5. Similarly to the Section 5 we define

11
lCE,p,new := Span {ﬂle,z | 7 = 1’2} C H?2s <_g’ g) ,
~/ . 2 11
Cepanew = Span {iil; | i = 1,2} € I* (==, - ).
Then it is easy to see that
2
Ue(y) = > e i(y) + hot.. (6.17)
i=1

Note that

€

Ue,i(y) ~ éiw <y — ?) in st(—l, 1)

and 4. ; satisfies
a?
(=A)*Te; + Gy — —= + h.ot. = 0. (6.18)

Ve

_ diley o iop:
Thus a ; := =5 satisfies

~ ~2

. us .
(AL, + il ; — 22241, + e—2Lal + hot. = 0, (6.19)
b b Ue b UE
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and we have 5

_ » Ow i

U ; = §z‘a—y (y - ?) (1+0(1)).
Let us now decompose

2
_ § e~/ 1
gb& - a; ue,i + ¢e )
i=1
where af are complex numbers and ¢ | K.. Similarly, we can decompose
2
Z 1
Ye = be?!)e,z + ¢5 s
i=1
where ). ; satisfies

D(=A) 4y + ey — 2cccill; = 0, i =1,2,

and 1} satisfies
sl oL ol
D(=A)vz + )z — 2c.u-¢; = 0.

We impose periodic boundary conditions on both of these equations.
Suppose that HqﬁEHHQS(%%) = 1. Then |a5| < C since

1 ~ —1
€ 8 i A,

al‘?:/1 oe ;5’ dy<§i2/w2dy> +o(1).
-1 Yy R

Substituting the decompositions of ¢. and ). into (6.15) we have

_ _ 2 ~2 _
2u, 2 Uz 1 a2
(A)oL + ¢F — =t + St + Aepd — ) af | S50 — =Stk
Ve O — vz € VZ
2
+ h.ot. ==\ Z agiy ;.
1=1

Let us first compute

33

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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We rewrite Jy as follows

i (1 _
= —¢ Z Z (I;: ,062 <g*¢€7] — véél_]) + h.o.t..

=1 j=1

Let us also set -
Ee‘ﬁj = _(_A)gsﬁbs ¢€ + 2 ¢z—: —E ¢é_
E

and

a. := (af, ag)T.

Multiplying both sides of (6.24) by @, and integrating over (-1, 1), we obtain

(6.25)

(6.26)

(6.27)

rh.s. = =\ Z /1 il il dy = —AeafE} /( () dy(1+ O(>1h),  (6.28)

and

=1 j=1
1 ~2 1 ~2
e U A1~ e U A1
+/ ) L dy — 5/ ! 1782 00z dm) (L+0(1))
—z & —z €

= (Jig 4 J2q + J50)(1 +0(1)),

where J; ;,i = 1,2, 3, are defined by the last inequality.
We define the vectors

Ji=(Jia, Jiz)', i=1,2,3.

To give estimates on each J;,7 = 1,2, 3 we need the following three lemmas.

Lemma 6.1. We have
(ve; — e0l855) (05) = —eVGHH? + o(e).
Proof. Note that for 7 # j, we have
1
(Ve — €0205i) () = e, (95) = 206/1GD (RQLETATS
= —e&3V,:Gp (9, p5) + O 7).

~/ E
Next we compute 1), ; — U, near p;

[ (.07 (Q) ac

(6.29)

(6.30)

(6.31)

(6.32)

= 605/ GD x 52) ez( )dZ+Cs J;AZ/ GD :C C) (g) d<+0(61+28),
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So

o) 1
vl(z) = ace/ V.Gp(x, Ez)&g7i(z)dz +ce Z/ V.Gp(z, C)@ij
—00 1

JFLT T
+ O(€1+2S).

Thus

35

)
9

Ve i(z) — evl(z) = 2505/ GD(x,Ez)zlm&;idz — 5205/ VxGD(x,az)ﬁg,i(z)dz

! ~2 ¢ 1+2s
— 5052/1V$GD($,C)UEJ < ) d¢ + O(e" ).

— J_ €
JF#i

Therefore, we have

o0 o0
Ve i (pf) — 517; (pf) = 2505/ Gp (pf,sz)ﬂmﬂ;,idz - 5205/ foGD (p?,ez)ﬂ
—0o0

— %, Z/ VpeGp (p5, ez)ﬂij(z)dz + O(eH%)

JFLT T

= —2e£7V,:Gp (05, 05) — €Y & Ve G (b, 15) + O(e>)

i
= —e&I Ve Gp (05, p5) + O(*).

Eq. (6.31) then follows from solving (6.32) and (6.33).
Lemma 6.2. Let gj; be defined as in (2.16). Then we have

(Ye,i — €0205i) (p5 +€2) — (Y= — €02054) (1)
= %2 <Vp;foGD (P}P?) + jS5jz) &2 + o(<?).

We next study the asymptotic expansion of ¢. Let us first define

2 € 2
~ D=
o= Y Vb (y=2). ol = e aiol,
j=1 i=1

Then we have the following lemma.

Lemma 6.3. Let ¢ be sufficiently small. Then

|2 — ¢§HH2S(—§,§) = o(e)-

£,1

(z)dz

(6.33)

(6.34)

(6.35)

(6.36)
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Proof. We first derive a relation between 1> and ¢Z. Note that similar to the proof

of Proposition 5.1, L. is invertible from K2, .., t0 C, ,.c.,- By Lemma 6.1 and the fact

that L. is invertible, we deduce that

Hgbé_HH?s(féé) = 0(e). (6.37)
Let us decompose
- L —
Bei = Py <M> . (6.38)
9 70
Then
2 ~
¢r=cY i+ hodt.. (6.39)
i=1
Suppose that
¢ei— ¢ in H! <—é, %) . (6.40)

By the equation for 12 (similar to the proof of Lemma 6.1)

2 1 ~
v (p) = 2ece ) / G (p, 2) 802 5(2)dz + ofe)

=17
2
o woidz
=2 Gp (Pipi)fj% +o(e), (6.41)
j=1 R

and therefore
fR wPgdx

(0 (p5), v (93))" = 2e0pH T OO (6.42)

where ®y = (¢1, ¢2)”. Substituting (6.42) into (6.24) and using Lemma 6.1, we have
that & satisfies

fR wPodr B

(=A)* Dy 4 By — 2wy + 2GpH w? — (VGp)TH?a%w? =0, (6.43)
Jp w?dx
where
0 __ 15 e _ 13 e e\T
a —il_)I%a —il_)I% (af,a5)" .
Thus
o = — (I —2GpH) 1 (VGp)TH2a w = —P(VGp) T H2a w, (6.44)
where

P =(I—-2GpH)™".
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Now we compare ®, with ¢!. By definition,

2 2 £
. o
b =—2) D aiViriw (y - —]> - (6:45)
j=1i=1 <
On the other hand,
2 2 »
= c.q h.ot. = i — = . .
5@2;(]574— 0 g;qﬁ <y 8>+o(s) (6.46)
The lemma is proved by using (6.44) and comparing (6.45) and (6.46). O
From Lemma 6.3 we have that
(V2 (0D, 2 (05)) " = —2eGpHP(VGp) H?a® + ofe) (6.47)
and
L/ e f we,dx
V- (pf +e2) — o (p5) = 2¢ zZV Gp(p5,p5)§; };w;dx + o(e?). (6.48)

7j=1

With the above three lemmas we can now derive the following results concerning
the three terms J¢, Jo, J3 defined in (6.30).

Lemma 6.4. Let Gp, H, Q, and a. be given by (2.4), (2.15), (2.16), (6.27) respectively.
Then

J1 = a1e®H(V?*Gp + Q)H?a. + o(e?), (6.49a)
Jy = 2012 HVGpHP(VGp) H?a, + o(e?), (6.49b)
J3 = o(e?),

where ¢ = % [ widy

Proof. The computation of J; follows from Lemma 6.2. In fact since 7. = o(1)

2 1 ~2
e U
Jl,l = a;/ ) ELQJ('[/}&] €Y 5jl) sldy
j=1 Y=gz "¢
2 1 -9
— € € @ . 5! 5 o (€Y _ =5l (€ 5 ~/ 2
_Zaj L2 [we,](y) ev.(y) ]l] [1/}6,](171) ev.(p;) ]l] us,ldy+0(5)
j=1 J—z "¢

= —52§I/R yw w'( dyz (V <V EGD(pl,pJ) —i—quélj) §] +o(e )

2
26 @ (vpfvp;GD (0F,p5) + qualj) &+ o(e), (6.50)

j=1
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which, by Lemma 6.1, proves estimate (6.49a). The estimate for J- follows from

1 sz
€ €7l 1~
Jog = / 2 Ve i, ydy

1
c g
A, Laz, o
= | v abdy+ | 5 (U (@) = o ()il udy
- ¢ -z €
1 ~2
e U 1 _
= [* S50 @) - v ) e+ 0fe?), 6.51)
1 B2

together with (6.44), (6.47), (6.48). The estimate on J3; follows from Lemma 6.3, the
fact that 7. (p;) = & + O(e?*~!) at p and the leading order of @ (pf + ey) — 7.(p}) is an
odd function of order ¢. O

We can now provide an estimate on the small eigenvalue. From Lemma 6.4 we
have

Ji+Jo+ T3 = c18°H ((V?Gp + QH? + 2VGpHP(VGp) H?) a. + o(e?)
= 01»52’;’-[2./\/l(p5)a5 + 0(52),

and therefore by combining (6.28) and (6.29), we obtain
c1e*H2M(p)a. + o(e?) = —)\57-[2&15/ (w'(y))Qdy(l +0(1)). (6.52)
R
From this equation we see that

Ae = _5202)‘M(p0) (1 + 0(1)),

where c; is a positive constant and A 0y is the non-zero left eigenvalue of M(pY)
given in (2.19). In Appendix C we derive a quickly converging series expression for
the Green’s function for which we can interchanging summation and differentiation to
calculate its second derivatives. Numerical calculations then indicate that 92G p(x,0) >
0 at z = 1 and using (2.19) we therefore deduce that the non-zero left eigenvalue of
M(p?) is positive. The small ). is therefore negative (stable) so that the two spike
pattern is linearly stable with respect to the small eigenvalues. In particular, linear
stability is determined solely by the eigenvalues of B and the proof of Theorem 2.2 is
therefore complete.

7. Conclusion and open problems

In this paper we have proven the existence and rigorously analyzed the stability
of both symmetric and asymmetric two spike equilibrium solutions of the fractional
one-dimensional Gierer-Meinhardt system (1.1) with periodic boundary conditions. In
addition, by using a combination of formal asymptotic and numerical methods we have
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calculated asymptotic approximations for N-spike quasi-equilibrium solutions and de-
rived a system of ODEs governing their slow dynamics on an O(s~2) timescale as well
as a system of NLEPs governing their linear stability on an O(1) timescale. Our findings
indicate that a single spike solution may be destabilized or stabilized with respect to
oscillatory instabilities by decreasing the fractional exponents for the activator, sy, or
inhibitor, s, respectively. On the other hand we found that decreasing the fractional
exponent for the inhibitor, so, has a stabilizing effect on the stability of symmetric two-
spike solutions with respect to competition instabilities. Finally we determined that
asymmetric two-spike solutions are always linearly unstable with respect to competi-
tion instabilities. In all one- and two-spike cases we found that the equilibrium spike
patterns are linearly stable with respect to the slow dynamics and that this is a conse-
quence of the choice of periodic boundary conditions.

We conclude this section with an outline of open problems and directions for future
research. The first open problem is to prove the existence and to provide a complete
classification of all N-spike equilibrium solutions to the fractional one-dimensional
Gierer-Meinhardt model. In particular a key question is whether, as in the classi-
cal Gierer-Meinhardt model [31], asymmetric N-spike solutions are generated by se-
quences of spikes of two types. Second, in this paper we have chosen to use periodic
boundary conditions to reduce the technical difficulties typically encountered when
implementing Dirichlet or Neumann boundary conditions (see [17]). However, we be-
lieve our results can be extended to these more general cases by appropriately modify-
ing the relevant Green’s function satisfying (2.3) with Dirichlet or Neumann boundary
conditions as well as by extending our analysis to provide regularity estimates at the
boundaries z = +1. Another interesting direction for future research is to investigate
the behaviour of solutions to the fractional GM model in the D <« 1 regimes for which
the classical GM model is known to exhibit distinct behaviour such as spike splitting
and clustering. Finally a detailed analysis, either rigorous or formal, of localized so-
lutions for different reaction-kinetics as well as in higher-dimensional domains would
be a fruitful direction of future research. Indeed the analysis of localized solutions to
the classical Gierer-Meinhardt model is markedly different in one-, two-, and three-
dimensions [8,13,29] due, at least in part, to the different singular behaviour of the
related Green’s functions and we suspect that this will also be the case for the higher-
dimensional analogues of (1.1).

Appendix A. The nonlocal eigenvalue problem

In this section, we prove Theorem 3.1. We consider the eigenvalue problem

fR wedx

fwa+a¢:Q ¢ € H*(R). (A1)
R

(=A)¢+ ¢ —2wo +
Our aim is to show that the above eigenvalue problem has an eigenvalue with real part
when v € (0,1) and the real part of the eigenvalue is always negative if v > 1 and
s>



40 D. Gomez, J. Wei and W. Yang
Before we give the proof of Theorem 3.1, we first present the following result.

Proposition A.1 ([4]). The eigenvalue problem
(=A)p+¢—2wdp+pup=0 in R, ¢c H*R) (A.2)
admits the following set of eigenvalues:
w1 >0, pe=0, pu<0, ... (A.3)
Moreover, the eigenfunction corresponding to . is radial and of constant sign.

Proof of Theorem 3.1(1). The original problem is equivalent to finding a positive
zero root of the function F(«) defined by

Fla) = /Rde:U%—y/Rw(LO + o)~ tw?dz,

where
Lop = (=A)°¢ + ¢ — 2wé.

By the above proposition, L, has a unique eigenvalue ;1 > 0 with an eigenfunction of
constant sign. We now consider F(«) in the interval (0, ). Since Ly 'w? = —w, we
deduce that

F(0) = (1) / widz > 0, (A4)
R

provided v < 1. Next, as a — p; , we have that
/ w(Ly + o) twide — —cc. (A.5)
R

Hence, we get from (A.5) that
(@) = —0c0 as o — puyl, (A.6)

when v € (0,1). By (A.4), (A.6) and the continuity of («), we can find a g € (0, p11)
such that f(ag) = 0 whenever v € (0,1). O

Next, we shall study (A.1) when v > 1. We shall prove that the real part of the
eigenvalue is negative in any case. To this end, we introduce some notation and make
some preparations. Set

fR wodr

Lo := L0¢+7f — ¢ € H*(R). (A.7)
R

According to the definition of L, we can easily see that L is not self-adjoint. Let

ow
Xo :=ker{Lo} = Span {%} .
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Then )
Low = —w?, Lo (w +oge Vw) = —w. (A.8)
s
Hence,
1 1-4
/ (Lalw)wdac = / <——:U -Vw — w) wdx = 5 / dex, (A.9)
R R 2s 48 R
and
/ (Lalw)de:E = —/ Laleowd:U = —/ w?dzx. (A.10)
R R R

Before we give the proof of Theorem 3.1. We present the following important
lemma.

Lemma A.1. Let L be an operator defined by

fR wodx w2 fR w?pdx B fR widx fR wodx w

Li¢ = Lop + s (R w (o wtde)’ (A.11)
Then we have

(1) L, is self-adjoint and the kernel of L (denoted by X;) is Span{w, g—‘; .

(2) There exists a positive constant a1 > 0 such that

Li(¢, ¢) ;:/R <|(_A)%¢|2 TP 2w¢2) do + Qwaqz};lfwaRdjwdx
B Jpw'ds (i wﬁbdw)Q
(Jr U)Qdm)z
> ardis ) (6, X1) (A.12)

for all € H?*(R), where d gy means the distance in L*-norm.

Proof. By (A.12), L, is self-adjoint. It is easy to see that w, %—Z’ € Ker{L;}. On the
other hand, if ¢ € Ker{L;}, then by Proposition A.1

Lo = —c1(d)w — ea(dp)w? = c1(¢) Lo (w + 2—1896 : Vw) + c2(¢) Lo(w),

where
_ Jp w?odx B Jp wPdz [{ woda
Jp widz (fR w2daz)2

_ Jz wodx
B Jp w?dx”

c1(e)

) C2(¢)

Hence,

¢ —c1(p) <w + 2%36 . Vw) — co(p)w € Ker{Lg}. (A.13)
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Note that

w?(w + (x/2s) - Vw)dx
cl(¢):cl(¢)fR ( ‘}R(w/zzlx) Vw)d

Jp wPdz [pw(w + (x/25) - Vw)da

(Jr w2d~"3)2
w3 X
—a@ - a0 (1- 1) Fg

by (A.9) and (A.10). This implies that ¢;(¢) = 0 for s > %. By (A.13) and Proposi-
tion A.1, we prove the first conclusion.
It remains to prove (2). Suppose it is not true. Then by the first conclusion there
exists («, ¢) such that (i) « is real and positive, (ii) ¢ L w, ¢ L g—‘;’, (iii) L1(¢)+a¢p = 0.
We shall show the above conclusion is not possible. From (ii) and (iii) we have

2
d
Jpwieds o (A.14)
fR w2dx

—c1(9)

(Lo +a)p +

First we claim that [, w?¢ # 0. In fact if [ w?¢ = 0, then —a < 0 is an eigenvalue
of Ly. By Proposition A.1, —a = 1 and ¢ has constant sign. This contradicts with the
fact that ¢ | w. Therefore —a # 1,0 and hence Ly + « is invertible in XOL. So (A.14)
implies

Jp w?oda

Jr w?

¢ = (Lo + )" tw.

Thus I )
9 B RW odx 1 )

which implies

/R’LUZdCU = —/R (Lo + a)_lw)de:U = /R (Lo + a)_lw)((Lo + a)w — aw)dz,

hence
/ ((Lo + o) tw)wdz = 0. (A.15)
R
Let
hi(a) = / ((Lo + @) 'w)wda,
R
then

1 1
hl(O):/ (Lolw)wdx:—/ w+ —z-Vw|w=|-—-1 /dex<O,
R R 2s 4s R

due to s > %. Moreover,
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Ry (a) = — /R(LO + o) 2ww = —/R (Lo + oz)_lw)de <0.

This shows that h;(a) < 0 for all & € (0, u1). Clearly, hi(a) > 0 for all @ € (u1,00)
since limq,_, o0 h1 () = 0. This is a contradiction to (A.15) and we finish the proof. [

Proof of Theorem 3.1(2)-(3). We now finish the proof of Theorem 3.1(2) and (3).
First, we prove (2). Let ag = ag + iay and ¢ = ¢ + i¢;. Since oy # 0, we can choose
¢ L ker{Ly}. Then we can obtain two equations

wordx
LO¢R+7%W2 = —aRroRr + asoy, (A.16a)
R
wordx
LO@I + ’Y%wz = —QR¢[ — Oé[gbR. (A16b)
R

Multiplying Eq. (A.16b) by ¢r and Eq. (A.16b) by ¢; and adding them together, we
obtain

—OZR/R(Qﬁ%‘FQS%)dx

— L 6m) + La(br,61) + % [( / quRdx)Q +(/ w¢1d;,;>2]

+(7—2)</Rw¢3d:c/Rw2¢Rdx+/ngbldaz/Rngbldx> </Rw2daz>1. (A.17)

Multiplying Egs. (A.16) by w and adding together, we get

d
/ngde:U—ywai(ﬁfx/w?’da::ozR/quRdx—a[/wgb[dx, (A.18a)
R Jpw?dz  Jg R R

d
/wZ(b[dx—'ywai(zIﬂU/wgdx:aR/wqﬁjdx—i—a[/wqﬁRdx. (A.18b)
R wa dr Jr R R

We multiply Eq. (A.18a) by [, w¢rdx and Eq. (A.18b) by [, w¢rdr and add them
together, we obtain

/quSRd:U/Rw2¢Rdx—|—/ngbldx/Rqub[dx
B wa3d1’ 2 2
= <06R +’YfR w2dx> (/R w¢Rdx> + </R w¢1dx> . (A.19)

Therefore, we have

- OéR/R (6% + ¢7)dx = L1(¢r. 6r) + L1(¢1, 61)
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+wa3dx </¢d>2+</ ¢d>2
—— wordx wordx
(Jg widz)? R R
Jpw?dz\ ([gwordz)? + ([p wordz)?d
-2 . A.20
+ (’7 ) <OZR +’7wa2(1£ fR’UJQd,I ( )
Set
¢r = crw + ¢, ox L X1,
or=crw+or, ¢r LX1.
Then
/ woprdr = CR/ wldz, / wordr = cl/ widz,
R R R R
and ) )
d%2(R)(¢R7X1) = ||6%| 72 d%Q(R)((bI’Xl) = ||o7 -
By some simple computations we have
L1(én,00) + La(ér.00) + anly = V(e + ) [ wido
2 2
+ (ch+ ) (v - 1)2/Rw3dx +an ([|o&]5. + o7 3.) = 0.
By Lemma A.1,
ag(y— 1)(6%% +c7) / wdr + (v — 1)*(ck + ¢f) / wdz
R R
2 2
+an ([|exl7s + llor ) <o
Since v > 1, we have ap < 0, which proves Theorem 3.1(2).
It remains to prove the last conclusion. Since ¢ satisfies
Jpwodx
—A)® -2 ———w" =0. A.21
(=A)’9+¢ w¢+7wa2dxw (A.21)
Then Lo¢ = —c3(¢)w?, where
fR wedx
c3(9) = ’YW-
Hence, ¢ — c3(¢)w € Ker{Lo}. Thus
Jp wodz
— . . A.22
c3(d)y = [ 0 c3(o) (A.22)

Soif v # 1, we get c3(¢) = 0. Then ¢ € Ker{L(} and we complete the proof. O
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Appendix B. Overview of numerical calculations

In this section we briefly outline the numerical calculation of solutions to the core
problem (3.1) and the time-dependent fractional GM system with periodic boundary
conditions (1.1). In both cases we use the finite difference-quadrature discretization
for the fractional Laplacian with piecewise linear interpolants developed by Huang
and Oberman [12]. When discretizing (3.1) we approximate the fractional Laplacian
on a truncated domain using the far-field behaviour presented in Proposition 3.1 to
capture the nonlocal behaviour outside the truncated domain. On the other hand,
when spatially discretizing (1.1) we use the spatial periodicity of the system to sim-
plify the expression for the discrete fractional Laplacian. Time stepping of the spatially
discretized system is then performed using a second-order semi-implicit backwards dif-
ference scheme [25]. In the remainder of this section we provide additional details for
both of these cases.

First we consider the numerical calculation of solutions to the core problem (3.1).
Since the domain for (3.1) is —0co < y < oo we need to both truncate and then dis-
cretize the truncated domain to obtain a numerical calculation. Outside of the trun-
cated domain we use the far-field behaviour from Proposition 3.1 to impose a Dirichlet
boundary condition. Specifically, letting I > 0 we approximate solutions to (3.1) by
solving the truncated problem

(-APU+U-U*=0, |yl<L, Uly)=UL)(L/y">, lyl=>L,

where we have replaced b, with U(L)L'*2% since we do not yet know the value of
b,. To account for the nonlocal contributions outside of the truncated domain we
discretize a computational domain that extends beyond the truncated domain. Specif-
ically we discretize the computational domain —2L < y < 2L by letting y; = ih for
i = —2N,...,2N where h = % Seeking symmetric solutions we impose U; = U‘ ‘
for all ¢ = —2N ,...,2N which reduces the unknown values to Uy, ...,Uy. Note in
addition that U; = (ﬁ)HQSU n for all |i| > N. The fractional Laplacian can then be
approximated by (see [12, Section 5])

(=A)°U(y:) = (—An)°U;
2N
= Z (UZ —U‘Z-_j‘)wj —|—CIIUZ‘—CZUIUN, 1=0,...,N, (B.1)
j=—2N

where the first term accounts for integration inside of the truncated domain and
Cs
25(2s — 1)h?s

2172 _ 2 4 (1 —s)7 s, j=*1,
I+ 1725 — 2|5)1 725 4|5 — 1|/*=2%, otherwise,

wy; =

(j=+1,42,...), (B.2)
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where we note that the value of wy is never needed in the discretization. Note that these
weights require that s # 3 but a simple modification is needed for s =  (see [12, Sec-
tion 3] for details). The remaining two terms C!! and C?! account for contributions
outside of the computational domain and are respectively given by

C
CJI: S
s(2L)%s’
CL28+1 Vi
117 S 7
111 _ F<2 1,45 +1: 4 2,—)
C; (45+1)(2L)43+1<2 125+ 1,45+ 1;4s + oL
+2F1(23—1—1,43—1—1;434—2,—5—2)),

where , F'; is the Gaussian hypergeometric function.

With the above discretization it is then possible to approximate solutions to (3.1)
by solving the nonlinear algebraic system (B.1) for the N + 1 unknowns Uy, ...,Uy.
To numerically solve this nonlinear system we use the fsolve function in the Python
3.6.8 SciPy library. Our initial guess for the nonlinear solver is obtained by numerical
continuation in s starting with s = % for which the exact solution w, = # is known.
In this way we may numerically calculate the core solution for an arbitrary value of s
and in Fig. 3(a) we plot the resulting core solutions for select values of s where we
have used N = 2000 for the spatial discretization. From these solutions we may also
extract the value of the far-field decay coefficient b, and this is plotted in Fig. 3(b). We
conclude by remarking that no nontrivial solution to the core problem (3.1) exists for
s < % (see for example [4]) and our numerical computations failed to yield solutions
for s ~ 0.2 and below because of this.

Turning now to the numerical solution of (1.1) we discretize the interval —1 < 2 <

1 into N uniformly distributed points given by z; = —1 + 2ih for i = 0,..., N — 1
Core Solution w.(y) Decay Coefficient b
5
209 — 0.3 2.0 1
1.5 1
1.0
0.5 -
U;D T T T
0.4 0.6 0.8 1.0
5
(@ (b)

Figure 3: (a) Sample plots of numerically computed solutions to the core problem (3.1). (b) Far-field decay
coefficient b in the core problem (3.1).
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where h = . Assuming that ¢(x) is a 2-periodic function on —1 < z < 1 and letting
¢; = ¢(x;) foreach i = 0,..., N — 1 we calculate (see [12, Eq. (FLh)])

o] N—-1

(=AY p(xi) = (AR = D (¢ — dig)wj = > Wi j(¢i — ;) (B.3)

jzfoo j=0

where the final equality follows from the periodicity of ¢ and where

o
Wo = we + Y _(Woirnk + Wo— i)
k=1

with each weight w;,7 € Z being given by (B.2). In our numerical calculations we
truncate the sum after 500 terms. From (B.3) it is then straightforward to deduce the
entries of the matrix (—Aj,)° which we remark is dense in contrast to the tridiagonal
matrix obtained by applying a finite-difference approximation to the one-dimensional
Laplacian. With this spatial discretization we can then approximate (1.1) with the
2N-dimensional system of ODEs

dd

— HAD+N(2) =0, (B.4)

where

‘I’(t) = (UQ(t), e ,uN_l(t),vo(t), e ,?)N_l(t))T,

A = diag (¥ (—Ap)*, 7 D(—Ap)®),

and NV (®) is the 2N-dimensional array that accounts for the nonlinearities in (1.1). To
integrate (B.4) we employ a second-order semi-implicit backwards difference scheme
(2-SBDF) [25] that uses second-order backward difference time-stepping for the frac-
tional Laplace term and explicit (forward) time-stepping for the nonlinear term. Specif-
ically, given a time-step size At > 0 and denoting by ®,, = ®(t,,) where ¢,, = nAt the
2-SBDF scheme becomes

(37 — 2AtA) D, 4y = 4D, — B,y + AALN (D) — 2ALN (D, 1), (B.5)

where 7 is the 2N x 2N identity matrix. Given an initial condition &, (based on
the asymptotic approximations of Section 4) we also need ®; to initiate time-stepping
with 2-SBDF. We calculate ®; by using a first-order semi-implicit backwards difference
scheme (1-SBDF) [25] given by

(Z — AtA)D, 1 = Py, + AN (D)) (B.6)

with which we perform five time steps with a step size that is one-fifth that used in our
main 2-SBDF scheme. Throughout the numerical simulations of (1.1) in Sections 4.3
and 4.4 we used a mesh consisting of N = 2000 points and a time-step size of At =
0.001.
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Appendix C. A rapidly converging series for the fractional Green’s
function

In this section we provide a quickly converging series expansion of the Green’s

function Gp(z, z) satisfying (2.3). In particular, by adding and subtracting appropriate
multiples of |z —z|?*~! and |z — z|**~! as outlined below we obtain the series expansion

_ 1 B 1
Gp(x,z) = as <|x_z|28 1_ £> — ¢, <|$_Z|4s 1 E)

— 5 ((2s = 1)ag — (45 — 1)) (’m — - %>

l\.')lr—l N)l?—‘

+i > 14 1 “Leosnr|z — 2|
D3 — D(nm)?s (nm)6s
—i—QZ( o 48 a;%gﬁ) cosnm|x — z|, (C.1)
where 5 1
as = —ESF(—QS) sin(ms), ¢s = —msf(—éls) sin(27s), (C.2)
and
=(2s—1)(2s —2) / %73 cos zd, (C.3)

[e.9]

b = —(4s = (s = 2(as ~3) (1" om) "+ (45— 0) [ 5P cosade ). (€

™

The key reason for considering this expansion is that the coefficients of cosnrw|z —
z| converge to zero sufficiently fast to allow the order of summation and second-
differentiation to be interchanged. In particular using (C.1) we can numerically cal-
culate that 92G'p(z,0) is strictly positive at z = 1.

To derive (C.1) we use integration by parts to calculate the coefficients in the Fourier
series

1 00 nm
2177 = 512 > (Cn?ﬁ COSNTE, Cpp = / 27 cos ada, (C.5)
=1 ™ 0

)8

where 5 = 2s € (1,2) or 5 = 4s € (2,4). Specifically we calculate

nm
Cn2s = —(2s — 1) / 222 sin xdx
0

e}

oo
—(2s—1) / z# 2 sinzdr 4+ (25 — 1) / %72 sin zdx
0 n

T

—(2s —1) / ¥ 2sinzdr 4+ (—1)"(2s — 1)(nm)** "% + a,,
0
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for 5 = 2s and

Cnas = (4s — 1)(4s — 2)(4s — 3)/ ¥4 sin adx
0
+(=1)"(4s = 1)(nm)* 7% + by

for § = 4s and where a,, and b,, are defined by (C.3). The definite integrals appearing
in ¢, 25 and ¢, 45 can then be written in terms of a, and ¢, respectively by using the
integral representation of the Gamma function

/ *Lsin zdzr = T'(2) sin (ﬂ—z)
0 2

for —1 < R(z) < 1 together with the reflection formula

s

2L (2)(—2) = —

sinrwz

for all z ¢ 7Z (see [22, Egs. (5.9.7), (5.5.3)] respectively).

Appendix D. Derivation of the slow dynamics

In this appendix we outline the derivation of the system of ODEs (4.3) governing the
slow dynamics of the multi-spike quasi-equilibrium solutions considered in Section 4.1.
Letting x = x; + ey with y = O(1) we obtain (4.1b) together with (C.1) (with s = s3)

N
v~ e g, (Z EJQ»GD(wi, ) + a5, 2?2 y|22 7 o eby + O(smin{2’4s2_1})> , (D.1)
j=1

where b; = Zj £i §J2-VmiG p(z4,2;). It follows that the first order correction term in the
inner expansion must be O(22~1) and in particular for x = z; + ey and y = O(1)

un~ e (Gug (y) + 27 Un + 0(82“”2’1))7
Vo~ 8_1 (& +5282_1Vi1 _’_0(5252—1)).

By repeatedly using the method of matched asymptotic expansions we determine that
the fractional power 292~ ! initiates a chain of corrections at powers of ¢ that are multi-
ples of 2so — 1. In particular for each i = 1,..., N the inner expansion when = = z; +¢y
with y = O(1) takes the form

kmax_l
w~ et <§iws1(y) + Z @2V + U + 0(€)> , (D.2)

k=1

kmaxfl
vt (& + Y ORIV eV, + 0(6)) : (D:3)
k=1
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where ky.x is the smallest integer such that kpax(2s2 — 1) > 1. Importantly, since
Vi ~ Crly|>271 as |y| — oo for 1 < k < kpay each of these corrections are even in y.
On the other hand when k& = k.« we have the far-field behaviour

|23271

‘/ik?max ~ wslbiy + 517kmax(23271)ckmax|y bl |y| — OO’ (D'4)

where §; ; is the discrete Kronecker delta function. Therefore we can write V.
ws, biy + Vi, where V¢ is an even function in y. Assuming that each x; = x;(¢)

ZAk'nrlax

and substituting (D.2) into (1.1) with z = z; + ey we obtain

1 dws, de; "t
_ Zg s B k(2s2—1) A A
STy @ ,; e LU + eLoUias + N
+ 5“{31 (wslbiy + Vi‘,’;max) +o(e) =0, (D.5)
where N is an even function of y that consists of the residual nonlinear combinations
of U;, and Vi, for 1 < k < kpax. Recalling that dz:l);l spans the kernel of Ly, we impose
a solvability condition on (D.5) by multiplying it with dzluzjl and integrating to obtain
dx; — 22 ws, b; ffooo wzl (dws, /dy)ydy _ 2 Ws1 ffooo wgl b,
dt & 7o ldws, /dy|*dy 36 [0 ldws, /dy[2dy

where we have used integration by parts to obtain the second equality. This establishes
(4.3).
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