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Abstract
In this article, we consider the Einstein-scalar field Lichnerowicz equation
—Au+hu = BuP~! + Ay~P~!

on any connected finite graph G = (V, E), where A, B, h are given functions on V with A >
0,A #£ Oon V,and p > 2isaconstant. By using the classical variational method, topological
degree theory and heat-flow method, we provide a systematical study on this equation by
providing the existence results for each case: positive, negative and null Yamabe-scalar field
conformal invariant, namely &4 > 0, h < 0 and & = 0 respectively.

Mathematics subject classification 35A15 - 35J60 - 35R02

1 Introduction

In general relativity, (V, g) stands for a spacetime with manifold V = M x R, which
is a Cauchy development of the geometric initial data (M, g, K), where (M, g) is an n-
dimensional Riemannian manifold and K is a (0, 2)-tensor. The spacetime metric g satisfies
the Einstein equation

1
Ricg — EScalgg =T,

where T is a symmetric (0, 2)-tensor, Ricg and Scalg are the Ricci tensor and the scalar
curvature of the spacetime metric g respectively. In addition, (M, g, K) should be embedded
isometrically into (V, g) as a slice with the second fundamental form K. Thus, the initial
data (g, K) must satisfy the following constraint equations (see [2, 4, 20])

M — 2
H(g, K) = Scalg — |K|3 + (tracegK )™ — 2p =0, (1.1)
and

M3, K) = VgK — Vg (tracegK) — J =0, (1.2)
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where Scalg is the scalar curvature of g, p is the energy density and J is the momentum
density of the nongravitational field, denoted by p = T(n,n) and J = —T'(n, -), where n
is the unit timelike normal to the slice M x {0}, see [2, 5]. Then the unknowns in (1.1) and
(1.2) are the metric g and tensor K.

In the constant mean curvature (CMC) case, by applying a conformal change, one turns the
constraints (1.1) and (1.2) to the so-called Hamiltonian and momentum constraints. Precisely,
for a given metric g on M, we look for some smooth scalar function ¢ with

_ 4 - T 4 -
8ij =9 2gij, Kij= PR 2o+ LgW)ij,

satisfying the constraints (1.1) and (1.2). Here £, denotes the conformal killing operator
acting on W defined by L, W;; :==W; ; + W;; — %divg Wgij, T is the mean curvature of M
computed with respect to g, and o is a transverse and traceless tensor. So the Hamiltonian
constraint (1.1) becomes a semi-linear elliptic equation of (¢, W),

Agp+Ry¢ = Beyug™ ™' + A g (W™ 7, (1.3)
where
Ry = kn(Scaly — [VY[3), Azo(W) =ky(lo + LW +77),
and
n—1
Bey.u = —kn ( p 2 — 2U(1p)> :
where A, = —div,(V,) is the Laplace-Beltrami operator, 2* = ,%’2 is the critical Sobolev

exponent, k,, = 4(”’17__21), Scal, is the scalar curvature relative to g, ¥ is a real scalar field on the
spacetime (V, g), and U is a potential function of 1. In addition, the momentum constraint
(1.2) turns to be

1,
B Ve — 2y (1.4)
n

divy (L W) =

In the CMC setting, VT = 0 and (1.4) implies that W = 0, then the system (1.3) and (1.4)
is semi-decoupled associated to (¢, W). It remains to solve Eq. (1.3). We usually write (1.3)
as

Agu+hu = Bu* "' + Au=* "' on M, (1.5)

withu = ¢, h = Ry, A = Az (W) and B = B y,y. Actually, Eq. (1.5) is the
Einstein-scalar field Lichnerowicz equation on Riemannian manifold with 4, A, B € C*°(M)
satisfying A > 0.

For the case of & < 0 being a constant, Ngd-Xu [19] obtained some existence results for
positive solution to (1.5) when appropriately adjusting coefficients &, A, B, and discussed
the uniqueness property under some additional conditions. For the case of 1 < 0, we refer
to [5, 12, 15] for more interesting work. For the case of 4 = 0, Ng6-Xu [20] established
some existence and uniqueness results to (1.5) under different assumptions on A and B. Ma
et al. [17] introduced the heat-flow method to address the null case as well. For the case of
—A + h being coercive (e.g., maxy h > 0 or & > 0 in M), see Hebey-Pacard-Pollack [9]
and Ma-Wei [18] for some variational arguments. Interested readers are referred to [3, 6, 7,
21] for more results on Eq. (1.5).

Recently, there has been growing interest among mathematicians in exploring the math-
ematical and physical equations on graphs. These equations include the mean field equation
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( [10, 11]) and the Kazdan—Warner equation ( [8, 13, 16, 23]). The focus of this attention
has been on issues such as the existence, uniqueness, stability, and topological degree results
associated with these equations. For instance, Huang et al. [10] recently established the exis-
tence of solutions for the mean field equation on a connected finite graph, Sun and Wang
[23] provided novel proofs for some previously known results regarding the existence and
multiplicity of solutions for the Kazdan—Warner equation on a connected finite graph by
employing Brouwer degree computations. By computing the topological degree and using
the relation between the degree and the critical group of a related functional for the Chern-
Simons Higgs models on the finite graph, Li et al. [14] derived some interesting result for
the multiple solutions of the system. Inspired by the work of [9, 14, 17-19, 23], we consider
the Einstein-scalar field Lichnerowicz Eq. (1.5) on any connected finite graph G = (V, E),
that is,

—Au+hu=Bu”'+Au P onv, (1.6)

where p > 2, A, B, h are given functions on V satisfying that A > 0 and A # 0 on V. For
simplicity, we always call equations of the form (1.6) the EL equation.

This article is organized as follows. In Sect.2, we review some settings of a graph and
give our main results. In Sect. 3, we present some lemmas that will be used in subsequent
sections, including Sobolev embedding, Maximum Principles and a blow-up analysis result.
In Sect.4, for the positive case, we establish some existence and multiplicity results by
variational method and calculate the topological degree for Eq. (1.6) under certain mild
assumptions. In Sect. 5, our focus shifts to the negative case, specifically when the constant
h is negative. Here, we analyze the asymptotic functional and derive a positive solution for
Eq. (1.6), with strictly negative energy. Lastly, in Sect. 6, we employ a heat-flow method to
obtain a positive solution for Eq. (1.6) in the null case and compute its associated topological
degree.

We denote by u™ the positive/negative part of u € VR that stands for u* = max{=u, 0}.

2 Notations and main results

We explain some settings and represent our main results in this section. Let G = (V, E)
be a connected finite graph with m := Card(V) < +oo. We use positive numbers wy, to
represent the weights of edges, for any x,y € V, wyy > 0if and only if xy € E. In other
words, wyy = 0 means xy ¢ E. In addition, the weight is symmetric, wyy = wy, for any
xy € E.Let pu be a positive finite measure on V. Denote by |V| = ) .y n(x) the volume
of V. Let VE be the vector space of all real functions on V. For any u € VX, we define the
Laplacian operator by

Au(x) = D oy (u(y) —u)), YxeV,

y~x

e

where y ~ x means xy € E. As usual, we define u(x) = Z)Wx wyy for any x € V, and
then A is the normalized Laplacian operator. If u(x) = 1 for any x € V, then A is the
combinatorial graph Laplacian operator (see [16]). For any u, v € VR, the gradient form of
u and v is given by

I'u,v)(x) = Za)xy(u(y) - u(x))(v(y) - v(x)), VxeV.
y~x

o
2pu(x)
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For simplicity, we write I' (1) (x) = I'(u, u)(x) and Vu - Vv = I' (i, v). Define the length of
gradient of u as |Vu|(x) = +/T'(u)(x) forany x € V.Forany u € VR the integral of u over
V is defined by

[ wwan = ¥ weouc)

xeV

Define the Lebesgue spaces LY(V) = {u € VR | 3, u()|u(x)|? < oo} for any
g € (0, +00),and L®(V) = {u € V® | maxyey lu(x)| < co}. If h € V¥ is assumed to be
positive, then we shall consider Eq. (1.6) in the following Sobolev space

H(V) = [u e VR f (1Vu? + hu?)dp < oo],
v
equipped with the norm
2 2 : 1
leell g1 vy = (/ (IVul* + hu )du> , foru e H, (V).
1%
In particular, if #(x) = 1 on V, H} (V) is written as W-2(V') as usual.

Definition 2.1 We call u € VR a weak positive solution to (1.6) if u € WL2(V) withu > 0
on V, and the integral identity

/(I‘(u,v)—l—huv)duzf U(Bup_l—i-Au_p_l)d,u
4 %

holds for any v € W?(V). We say u € VR is a point-wise positive solution to (1.6) if
u € L®(V)withu > 0onV, and

—Au(x) + h@)ux) = B@u@)? '+ Auxx)"?", vxeV.

Remark 1 (a) One can easily check that for any u, v € V&, the integration by parts formula

holds
/(—Au)vdu:/ F(u,v)d,u:/ F(v,u)d,u:/ u(—Av)dpu.
\4 Vv Vv Vv

(b) Supposing that G = (V, E) is a connected finite graph, then the definitions of positive
solution to (1.6) between weak sense and point-wise sense are equivalent. In fact, we just
apply Lemma 3.1 and choose the test function &, for any xp € V as follows

1, x=xp,
Oxp (x) = 0 X # x0. 2.1

In order to present our results, we introduce the topological degree for Eq. (1.6). For any
u € L*°(V) with u > 0 on V, we denote the associated energy functional by

1 s, 1 1 _
Jw) == | (IVul> +hu*)dp — — [ BuPdu+ — [ A@)u~"Pdu.
2 )y plJv plJv
We consider the map
Anap : LE(V) = L¥(WV), u— —Au+ hu — BuP~! — Au—P1,

where L(V) = {u € L*®(V) | u > 0 on V} that can be viewed as an open subset in R"™.
Denote by Bg = {u € L*(V) | 0 < u < R} € L°(V) that can be treated as an open
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subset as well. For the positive case, we conclude by Lemma 3.3 and Proposition 4.1 that the
Brouwer degree deg(Ap, 4.5, Br, 0) is well defined for R > 0 large. While for the null case,
we refer the readers to Lemma 6.6. Then by the homotopic invariance, deg(Ay, 4,5, Br, 0)
is independent of R. We define the topological degree by

dy ap = lim deg(Apa, B, Br,0).
R—+o00
Then

deg(An.4.8, Br,0) = Y. sgndet(DApa ),
MEBR,Ah,AYB(u)=O

whenever 0 Bg N A;ylA’ p{0}) = @. We refer the readers to [1, 23] for the corresponding
definition.

Now we state our main results in this article. First, for the positive case, as in [18, Theorem
1], applying the monotone method, we have

Theorem 2.2 Suppose that G = (V, E) is a connected finite graph, and h(x) > 0, A(x) > 0,
B(x)>0onV.Ifu e H}: (V) is a positive super-solution to (1.6), then for sufficiently small
8 > 0, there exists a positive solution u to Eq. (1.6) satisfying that 8 <u <uonV.

p=2 _p2
o [(PF2 2p+ p+2\ 2
VRS p—2 '

Under some mild assumptions, our next result involves the topological degree for the positive
case.

Denote by

Theorem 2.3 Let G = (V, E) be a connected finite graph, h(x) > 0, A(x) > 0 and
B(x) > 0on V. Suppose that

A(x) < Ap, B(x) < By, h(x) >hg, VxeV, (2.2)
for some positive constants Ay, By and hy.
(a) If there exists a positive solution S to the following equation
hos — Bos? ™! — Ags P! =0, (2.3)

then for sufficiently small § > 0, there is a positive solution u to (1.6) such that § <
ux)<SonV.
p=2 p+2
(b) If A(x) = Ao, B(x) = By, h(x) = hg on V, and hg = A," By” p°, then Eq. (1.6)
admits only the constant solution

T
ui(x) = <%> v , foranyx € V.

(c) Let G = (V, E) be a complete graph, that is xy € E for any x,y € V. Suppose that

p=2  pi2
h(x), A(x) and B(x) are not all constants on 'V, and hy > AOZ” BOZ'7 p°, then Egq. (1.6)
admits at least two positive solutions, and the topological degree dj, o,p = 0.

As in [9, Theorem 3.1], applying the variational method, we obtain a mountain pass
solution.
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Theorem 2.4 Suppose that G = (V, E) is a connected finite graph, and h(x) > 0, A(x) > 0,
B(x) > 0 0on V. There exists a positive function { € VR with Iz ”Hh'(V) = 1 and a constant

C = C(p) > 0depending only on p such that if

_p*2

/V A Pdp < C(S,f max B(x)) = (2.4)

then the EL Eq. (1.6) admits a positive solution, where Sy, stands for the Sobolev embedding
constant corresponding to H;: (V) = LP(V).

For the negative case, we apply some similar variational analysis of [19, Theorem 1.1]
and obtain a positive solution with negative energy.

Theorem 2.5 Let G = (V, E) be a connected finite graph. Assume that A, B, h € VX and

(a) h(x) = h < 0onV, where h is a constant and |h| < Ap. Here Ap > 0 is a positive
constant defined by (5.4) and (5.5).
(b) A(x) >0, A(x) #00n V, and

pt2 2p
p+2 A \PE Jhlp = DIV
/VA(x)d“ = ( &, B*(x)du> 4 ' 23

(¢) maxyey B(x) > 0, and [, B(x)du < 0.

Then there exists some constant Yo > 0 (see (5.30) in Lemma 5.10) such that if
max B(x) < TZ/ B~ (x)du, (2.6)
xeV 1%

then the EL Eq. (1.6) admits at least one positive solution with negative energy.

Finally, we give our main results for the null case. We consider the heat flow (see [17])

2.7

ur — Au = g(x, u), inV x (0, +00),
u(x, 0) = up(x), onV,

where ug(x) is an arbitrary positive function and g(x, u) = BuP~ ! + Ax)u=P~1 with
p>2.

Theorem 2.6 Let G = (V, E) be a connected finite graph. Suppose thath(x) = 0, A(x) > 0,
B(x) < 0 and the initial data ug(x) > 0 on V. Then there exists a unique positive solution
u(x, 1) € ([0, 0o); V) 1o (2.7). In addition, u(x,t) — uso(x) in L°(V) ast — ~+00
suitably, that is, there is a subsequence {t;} with ty — +o00 as k — 400 such that

u(x, ty) = uso(x) uniformly on V, ask — +o00, 2.8)
where uso(x) is a positive solution to the EL Eq. (1.6), that is,
— Attog = BOOuT + A ul P on v. 2.9)
The last conclusion gives the topological degree for null case.

Theorem 2.7 Let G = (V, E) be a complete finite graph and h(x) = 0 on V. Suppose that
A(x) > 0 and B(x) < 0 are not all constants on V. Then (1.6) admits at least one positive
solution and the topological degree do, 4, p = 1.
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Let us close this section by mentioning the new ingredients and the distinctions between
our current work and previous studies conducted on manifolds. The compact nature of the
embedding in the case of finite graphs simplifies most of the problems, making them more
direct and manageable. In particular, when dealing with the elliptic problem, we automatically
get a strictly lower bound for the solution, which alleviates the challenge of defining the
associated energy functional that involves the term A (x)u~?~!. This a-priori estimate enables
us to calculate the associated topological degree, ensuring the existence of multiple solutions.
Furthermore, it is well-established that in the classical context, f IV]ul|? = f [Vul|?. Though
it is true that f IV]ul]? < f |Vu|? for the graph case, we can not show the corresponding
energy functional is differentiable. Consequently, we are constrained to work with non-
negative functions, necessitating a departure from the approach used in [19] to obtain a second
solution. In the case of the parabolic problem, defining the corresponding sub-solution and
super-solution requires us to solve the associated heat equation on the graph, which inherently
involves a system of ODEs. To derive the existence result, we have to pay some attention on the
computations involving the term u,. Besides, we rely on the equation to justify the uniqueness
and regularity. While the underlying principles remain consistent with the classical setting
in spirit, the techniques employed turn to be slightly different due to the distinct nature of
the problems on graph.

3 Preliminaries

In this section, we present some preliminary results that will be used in subsequent parts.
Here, we denote by hpin = minyecy h(x) if A(x) > 0Oon V, and pmin = minyecy @ (x) in this
part.

Lemma 3.1 (Sobolev embedding) Suppose that G = (V, E) is a connected finite graph and
h(x) >0o0nV. Then

(a) the Sobolev embedding H}f (V) — L4(V) is continuous for q € [1,+00], and there
exists some positive constant Sy, depending on h, G and q such that for any u € H, ;} V),
it holds that

llwllLavy < Sh||u||th(v)~ 3.1

(b) the Sobolev embedding th (V) — L4(V)iscompactforq € [1, +00]. Furthermore, the
boundedness and precompactness are equivalent in th (V)and L4(V) forq € [1, +o0],
respectively.

Proof (a) Suppose that u € H}: (V). For any x¢ € V, direct computation shows that

el vy = /V (T@w) + hu?) dp = himin /V wdp = hmin Y ()’ (x)

xeV
= hmin/«’«minuz(xo)y
which implies that
_1
[t (x0)] < (Aminfmin)~ 2 ”””H,}(V)‘
Therefore, H,! (V) <> L*(V) is continuous and
_1
”u”LOO(V) =< Sh”u”th(V)’ where S; = (AminfAmin) 2 - (3.2)
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Now for any ¢ € [1, +00), we have

oy = D mEEI < 3 @) Grminttmin)~ % el

xeV xeV
= V1 Crmingamin) ™% ]y

Therefore, H}}(V) < L4(V) is continuous for any ¢ € [1, +00) and

1 _1
lullLavy < Sh”u”[-[}}(v)v where Sy = |V[7 (Aminftmin)” 2 - (3.3)

Combining (3.2) and (3.3), we finish the proof of (a).

(b) Let {u;} be a bounded sequence in th (V). After passing to a subsequence if necessary,
we may assume that u;—u in th(V). Since h is positive on V, {u;} is bounded in
L2(V). Then up to a subsequence (still denoted by {u;}), u ;j—u in L2(V). Thus, for any
v e L2(V), we have

lim / (uj —wvdp = jlir-ir-loo Z () (e (x) — u(x))v(x) = 0. (3.4)
xeV

j=Foo Jy

For any xog € V, we substitute the test function v = J, (defined as in (2.1)), into (3.4)
and then get

lim p(xo) (u.,- (x0) — u(xo)) =
J—>+o0
which yields that
lim uj(xo) = u(xo).
J—>+00

Asaconsequence, wehaveu ; — uin L(V)forg € [1, +-00]. Therefore, the embedding
H,} (V) = L4(V) is compact for g € [1, +00]. Furthermore, by the finiteness of V, we

obtain
/ET IV = Vullpa ) = »“m / F(uj —wdp
2
— 1 x( _ () — _o.
=3 ,;Twzv;xw () = u()) = (u;x) u(x)))
and

lim f h(x)(uj(x) — u(x))zdp, = jlir-ir-loo Z u(x)h(x)(uj (x) — u(x))2 =
xeV

j=+oo Jy

Thus, we derive the precompactness from the boundedness in H, ,: (V). On the other hand,
ifu; - uin th (V), one can directly check that {u;} is bounded in th (V). Hence, the
boundedness and precompactness are equivalent in th(V). For L9(V), q € [1, 400],
the argument is similar and we omit the details. This finishes the proof of conclusion (b).

O

Next, we establish the Maximum Principle for the elliptic equation on finite graph.
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Lemma 3.2 (Maximum Principle) Suppose that G = (V, E) is a connected finite graph and
h(x) > 0on V. A function u € VR s said to be a super- (sub-) solution of —Au + hu = 0
if it holds that

—Aulx) +h(x)ux) > ()0, VxeV. 3.9

(a) If u is a super-solution of —Au + hu = 0, then u(x) > 0 on V. Furthermore, it must
hold

either u=0 or u>0onV.
(b) If u is a sub-solution of —Au + hu = 0, then u(x) < 0 on V. Furthermore, it must hold

either u=0 or u <0 onV.

Proof (a) We prove the conclusion by contradiction. Suppose that this is not true and there
exists xo € V such that min,cy u(x) = u(xg) < 0. Then we obtain —Au(xg) < 0 and
h(xg)u(xg) < 0. From this, we deduce a contradiction to (3.5). Thus, u(x) > Oon V.
Furthermore, if there exists x; € V such that minycy u(x) = u(x1) = 0, then we get

0> —Au(xy) = —Au(xy) + h(xpu(xy) > 0,
which implies that

1
m(x1)

0=—Au(x) =— Y ony () —u@)) <0.

y~xi

Therefore, u(y) = u(x;) = 0 for any y ~ x;. Since G is connected and finite, by
induction, we conclude that #(x) = 0 on V. This finishes the proof of (a).
(b) Applying (a) to —u, we get the desired conclusion.
O

Remark 2 In general, for 4(x) > 0 on V, we call function u € VR 4 super-solution of
—Au+hu=0onV if forany ¢ € th(V) with ¢ > 0, it holds that

/ (T, ) + huy)dp > 0. (3.6)
|4

For any xo € V, substituting the test function ¥ = §,, (defined as in (2.1)) into (3.6), we
have

—Au(xg) + h(xg)u(xg) > 0.

As a consequence, the definitions of super-solution are equivalent between weak sense and
point-wise sense. The same conclusion holds for sub-solutions.

Lemma 3.3 Suppose that A, B,h € VR A(x) > 0 and A(x) # 0on V. Let {u,} be a
sequence of positive solutions to (1.6), namely,

= Aty (x) + hy ()t (x) = By ()un ()P~ + Ay (Du, ()77, Vx eV,
where {A,}, {Bn} and {h,} satisfy that
lim A,(x)=A(x), lim B,(x)=B(x), lim h,(x)=h(x), VxeV.
n——+o00 n—-4o00

n——+00

Assume that {u,} is uniformly bounded from below by a positive constant. Then, up to a
subsequence, one of the following alternatives holds
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(a) either {uy} is uniformly bounded (that is, bounded in L*°(V)), or
(b) there exists xy € V such that u, (xo) converges to +00 and B(xg) = 0. Moreover, {u,}
is uniformly bounded from above in Q := {x eV |Bx) > 0}.

Proof 1If {u,} is uniformly bounded from above, then {u,, } is uniformly bounded, and hence (a)
holds true. While if lim sup ma‘)/( u, (x) — 400, we may assume that there is a subsequence

n—>—+o00 X€
of {u,}, still denoted by {u,}, and some xg € V such that
u,(xp) = ma‘)/( u,(x) - 400, asn — +oo. 3.7
Xe

On the other hand, since {u,} is uniformly bounded from below by a positive constant, for
any x € V we have

By (D)t )P — by (@)un (X) = —Aun@ — A @), (x) P!

—un(y)) +0

MC )
< un(X) +C,
which implies that
By(X) — hy(®)uy (X)* 77 < (un(X) + C) 4y (%) 7.

Letting n — 400, we deduce that B(x) < 0 whenever lim sup u, (x) — 400, where we
n——400

have used that p > 2. Hence {uy} is uniformly bounded in @ = {x € V | B(x) > 0}. Thus
by (3.7), we have B(xg) < 0.

Next we prove that B(xg) > 0. Using the fact that x¢ is a maximum point of u, (x) on V
we have

By (x0)n (x0)P ™" = = Auun (x0) + i (x0)ttn (x0) — A (x0)tn (x0) 7!
> Iy (x0)tn (X0) — An (x0)tt (x0) 77",
which implies that
By (x0) = hn(x0)utn (x0)* ™7 — Ap(x0)un (x0) 2.

Letting n — 400, we deduce that B(xg) > 0. Thus, B(xg) = 0. This finishes the proof of
Lemma 3.3. m]

4 Variational analysis and topological degree for the positive case

In this section, we consider the positive solution of the EL Eq. (1.6), namely,
—Au+hu=Bu”""+Au P onv, 4.1
where A, B,h € VR, h(x) > 0, A(x) > 0 and A(x) # 0 on V unless otherwise specified.
Proposition 4.1 Suppose that A(x) > 0 and B(x) > 0on V. If
h(x) o
max —— —————— < p°,
<V A(x) ™ B(x)

then Eq. (4.1) does not possess any positive solution.
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Proof Suppose that u is a positive solution to (4.1). Letting xo € V be a minimum point of
u on V, then we have —Au(xp) < 0 and

h(x0) = B(xo)u(x0)” % + A(xo)u(xo) "~ > A(xo)u(xo) "2,
which implies that
AGO\72 _ (. Ax)\ 77
u(x) > u(xg) > (h(x0)> > (?él‘rll h(x)) , VxeV. 4.2)

It follows that any positive solution to (4.1) is uniformly bounded from below by a positive
constant. Furthermore, denote by

p+2

f(@) = Bxo)t + A(xo)t™ 72, t > 0.

One can easily obtain that min;~q f(t) = f(ty), where

o =

(A(XO)(P +2)
B(xo)(p —2)

Hence, there must exist some x € V such that

£ p=2 P2
) . f(to) = A(xo) 27 B(xq) 2 p°.

b = AW T BT pe.
Contradiction arises. This finishes the proof of Proposition 4.1. O
Example 1 Let G = (V, E) be a connected finite graph. Then the following EL equation
—Autu=u""t+u P onv, 4.3)

does not possess any positive solution. In fact, by Proposition 4.1, the nonexistence is trivial.
We can also obtain this result by the a priori estimate (4.2). Indeed, supposing that u is a
positive solution to (4.3), we choose some minimum point xo of # on V. Then by (4.2), we
find that u(x) > u(xg) > 1 for any x € V. However,

u(xo) > —Au(xo) + u(xo) = uxo)”" 4+ u(x0) "' > u(x)? ' > u(xp), since p > 2.
Then contradiction arises and the desired conclusion holds.

Applying similar arguments of [9, Theorems 2.1 and 2.2], we get the following two
nonexistence results, Propositions 4.2 and 4.3.

Proposition 4.2 Suppose that B(x) > 0 on V and

[}

pet o\ pel prl O\ T
</ hr—2B p72dM> <p° (/ A2 B2p dM) ) (4.4)
v v

Then Eq. (4.1) does not possess any positive solution.

—lr

Proof Suppose that (4.1) admits a positive solution u and (4.4) holds. Integrating Eq. (4.1)
on both sides, we obtain

/hudu:/ Bup_]du+f AuP Ndp. 4.5)
\4 Vv %4
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By Holder’s inequality we get

[}

p—

p=l 1 =T 1 1%—1
/ hudp < </ hP2B P*2dpd) </ Bu?~ du) ,
14 v 14

ptl p-l
p=l p+l -1 2p el 2p
A2 B2 du < BuP~'du Au=P"du .

\4 \4 \4

Combining the above two inequalities with (4.5), we have

and

2p
p—2 +2

(Jy BuP=ldp) 7T + (fv AI%IB%Id“) " (fy B“pfld“)_%

[N}

P—
p—1

1

—1
< (jvh%B*EdM>

~ +2
Set f(t) =t + Ktib for t > 0, where

p=2 2p
—1 p=1 p=1 p+l p-T

t = BuP~'du and K = A2 B2 du .

\%4 \%

One can easily check that

s -2 bt prt O\
min () = J(t) = p°K'F = p° (/ A5 B du> ,
>0 v

where

n:(KL“Lz) ’ :(LJJ) ' </ A%B%duyf .
p—2 p—2 v

Therefore, we deduce that
p=l 1 p=T
< (/ hr2B P—Zdu>
1%

pml pr N\l
»° /AZPBZ!’dM
\%

which contradicts to (4.4). This finishes the proof of Proposition 4.2. O

Remark 3 Proposition 4.2 is a general version of Proposition 4.1. By Proposition 4.1, if we
assume that

p=2 2
h(x) < A(x) % B(x) 2 p°, YxeV, 4.6)

then Eq. (4.1) does not admit any positive solution. We can rewrite (4.6) as

P

-1 1 =1 p=l1 ptl
h(x)P2B(x)” 72 < (p°) 72 A(x) 7 B(x) 2 . 4.7

Integrating (4.7) on both sides we obtain (4.4), since V is finite. Particularly, Example 1 also
provides an example for Proposition 4.2.
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Proposition 4.3 Suppose that G = (V, E) is a connected finite graph and

1
2
SPicP <ma&<3—(x)+s,j";<2—l’) </A%(x)du 4.8)
xXe \%

for some constant k > 0, where Sy, is the Sobolev embedding constant for H, }} (V) = LP(V)
(Lemma 3.1-(a) with q = p). Then Eq. (4.1) does not possess positive solutions satisfying

”u”H}}(V) <k.

Proof Suppose that u is a positive solution to (4.1) satisfying ||u|| HI (V) < k. Multiplying
(4.1) by u and integrating on both sides, we get

p 4 _ 2 2
/VBu du—f—/VAu du = ”u”H,}(V) <«k“. 4.9)
Applying the Sobolev’s inequality (3.1) with ¢ = p, we obtain
/ Bufdu > —S;:)K‘” max B~ (x),
1% xeV
which together with (4.9) implies that
/ Au~Pdp <k + SPic? max B (x). (4.10)
Vv xeV

On the other hand, by Hélder’s inequality, it holds that

1 1 1
2 2 2 p
/ A%(x)du < (/ Au_pdu> (/ u”dpL) < </ Au_pdu> Sthg. (4.11)
1% 1% 1% 1%
Hence we deduce from (4.10) to (4.11) that
1
2
[ A%(x)du < Sf/cp (max B~ (x) + Sh_p/cz_l’) ,
\% xeV
which contradicts to (4.8). This finishes the proof of Proposition 4.3. O

4.1 Monotone method solution

In this subsection, we shall find positive solutions to Eq. (4.1) by monotone method.

Proof of Theorem 2.2 For sufficiently small constant § > 0, u = § is a sub-solution to (4.1).
In fact, one can easily check that

h(x)s < B(x)8? '+ A(x)s P onV,

for § > 0 small enough. In the remainder of this proof, § is fixed as above, and let § <
min,cy u(x) for any x € V. We define the energy functional Z corresponding to Eq. (4.1)
as

1 1 1
T(u) = 7/ (IVul* + hu?)dp — f/ Bu”du—kf/ Au=Pdpu, (4.12)
2 )y plJlv plJv
for u € N, where

N={ueH (V)|§<u<uonV}. (4.13)
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Notice that for any u € A/, we have
1 2 1 _ 1 __
T(w) > —hpind”|V| — —max B(x) | u?du+ — | AuPdu,
2 p xeV v pJv
which implies that Z is bounded from below in /. We consider the minimizing problem
= inf 7 —00. 4.14
o= inf ) > —oco (4.14)

Suppose that {u,} C A is a minimizing sequence of «, that is,

1 2 2 1 P 1 =p
— (|Vun| —l—hun)dp.— — | Buydpu+ — | Au,"du =a +o0,(1). (4.15)
2y plv plv

Notice that

1 1 _ 1 1
——f Buffd,u—}-—/ Aunpdu‘ < —maxB(x)f E”du—i——/ A(x)dpu.
plv pJv p xev v psr Jy

Then, combining the above inequality with (4.15), we find that {«,,} is bounded in th V).
Since N is closed and convex, A is weakly closed. By Lemma 3.1-(b), up to a subsequence
(still denoted by {u,}), we may assume that there exists some u € N such that u,, — u in
L*°(V) as n — +o00. Thus by (4.15), one can easily check that Z(u) = nEToo Z(uy) = «,

which implies that « is achieved by u € N.

It remains to prove that the minimizer u satisfies Eq. (4.1). To this end, we apply the same
arguments with [22, Theorem 2.4]. For any v € th (V) and any ¢ > 0, we choose a test
function v, defined by

ve = min {i, max {8, u + ev}} = u + ev + vie — Vo,
where
v1e ;= max{0,§ — (u + ev)} and vy, := max{0, u + ev — u}.

Then vy, v € th(V) and are nonnegative. For any x € V,

S, if u(x) +ev(x) <9,
Ve(x) = fulx) +evlx), ifd <ulx)+evix) <u(x),
ux), ifu(x) < ux)+ev(x),

which implies that v, € A. Since u is a minimizer of Z in A/, we have (Z'(u), ve — u) > 0,
that is,

(T (), v) = —(T'(u), v2s — V1g). (4.16)

» | —

Since u is a super-solution of (4.1), we have
—AT(x) + h(0)u(x) > B)u(x)P ' + A)ux) P!, vxev,
and then
(T’ (@), v2e) = / (T2, vae) + hutvpe)dp — / (Bu?~' + Au P~ )vyedp > 0.
' ' (4.17)
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Thus by (4.17) we have
(T'(u), vae) = (T (W), vae) + (L' () — T' (W), v2e) = (T'(u) — I' (i), v2e)
= / (T(u — 1, vae) + h(u — W)voe )dp —/ (B —wr™h
+‘1/4(u_p_1 — P YY) vedp '
> /~ (T(u — 1, v2e) + h(u — Wvze)dp — /~ (B~ —ur™
+VA(u—P—1 — @ P vedu '

= /N (T — @) + h(u —w)*)dp + s/; (T =, v) + h(u —wv)du
14 Vv
- /N (B’ —aP™ "y + AP —a ") + v — wdp
14

> 8/; (F(u —u,v)+h(u— ﬁ)v)d,u
v

— /~ |B@P™' —a?™) + AP — w7 (u + v — mydp
\%4

> 8/‘7 (T —1u,v) +h(u—uwv)du — 8/‘7 |B?™ ' —ur~h
+ AP =P Hvdp,
where
V= {x € V |3y e Visuchthatxy € E} and
Vi={xeV]ux <ulx) <ulx)+esv)}.

Since V is finite, V=g¢fore>0 sufficiently small. We conclude that
(T'(u), vae) = 0. (4.18)

Similarly, since § is a sub-solution of (4.1), by the same arguments as (4.17) and (4.18), we
conclude that

(T'(u), vie) < 0. (4.19)

Substituting (4.18) and (4.19) into (4.16), we have (7' (1), v) > Oforany v € th (V). Taking
the sign of v as minus and we get (Z'(u), v) < 0. Hence it holds (Z'(«), v) = 0. Finally, we
choose the test function v = §y, for any xo € V, defined as in (2.1), and see that u is indeed
a point-wise positive solution to (4.1). This finishes the proof of Theorem 2.2. O

Theorem 4.4 Suppose that G = (V, E) is a connected finite graph, h(x) > 0, A(x) > 0
and B(x) <0on V. Then Eq. (4.1) has at least one positive solution.

Proof One can easily find that u1 = ¢ is a sub-solution to (4.1) for ¢ > 0 sufficiently
small, and ¥ = M is a super-solution to (4.1) for M > 0 sufficiently large. Hence by the
same arguments of Theorem 2.2, we can obtain a positive solution to (4.1) by the sub- and
super-solution method. O

@ Springer



138  Page 16 of 45 L.Cuietal.

4.2 Topological degree

We give some results on the uniqueness and multiplicity of solutions via topological degree
method.

Proof of Theorem 2.3 (a) Since S is a positive solution to (2.3), we get
h(x)S — B(x)SP™' — A(x)S™P7 > hoS — BoSP ! — AgS P ' =0=AS, VxeV,

which implies that u := § is a positive super-solution to (4.1). Then by Theorem 2.2, we
obtain the existence result.

(b) One can check easily that u; satisfies (1.6). We assume that u(x) is another positive
solution. Let xy € V be such that u(xg) = min,cy u(x). Then —Au(xg) < 0 and

ho > Bou(x0)P =% + Aou(x0) P2 > ho,

which implies that —Au(xg) = 0. Here we have used the same computations with
Proposition 4.1. Thus, u(x) is equal to a positive constant, and then u(x) = ujon V.

(c) Since any positive constant less than /g can be regarded as a positive lower bound of
p=2  p2
h(x), without loss of generality, we assume that hy = AOZ‘" B02” p®.Foranyr € [0, 1],

let u; be a positive solution of

—Aug+ (1= Dh + tho)uy = (1 = )B + 1 Bo)u? ™'

+((1=DA+140)u; " on V.
(4.20)

Next we claim that {u,} is uniformly bounded on V. Suppose this is not true. Then there
exists a sequence {t,} < [0, 1] such that lim sup ma‘)/( up(x) — +o0, where u, = u,, is

n—+4o00 X€
the positive solution to
— Aty (x) + I ()it (X) = By ()t (0)P " + Ay () (1) 7P, Vx eV,
and {A,}, {B,} and {h,} satisfy that
A, = —1)A+1,A0, By=(1—1,)B+1,By, hy=(1—t)h+ tyho.

After passing to a subsequence if necessary, we assume that f, — #, as n — o0 with
t, € [0, 1]. Then

lim A,(x) = A(x), lim B,(x)= B(x), lim h,(x) =h(x), Yx eV,
n——+o0o n——+o0o n——+o00

where
Ax) = (1 —t)A+1,A0>0, B(x)=(1—1)B+1.By >0,
h(x) = (1 — t)h + tyhg > 0.

Thus by Lemma 3.3 and Proposition 4.1, {u, } is bounded in L°° (V). Contradiction arises.
Therefore, the topological degree dj, 4, p is well-defined. By the homotopy invariance,
we have dj 4.5 = dpgy,4,,B,- We have shown in conclusion (b) that u; is the unique
positive solution to (4.20) with = 1. Hence, we conclude that

dp, 4,8 = dpg, A0, B, = sgn det (D Apy a9,8,(u1)) = 0.
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In fact, applying the identity hg — (p — l)Bouf_2 + (p + 1)Aoul_p_2 = 0, one can
check that

1 _ Wxyx9 _ Wxyx3 L Wxyxm
o P ESD R
K(x2) o wu(x2) L)
_ Ox3xp _ Px3xp L Px3am
det (D Apy, 49,5y (D)) = det | ~%0) “nan ! ni) | =0.
“’;‘m bal “’Am x wxm 3 1

- () - () - 1 (xm)
On the other hand, we see that u is a positive solution to (2.3). Therefore, by conclusion
(a), we can find a positive solution u(x) < u; on V. Consequently, the second positive
solution is obtained by the fact d, 4, g = 0. This finishes the proof of Theorem 2.3.

O

Example2 Let G = (V, E) be a connected finite graph. Then the following EL equation

2 1 1
LA —
p—1 p+1

possesses at least one constant solution u(x) = 1 on V.

u P lonv

4.3 Mountain pass solution

In this subsection, we apply Mountain pass theorem to address the existence issue for positive
solutions to Eq. (4.1), similarly to [9, Theorem 3.1]. To this end, we may consider the
following "asymptotic" functional

-y

JE(”)=1/ (|W|2+hu2)dﬂ—1/ B(u*)"du+1/ Ale+@h?) 2 du
2Jv pJv pJv

for ¢ > O sufficiently small and u € H;: (V). Naturally, Mountain pass geometry for J;
could be verified and a mountain pass solution #®) will be obtained for the "asymptotic" Eq.
(4.34). At this point, it remains to check that the limiting function u = lim u® satisfies the

e—0
Eq. (4.1).
Proof of Theorem 2.4 For any fixed ¢ > 0, we split 7 into the sum of J M and Js(z), that is,
Te(u) = TV ) + T2 ()
foru € th(V), where
1 1
TVw) = 7/ (IVul* + hu?)dp — f/ B(x)(ut)Pdu
2 )y rJv
and

TP w) = 1/ A@)(e + @) dp.
ply

One can easily check that 7, € C! (H hl V), R) by standard arguments provided p > 2. We
divide the proof into four steps.
Step 1. Mountain pass geometry. By (3.1) with ¢ = p, we have

Hy(V)'

‘1/ B(x)™)Pdu
plv

1 1
< — max B(x)/ lulPdp < — max B(x)SY lull?
p xeV Vv p xeV
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Then for any u € H}(V), it holds that
G(lull g vy) <= TV @ < F(llul gy vy): @.21)

where the functions G(s), F(s) : [0, +00) — R are defined as

2 2
1 1
G(s) = — — —max B(x)S’s” and F(s) = — + — max B(x)S’s".
2 p xeV 2 p xeV

Let so > 0 be such that

1

1o L
max G(s) = G(so) = (f - 7> 5§ with so = (8] max Bx)) 7.
>0 2 P xeV

In addition, G (s) increases in [0, so] and decreases in [sg, +00). Let « € (0, 1) be such that

K= and set s1 = kso. Then we get

p—2
2(p+2)
25(% 1 p.p
F(s1) = k°— 4+« —max B(x)S; s
2 p xeV

2 2
s s o1 5, 1/1 1Y\, |1
= Kz—; +xP2 < (5 + ;) 5§ =5 (5 - ;> 55 = 5GGs0).  (4.22)

In the assumption (2.4), we set the constant C = C(p) to be defined by C(p) = pT_zfc”,
then (2.4) is rewritten as

1 1
f/ A)(s18)"Pdu < =G (s0). (4.23)
pJlv 2
Hence we deduce from (4.21), (4.22) and (4.23) that
— 70 @ 1 —p
Te(518) = T (518) + T 7 (s18) < F(s1) + s AX)(s16) " du
1 1
< EG(SO) + EG(SO) = G(s0),

Je(500) = TV (s08) + TP (s08) = Gs0) + % fv AG) (e + (500)%) T du > Glso),
from which we conclude that
Je(518) = G(s0) < Te(s0%). (4.24)
Noticing that for any s > 0, it holds
52 _sP

p
Te(s0) = TV () + TP (s0) = 775 /VB(x)gPdM+%/VA(x)(aJrs%z)’%dM,

which implies that
lim J.(s¢) = —o0.
§—+00
Then we can choose s, > sg such that

Te(52¢) < 0. (4.25)

Foranyu € H}: (V) with ||u ”th(V) = 50, Je (1) > G(sp) via (4.21). Therefore, the Mountain
pass geometry is established on the basis of (4.24) and (4.25).
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As usual, we denote by

:= inf max 1)),
Ce yerte[o,nja(y())

where
I'={y@) e C(0,1] | y(0) =s1¢, y(1) =528}
Then we obtain the following two facts (i) and (ii):

(i). Forany y € T\ Iy O)ll iy = 51 1Y (Dll g1y = 52, and 1y )]l 51 is continuous
with respect to t € [0, 1]. Then for 59 € (s1, 52), we deduce by the Intermediate Value
Theorem that there exists some 7y € (0, 1) such that [y (fo) || ;; 1 (v) = S0- Hence we have

max Je(y (1)) = Je(y (10)) > G(s0) > 0,
te(0,1]
which implies that

= i f > .
Ce ;rértgfﬁ’i]‘%(y(t)) > G(so) >0

(ii). Choosing yo(t) = ((1 — )51 +52)¢ € T', then by (4.23) we have

max Je(n(t) = max (TP @) + T2 (@)

< max F(s)+lf A@)(s1¢) Pdp
plv

s€ls1,8]
= F(s2) + %G(so) =: C < +oo.
Therefore, for ¢ > 0 sufficiently small, it holds that
0<G(so)§cg§€’<+oo.

Step 2. (PS)., condition. Let {u,(f)

In € Hh1 (V) be a sequence of functions satisfying
Te @) — ¢ and | T/ — 0, asn — +oo. (4.26)
In other words, we get

1 1
3 /V (IVu P+ h@)?)dp — ” /V B)((ug) ) dpe
1 N4
+f/ A(x)(s + (@) ) dp = co + 0y (1), 4.27)
ply
and
/ (Vuﬁf) -Vv + huif)v)du —/ B(x)((uf,s))+)p71vdu
Vv \4
_r2_q
:/‘/A(x)(ufle))+v<s+((ufls))Jr)Z) 2 dp + on(Ilvll g vy)- (4.28)

for any v € H}: (V). Hence by (4.27) and (4.28) with v = u,(f) we have

1 1 (E)\+\P 1 (&)y+)2
(5_;>/VB()C)((M” ) ) dM—i-;/‘/A(x)(S-i-((un ) )) du

_r
2
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1 —£-1
+§ /\/ A(x)((uﬁls))+)2(g + ((”1(18))+)2) 2 du =ce + on(||u£f)||th(V)) + 0, (1).

(4.29)
So for n sufficiently large, we have
p—2
= | B@(w*) du < 2c +on(lu 1 1(v))- (4.30)
2p Jv h
Thus for n sufficiently large we deduce from (4.27) and (4.30) that
4
2 2 P
/V (IVu? P+ h@)?)du < v +on (e 1 g1 ) 4.31)
and then
2
—2pe, < / Be(@)) du = e+ 1) (4.32)
14 p—

By (4.31), we see that {u,(f)}n is bounded in th (V). Together with Lemma 3.1-(b), we find
that J, satisfies the (PS)., condition.

Step 3. Mountain pass theorem. By the Mountain pass theorem we get c; is a critical value.
Suppose that there exists a sequence {uﬁf)},, - th (V) satisfying (4.26). By Step 2, {uﬁf)}n
is bounded in H, }} (V). Going if necessary to a subsequence, we may assume that there exists
some u® e th(V) such that

u®x) = u®(x), YxeV, asn - +oo. (4.33)
It follows from (4.33) and (4.28) that u(® satisfies

/ (Vu(g) -V + hu(‘s)v)du — / B(x)((u(S))Jr)p—lvd,u
v 14

2\~ 51
= [ Ao+ (@) aw,
\%4

forany v € H}} (V). Choosing the test function v = 8, for any xo € V, defined as in (2.1),
we find that 1(® is a point-wise solution to the following equation

_P2_q
—Au® —i—hu(e) — B(x)((u(e))"')P_l +A(x)(u(5))+<5 + ((u(s))+)2> 2 onV.
By Lemma 3.2-(a), u® >0onV. Consequently, u'® satisfies

— AU+ hu® = B @) + A@uO (e + @) T on v, @434

Furthermore, we also conclude from Lemma 3.2-(a) that either u® = 0 or u'® > 0 on
V. Now we claim that #® = 0 on V cannot happen. In fact, by (4.29) and (4.32), for n
sufficiently large, we have
! ©y)2) "
— [ A (e + (@*))
pPJv

-2
w= -T2 [ () e
2p Jv
+ On(””,(qa) ||[-1h|(v)) +on(1)

<ce+ ZPCsp

+ 0n(||”518) ”th(v)) + on(1)

<(p—Dece+ece < p6~
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If there exists a sequence of positive numbers {e;}; with &g — 0 as k — 400 such that

u®) = 0, then we deduce from u$*) — 4 on V as n — +oo that

~ 2
0< / Ax)du < poesk2 — 0, ask — +oo.
v

Contradiction arises. Thus for any sufficiently small ¢ > 0, u'® # 0 on V. We conclude that
u® is a positive solution to Eq. (4.34).

Step 4. The limiting equation. By (4.31), for ¢ > 0 sufficiently small we get

5p—2~

4
[ 00 +hwan = v e < L2028 (435)
v p—2 p—2

Suppose that {e;}x is a sequence of positive numbers satisfying ¢ — 0 as k — +o0, and
1) is the corresponding positive solution (obtained as in Step 3) to Eq. (4.34), that is, 1 ¥
satisfies

— A 4 = B )P+ A (g + @) T on V. (4.36)

By (4.35), {u‘®)}; is bounded in th(V). Then by Lemma 3.1-(a), {#®*)}; is bounded in
L®(V). We claim that {#®®} is uniformly bounded from below by a positive constant.
Indeed, let x; € V be such that min ey ) (x) = 1@ (x;). Then —Au®) (x) < 0, and
we deduce by (4.36) that

1

hxe) > AGo) (ex + @™ ()?) 2 4.37)

Since gy — 0 as k — 400, for k sufficiently large, we have

3/ . A) e
&r < — | min .
4 \xev h(x)

Thus by (4.37), one can easily check that

1
1 . Ax)\ 2 ~
€O (xg) > = =C > 0.
wt ) z 5 (iné? h(x)) g

Again since {1} is bounded in H}} (V), by Lemma 3.1-(b), we may assume that there
exists some u € th (V) and a subsequence, still denoted by {1}, such that

u(x) > u(x), Yx eV, ask — +oo.

In particular, u(x) > ConV. Letting k — 400 in (4.36), we find that u satisfies (4.1).
Therefore, u is a positive solution to the EL Eq. (4.1). This finishes the proof of Theorem
2.4, O

5 Variational analysis on the negative case

In this section, we consider the negative case
—Au+hu=Bu""+AuP T onv, (5.1

where h(x) < 0, A(x) > 0 and A(x) # 0 on V unless otherwise specified.
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5.1 Necessary conditions

Proposition 5.1 (a) If (5.1) admits positive solutions, then it holds that
/ B(x)du < 0. (5.2)
1%
(b) If B(x) > 0o0nV, then (5.1) admits no positive solutions.

Proof (a) Let u be a positive solution to (5.1). Multiplying (5.1) by !~ and integrating by
parts, we have

02/ F(u,u‘*ﬂ)du>f B(x)dp,
\% \%4

which gives (5.2). It also implies that B(x) is negative somewhere.
(b) Suppose that B(x) > 0 on V, and u is a positive solution to (5.1). Let xg € V be such
that u(xg) = min,cy u(x) > 0. Then we have —Au(xg) < 0 and

0 > h(x0) > B(xo)u(x0)” 2 + A(x)u(xo) P72 > 0.

Contradiction arises. Of course, one can directly get conclusion (b) from (a).
O

Remark 4 For any positive solution u to Eq. (5.1), let xp € V be a minimum point of . Then
we have —Au(xg) < 0 and

0 > h(x0) > B(xo)u(x0)” 2 + A(xo)u(xo) P~% > B(xo)u(xo)? 2,

which implies that B(xg) < 0, and

1
u(x) > u(xg) > (Z(())Cc(;))>p_2 , VxeV.

This gives a uniform lower bound for positive solutions to (5.1), denoted by

1

. h -2

u(x) > <%>” =0, VxeV. (5.3)
xXe

Suppose that (5.2) holds and max,cy B(x) > 0. Let
C(B) = {u € Wl‘z(V) |u>0, u##0on V,/ B~ (x)udu = 0] . 5.4
1%

Obviously, C(B) # 9. In fact, §;, € C(B), where xo € V is a maximum point of B(x).
Define

g = inf [||W||i lue C(B)}. (5.5)

=2

Naturally, one can check that A > 0. In the rest of this section, we keep in mind that the
assumptions (a), (b) and (c) in Theorem 2.5 hold.
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5.2 Analysis on the energy functional

For any ¢ > 0, we consider the asymptotic equation
— Au+hu = B@)|ul”2u+ A@)u@? +&) 7 onV, (5.6)
which corresponds to the energy functional J; (u) : wbh3(V) > R with
1 1 1 _r
Te () = 7/ (IVul® + hu*)dp — f/ B()|ulPdu + 7/ A)(u? +&) 7 dpu.
2 )y pJlv pJlv
(5.7)

Itis easy tocheck that 7, € C 1 (W1’2(V), R). We aim to find the critical points of .7, namely,
the point-wise solutions to (5.6). To this end, we introduce the set

1
By = {u e WI2(V) [u=00nV, lulirw) = kF}, Vi > 0. (5.8)

1 1
It is easy to see that By # @, since ux(x) = k7 |V| » € Bg. Define

eF == uiéllgk Te(u). (5.9)
Applying the Holder’s inequality, we have
1 2 h -2 2
— | hu“du > —=|V|" rk?, Yu e B, (5.10)
2 Jy 2
and
1 k
— — | B(x)|u|’du > —— max B(x), Yu € B. (5.11)
pPJv 4 xeV
Combining (5.7), (5.10) and (5.11), we get that
h 1=2 2 k
Je(w) > =|V|" Pk? — —max B(x), Yu € By. (5.12)
2 p xeV

Therefore by (5.9) and (5.12), ®; > —oo if k is finite. Furthermore, direct computation
shows that

of < 7y < -2tk 1 2 2 -4
{2 @ =SV kD = = [ Bdut — | A (KPIVIT +e) dp,
2 pIVl Jy plJv
(5.13)

which implies that ®F < +o0. Furthermore, it is not difficult to check that 7, (u) > J¢, (1)
for any u € By and &1 < &. This shows that ®; is monotone decreasing with respect to &
for fixed k. Based on the above discussion, we shall study the minimization problem (5.9).

Proposition 5.2 For fixed k and &, ©f is achieved by a positive function.

Proof Suppose that {u;} C By is a minimizing sequence of ®;. Since {u;} is bounded in

L?(V), by Lemma 3.1-(b), there exists some uék) € VR such that up to a subsequence (still

denoted by {u}),

uj(x)—>u§k)(x), as j > +oo, VxeV.
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1
Then uék) > 0on V and ||u§k) lz»(vy = k?. Hence uék) € By, and it is easy to check

Of = lim J:(uj) = J:u®),
J—>+o0
and there exists some A € R such that
_p_
— Au® + hu® = B) + @) + A@uP (WP +6)" 2 on V. (5.14)

Since ugk) > 0 on V, we conclude that uék) > 0 on V. In fact, if there exists some xg € V

such that

0= uék) (xp) = min ufsk) (x),
xeV

then by (5.14), we have Auf;k) (x0) = 0. Since G is connected and finite, uék) (x) = uék) (x0) =

0. This contradicts to ugk) € Bg. Therefore, uf;k) is a positive solution to (5.14). ]

Now we analyze the asymptotic behavior of ®F when both k and & change.

Lemma 5.3 Under the assumptions (a) and (c), it holds that
2
lim ©f" = 4o0.
k—0t

Furthermore, there exists some ky, sufficiently small and independent of € such that @ib >0
for any € < ky.

2
Proof Forany e < k7 and u € By, by Holder’s inequality and Jensen’s inequality we deduce

that
3 3
/A%(x)dus (/ A(x)(u2+e)_gdu> (/ (u2+s)gdu>
14 1% \%

p—
7

p=2 1 1(/‘ ) _r )é
<273 (L+ V2 k2 A(x)(w” +¢e)"2dpu )
1%

which implies that

1 2

/ A+ fduz ——— (/ A%(x)du> . (5.15)
v 27 A+ |Vhk v

Then by (5.10), (5.11) and (5.15), we obtain

e . h q1-22 k
Op = inf Je(u) > =|V|" Pk? — —max B(x)
ueBy 2 p xeV

1 2
p—2 (/ A%(x)dlj“) , Yueb.
272 p(1+|V)k WV

2
Thus, we have @’,;” — +o00 as k — 07. One can easily choose some k, < 1 independent
of & such that

+

-2 2k 1 1 2
V" 7k — — max B(x) + = A2(x)du ) > 0.
p xeV 1%

2 25 p 1+ |Vk
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In fact, we can choose k;, as
)4

(Jy A3 rdp)® ( hlIv P )“ |
1 ,

k, = min

2 —
2572p (L4 VD) (NIVI'7 + 2 max B(x) Jv B~ (x)du
xXe

(5.16)
2
Here we have used the fact that k, < kb” . As a consequence, we have
2
kbp kp &
0 < @kb < @kb < ®k>’ for any ¢ < ky.
This finishes the proof of Lemma 5.3. O

Next we analyze the asymptotic behavior of @} as k — +o0.

Lemma 5.4 Under the assumptions (a) and (c), for any fixed ¢ > 0, it holds that

lim ©f = —oco.
k—+00

Proof Let 2 = {x € V | B(x) > 0} and define

1, ifx € @,

xa () = {o, ifxeV\Q.

Obviously, 2 # @ which is due to the assumption (c) in Theorem 2.5. Denote by

;(z):/ B(x)e™Wdu =Y " n(x)Bx)e' + Y px)Bx), teR. (517
\%

xeQ xeV\Q

Then ¢ () is smooth in R and ¢ (0) < 0 by the assumption (5.2). For any ¢ € R, we have

{(Z):/ B+(x)etXQ(x)dM_/ B—(x)etxg(x)dM
v V\Q

:/ B+(x)etdu—f B~ (x)du

Q V\Q

ZminB+(x)|Q|e’—/ B~ (x)dpu.
xeV \%

Thus, there exists some 79 > 1 such that {(fp) > 1. Moreover, direct computation shows
that

¢'() =) n)B@e = / B(x)xa(x)e**du > 0,

xeQ |4

which implies that £ (¢) is strictly increasing in R and ¢(¢) > 1 for any ¢ > 1.
We choose a positive function v(x) = cexp (to XQ (x)), x € V,where ¢ > 0is determined
by

\4 =/ vl’dﬂ=c1’/ ePloxe®q (5.18)
Vv Vv

@ Springer



138  Page 26 of 45 L.Cuietal.

Thus, it is easy to see that
/ B(x)vPdu = cp/ B(x)eP0xe™dy = P (pry) > cPL(ty) > 0. (5.19)
% %

1 _1
Since uyv =k |V| Pv € By, we have

_ L2 2 ’ k
Ja(ukv)=§kp|v| v/ (|Vv| + hv )du—m B(x)vPdu

1 2.2, _p
+—/A@@HWPU+QZM
pJv

12 _2 5 k L _p
< k?|VI77 | (IVl? +hv?)dp — —— B(x)vpdu—i——a 7 | A(x)dp,
2 v rIvi p v

which shows that 7, (uxyv) — —oo ask — +oo by (5. 19). This finishes the proof of Lemma
5.4. O

Lemma 5.5 Under the assumptions (a), (b) and (c), there exists some ky > 0 independent of
& such that @ij < 0 for any ¢ > 0. In particular, k;, > k.

Proof By (5.13), we have

h k
Te(ur) < EIVI “ik» + v )y B~ (x)du + —/ A(x)dpu. (5.20)
The right hand side of (5.20) is non-positive if and only if
hlp 2, k?
A < PP g5 B~ (x)dp =: n(k).
2 |V|2
v 21V |7

One can easily check that

2p

42
p+2 1 ) |h|(p —2)|V |2
4 fV B~ (x)du 4 ’

max 1 (k) = n(ky) = (

where

2\ &
= (P12 v N (5.21)
d 4 [, B-(x)du ' '

Hence by the assumption (2.5), we deduce that @i < Je(uy) < Oforanye > 0.Furthermore,
by (5.16) and the fact p > 2, we have

VI s =

P

ky > min § (VS
[y B-(x)du

This finishes the proof of Lemma 5.5. O

Remark 5 By (5.13) and (5.20), we further obtain that

js(ﬁkt)f—iku /B+(x)d;1,.
plViJv
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Since max,cy B(x) > 0, we get

2\ 5

1 v\’

®f, < ———min M , 1 / Bt (x)du <0, foranye > 0.
: plV] fV B~ (x)du 1%

Proposition 5.6 Suppose that the assumptions (a), (b) and (c) hold.

(a) There exists some constant © independent of & such that © < © for any ¢ > 0 and
k > kb.

(b) There exists some ky sufficiently large and independent of & such that ®7 < 0 for any
k > kﬁ.

Proof (a) By the same arguments of the proof of Lemma 5.4, we can define a positive function

v(x) = cexe® x e vV, where ¢ > 0 satisfies (5.18). Naturally, we have v(x) > ¢ for

1 1
any x € V and (5.19) holds. Since uyv = k7 |V| Pv € By and h < 0, we deduce by
(5.7) that

B 12 _2 ) k 4
Je@v) < kv |V 7 | [Vol"du — — [ Bx)vPdu + A(x)du.
2 1% plvVl Jy pcPk Jy

(5.22)

As a function of k, the right hand side of (5.22) achieves its maximum for k > k;,, denoted
by ©.
(b) The right hand side of (5.22), being considered as a function of %, is continuous and
independent of £. We know that the function on the right hand side of (5.22) goes to —oo
as k — +o0. Hence we can choose k; > max{ky, 1} sufficiently large such that ©f < 0
for any k > ky. This completes the proof of Proposition 5.6.
[m]

Lemma5.7 For any fixed & > 0, O is continuous with respect to k.

Proof By (5.12) and (5.13), we see that ®; is well-defined for any k > 0. Now we need to
check that for any k > 0 and any sequence {k;} with k; — k as j — +o0, it holds that

lim O = 6f. (5.23)

Jj—+o0

By Proposition 5.2, we suppose that @; and @ii are achieved by u € By and u; € By,
respectively, furthermore, u and u; are positive onV.
Next we choose a sequence of positive numbers {7;} such that 7ju € By;. Then we have
1 | '
k;’ = |ltjullLr(vy = tjk?, which implies that f; — 1 as j — 4-o00. Therefore, we get
2 p

of <j(m)—tl (IVul* + hu?)d 5 Beowr
k; = Jellju) = n (x)ulPdu
J 2 Jy pJv
1 _r
+*f A(x)(tjzuz—i-s) 2du,
pJv

which yields that
lim sup @,ij < Je(u). (5.24)

j—+oo
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1 1
On the other hand, since |lu|lzrv) = k;’ — k7 as j — 400, by Lemma 3.1-(b), there
exists some & € VR such that up to a subsequence (still denoted by {u ;}), u;(x) — u(x) as
1
Jj — oo for any x € V. Thus, it holds that ||i||Lr(vy = lim |lu;|lLr(vy = k? and then
j—>4oo

i € By. Therefore,

Tew) < (@) = lim Jo(u;) = lim ©OF . (5.25)
Jj—>+00 j—+oo
Combining (5.24) and (5.25), we conclude that lim G)k =TJ.(u) = @i. This gives (5.23).
j—) o0
[m]
5.3 Proof of Theorem 2.5
Before giving the proof of Theorem 2.5, we first introduce the quantity Ap , .
Lemma 5.8 Suppose that the assumption (c) holds. For any y > 0, we set
Agy = inf { VUl 2, Lu e CB. ), (5.26)
where
C(B.y) = {u eW2(V) [u=00nV, lulLry) =1, / B~ (x)uPdp
v
=y / B_(x)du} . (5.27)
1%

Then Ap,, is monotone decreasing with respect to y .

Proof We split the proof into three steps.
Step 1. We first consider the following minimizing problem

iy = inf { IVl el 2 1w e C'By
where

CB,y)={ueW" (V) |uz=00nV, |luliry =1,

/ B (x)uPdu < yf Bf(x)dpv}.
1% 1%

1

Choose any xo € 2 := {x € V | B(x) > 0} and denote u,, (x) = u(xp) 7 8x,. Then
u, € C'(B, y). This implies that C'(B, y) # ¥ and thus A’B,y is finite. By the definition of
C'(B,y),if y1 <y, thenC'(B, y;) € C'(B, ¥2), and hence )L/Bm < )‘/B,yl' This yields that
)J& y is monotone decreasing with respect to y . In the sequel, we shall prove that )L}),’ y =*By-
By the fact that C(B, y) € C'(B, y), we find )L}gvy < AB,y. So it remains to check that
XB,V > )\B,y-

Step 2. )\’B’y is achieved by some u € C(B, y). In fact, suppose that {u;} C C'(B,y) is a
minimizing sequence of )ng Y then {u;} is nonnegative and bounded in L” (V). By Lemma
3.1-(b), we assume that up to a subsequence (still denoted by {u ;}),

uj(x) —> u(x), asj — +oo, VxeV.
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Thus one can check that u € C'(B, y), and then )J B.y is achieved by u. We claim that
u € C(B, y). Otherwise, there exists some constant ¥ > 0 such that

/ B~ (x)w +x)Pdu = y/ B~ (x)du.
Vv Vv

Since (1 + «)||u + KIIL,,(V) € C'(B, y), we have

2 -2

HV ( U+« ) U+ K V@ +x>||L2(V) IIWIIsz)
Contradiction arises. Hence u € C(B, y). This also yields that C(B, y) # @.
Step 3. By the definition of Ap,,,, we conclude that
)" ”VMHLZ(V)HMHLZ(V) )“B,y'
This finishes the proof of Lemma 5.8. In addition, A, is achieved by the u as well. O

Lemma 5.9 Suppose that the assumption (c) holds. Then Ag, =< Ap for any y > 0. In
particular,

lim )\.B y = )\B
y—0t

Proof For any u € C(B), by (5.4) and the assumption (c), we have
/ uldp > 0, / B~ (x)uPdu = 0.
1% 1%

We choose some constant ¢ > 0 such that ||cu||rr(vy = 1. This implies that cu € C'(B, y).
Therefore, we get that

By S IVERag leul 2, = 1Vul g lul 2, -

Taking the infimum with respect to u# on both sides over the set C(B), we have )»39’ y = AB.
Together with the fact A}g,y =Ap,y wegetip, < Ap.

Next we shall verify that A g = lim,, _, o+ A, . Suppose this is not true, then there is some
&0 > 0 such that for any yy > 0, there exists y < yp satisfying Ag — Ap , > €o.If yo — 07,
then y — 0. For this sequence {1, },, we assume that A , is achieved by v, € C(B, y).
Thus we get

-2
1Yoy 1720 oy 12y < 2By < A — €0

Using |lvy llLr(vy = 1 and the above inequality, we find that {v, }, is bounded in wh2w).
Then by Lemma 3.1-(b), up to a subsequence (still denoted by {v, }, ), there exists v €
W12(V) such that vy (x) > v(x)asy — 07T, for any x € V. Thus we have

vPdpu = lim vPdu =1,
/V o V—>0+/V yoH

and

/.B_(x)vpd;t: lim /B‘(x)vf}du: lim y/ B~ (x)du = 0.
v y—>0t Jy y—0t Jy
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This implies that v € C(B). Therefore, we have
2 T 2 -2 _
)“B =< ”VU“LZ(V) ”v”LZ(V) - yi%* ”Vv}’ ”LZ(V) ”Uy ||L2(V) = )‘B £0.
Contradiction arises. This finishes the proof of Lemma 5.9. O

Lemma 5.10 Suppose that the assumptions (a), (b) and (c) hold. Then there exists yy €
(0, ﬁ) sufficiently small such that

A h 3
5= BTN S G . (5.28)
2 8
For this 8, we denote by
1-2
LRV b
Y| = min ) , (5.29)
2 S7(48 + 2|kl + 1)

where S| is the Sobolev embedding constant (see (3.1) with h(x) = 1 and q = p), and set

Y, = %Tl. (5.30)
4lhl|v] e
If
max B(x) < TZ/ B~ (x)du, (5.31)
xeV Vv

2
then there exists some k, independent of & such that J.(u) > %lef for any ¢ > 0 and
u € By,. In particular, @i* > 0 forany e > 0, and ky < ky < kg.

Proof By Lemma 5.9, there exists some yp € (0, ﬁ) small enough such that
1
0<Ap—2Apy < Z()LB —|AD).
This gives (5.28). We set

1-2 7
g = (PIHIVE P (5.32)
Yo Jy B~ (x)dp

It is easy to check that ki > ky by (5.21). Now we assume that k > k., and decompose J;
as

g =6 - [ Breowrans - [ aw @ o) Fan 653
pJv pJv
where
1 2 h 2 1 _

For any u € By, we consider the following two cases:
Case 1. Suppose that

/ B~ (x)uPdu > yok/ B~ (x)du.
14 1%
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Since k > ky, by the Holder’s inequality (see (5.10)) and (5.32), we have
Yok _
60 = Sl + 12 [ 5 a
v

- @k% <2V0fv B (x)dﬂkl—% B |V|1_%)

-2 |hlp
|l 1-2,2
> 7|V| rk?. (5.35)

Case 2. Suppose that
/ B™ (x)uPdu < ygk/ B~ (x)du.
v v

1
Since u € By, k” ?u € C'(B, yp). By the proof of Lemma 5.8 and the definition of AB.yp» it
holds

_1 _
My =Ny S IVE P20, Ik uan(V)—||Vu||12(v)||u||L§(V). (5.36)
We rewrite (5.34) as
5 2 1 o
el = G ||W||Lz(v)+p BT @ du =G ). (5.37)

Therefore, by (5.28) and (5.36), we get

\

1 | )
Gw) = 3 Oy +h>||u||iz(v) + /V B (oudy
L .y o . LW
= L2y = 2|h| +1 L2(V) 20h] + 1 L2(V)
8 > 48 ,
= 2hl+1 an+n \2lv - : 5.38
— 2lh|+1 ”u||L2(V) + Qlhl+ 1) <2 ll “”Lz(v) Q(u)) ( )

We solve inequality (5.38) with respect to G(u), and then deduce by (3.1) that

1)

>
90 = a1

)
(Il 2y 4+ 20VulZ20) = ——=——Illul}12y
V) W) = 45 F2h + 1 2(V)
1) 2

2
Z S| = —kvr. 5.39
T S2(48 + 20kl + 1)” lirev) S2(48 +2/h + 1) (5.39)

2
In any case, it follows from (5.29), (5.35) and (5.39) that G(u) > Y1k 7. Thus, we deduce
that for any u € By and any k > ki,

2k
Je(u) > Y1kr — —max B(x).
p xeV

P

Applying (5.30) and (5.31), one can easﬂy check that (A) s ks«. Then for

2max,cy B(x)

any u € By,, we have J; (1) > 1T1k” Therefore, @E > ( for any ¢ > 0. By Proposition
5.6-(b), we see k, < kz. This ﬁmshes the proof of Lemma 5.10. ]

Proof of Theorem 2.5 For sufficiently small ¢ > 0, there will be ky and k;, such that k; > k,
and ®in < 0 while @i? > 0. In fact, by Lemma 5.3, there exists some k, > 0 independent
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of ¢ such that @i) > 0 forany ¢ < k,. By Lemma 5.5, there exists some k; > 0 independent
of ¢ such that @iu < 0 for any ¢ > 0. In addition, k; > k. In the sequel, we assume & < k.

Let k. be defined as in Lemma 5.10 satisfying that ®,"§* > ( for any ¢ > 0. Fix ¢ > 0 and
we consider the minimizing problem

©° := inf J.(u) = min OF,

ueDy ky<k<k,
where

Dy = [u e WA (V) [u=00nV, ks < [lullf,y, < k*}.

For any k € [k, k] and any & > 0, by (5.12) and Proposition 5.6-(a), we see that @5 is
uniformly bounded, thus ©¢ is well-defined. By Proposition 5. 2 each ©; is achieved by a
positive function. Therefore, by Lemma 5.7, we conclude that ©F is achleved by a positive
function, denoted by u‘®) € Dy. In another way, similar to the arguments of Proposition 5.2,
one can directly prove that ©¢ is achieved by some positive function u‘®) € Dy.

By Lemma 5.5 and Remark 5, we find that

0 <@ <0. (5.40)
Namely, the energy ©¢ = 7, (u'®) is strictly negative. Let ||u(5)||€,,(v) =k® € [ky, k).

Notice that both (H)]ib and @)]‘i* are positive, we see k® e (kp, k4). In addition, u®isa positive

solution to the asymptotic Eq. (5.6).
1

Since {u'®}, is bounded in LP (V) by the constant kf , hence bounded in L*°(V), one can
easily deduce by Lemma 3.1-(b) that up to a subsequence, denoted by {u(¢/)} j» we have

u®)(x) = u(x), asj — +oo, Vx e V.

Here u € L°°(V) is nonnegative. Since u®i is a positive solution to (5.6) with ¢ = ¢},
by the same arguments of Remark 4, we conclude that {u(¢/)} j is uniformly bounded from
below. Thus, u is positive on V. Letting j — +00 in (5.6) with ¢ = ¢, we conclude that u
is a positive solution to (5.1), and the energy is strictly negative by (5.40). This finishes the
proof of Theorem 2.5. O

6 Heat flow and topological degree for the null case

In the last section, we address the null case
—Au=Bu"'+Au P onv, 6.1
where p > 2, A(x) > 0 and B(x) < 0 on V unless otherwise specified.

Remark 6 Suppose that u is a positive solution to (6.1). Letting xo € V be a minimum point
of u on V, then we get

0> —Au(xo) = B(xo)u(xo)” " + A(xo)u(xo) P71,

which implies that

A % A
u(x) = u(xo) = <%) > (lféiv _;X)) , VxeV. 6.2)

m‘_
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Similarly, we denote by u(x1) = max,cy u(x) and then have
0 < —Au(x) = BOe)u(x)?™" + A@)ux) 7",
which yields that

u(x) <wu(xy) < < Alx) )ﬂ < (m AG) )E VxeV. (6.3)

ax
—B(x1) xeV —B(x)

Hence by (6.2) and (6.3), we obtain the a-priori estimate for the positive solutions to (6.1) as
the following

()—(' AV < A("))zl”—c) VieV. (64)
ulx) = gg—B(x)) <u(x _<Tea&(—3(x) =ux), VxeV. .

One can easily check that ¥ and u are sub- and super-solutions to (6.1) respectively. Therefore,
we shall apply the sub- and super-solution method (similar to Theorem 2.2) to find solutions
to (6.1). Namely, we can find some minimizer u of the energy functional 7 in N' = {u €
WL2(V) | u < u(x) < u}, where

J(u) = f/ |Vu| d,u——/ B(x)updpb—i-f/ Ax)u"Pdu.
2 Jv pJv plv

Then, we can show # is indeed a solution to (6.1). To avoid duplication, we turn to utilize

heat-flow method to derive the existence result in the sequel, in which sub- and super-solution

method is also involved for heat flow.

Example 3 Thanks to (6.4), if —A(x)/B(x) = C for some constant C > 0, then (6.1) has
1

only the constant solution u(x) = C2 on V.

Inspired by [17, Theorem 1], we introduce the heat flow for (6.1)

{Mz — Au = g(x, l,t)7 inV x (0, —I—OO), (65)

u(x,0) = uo(x), onV,
where ug(x) > 0 on V is an arbitrary function and g(x, u) = Bx)uP~' + A(x)u=P~!
with p > 2. We say u(x, t) is a global solution to (6.5) with initial data uo provided that
u(x,t) € C([0, +00)) for any fixed x € V, u(x, 1) € VE for any fixed ¢ € [0, +00), and

u(x,0) = uo(x) on V. Similarly, the definition of local solutions only shifts the interval
[0, 400) as [0, T] for T > 0. Some similar notations are given in Subsection 6.1.

Definition 6.1 Suppose that ¢y (x, 1), Yo(x,t) € Cl([O, T]) for any fixed x € V, where
T > 0is given.

(a) We call the bounded function ¢g(x, ) > 0 a sub-solution to (6.5) in V x [0, T'] if it
satisfies

300 — Ao — g(x,00) <0, inV x(0,T],
@o(x,0) < up(x), onV.

(b) We call the bounded function vo(x, t) > 0 a super-solution to (6.5) in V x [0, T'] if it
satisfies

Yo — Ao —g(x, ¥0) =0,  inV x(0,T],
Yo(x, 0) = uo(x), onV.
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Now we denote functions ¢o(x, t) and ¥o(x, ¢) in V x [0, +00) by
@o(x, 1) := Kkju(x), Yolx,1):=kou(x), for(x,1) € V x [0, +00), (6.6)

where u(x) and u(x) are given in (6.4), the constants 1 € (0, 1) and « € [1, +00) are
chosen such that

@o(x, 1) <minug(x), Yolx,t) > maxug(x), for(x,7) € V x [0, +00).
xeV xeV

Then one can easily check that ¢g(x, ) > 0 and ¥(x, #) > 0 are sub- and super-solutions
to (6.5)in V x [0, T'] for any T > O respectively. Set A; = ¢o and Ar = p. We define a
map

F=0@ —-A+M)""gx, )+ : Vx[0,T]—> V x[0,T], w+ v,
satisfying that

0v — Av+ Av = g(x, w) + Lw, inV x (0, T],

6.7)
v(x,0) = up(x), onV,

where A = A(A, B,up) > 0 is a constant large enough satisfying that g(x, u) + Au is
increasing with respect to u € [A1, A,]. After that, we can define two sequences {¢y} and

{¥} as
ok = For—1, Y = Fip—1, fork > 1. (6.8)

In any finite interval of 7, we shall prove that {¢;} and {y;} are monotone increasing and
decreasing respectively, and their limiting functions are identical. This establishes the short-
time existence of heat-flow to (6.5). The global existence of u(x, t), (x,t) € V x [0, +00)
follows by continuation. Finally, we need to consider the asymptotic behavior of u(x, t) as
t — +oo. In order to guarantee the existence of v(x, t) in (6.7), we establish the existence
result for general heat equation on connected finite graph.

6.1 Existence, uniqueness and maximum principle for the general heat equation

In this part, we discuss the general heat equation

ur — Au+c(x,)u = f(x,t), inV x (0,400),

(6.9)
u(x,0) = up(x), onV,

where ug(x) € VR is an arbitrary function, c(x,t) and f(x,t) are C°°([0, +00); VR)
functions, that is, c(x, -), f(x,-) € C°°([0, +oo)) for any x € V,and c(-, 1), f(-, 1) € yR
for any t € [0, +00). Thus, we associate u(x, t) with a map

u:[0,+00) = VE [u@®)]x) :=ux.,1), xeV, 0<1 < +oo.
Similarly, we define

f:[0, +00) » VR, [£()](x):= f(x,1), x €V, 0<t < 400,

{c : [0, 400) — VR, [e@®)](x) := f(x,t), xeV, 0<t < +o0.

Definition 6.2 For any c(x,1), f(x,1) € C([O, +00); VR), we say a function u €
c! ([O, +00); VR) is a solution to (6.9) provided that
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(a) [u(0)](x) = ug(x) forany x € V;
(®) 9/[u@)](x) — Alu(®)](x) +[e@®)]x)[u@)](x) = [£(#)](x) forany (x, 1) € V x (0, +00).

Theorem 6.3 Let G = (V, E) be a connected finite graph. Suppose that c(x,t), f(x,t) €
C> ([O, +00); VR), then (6.9) admits a unique solution u € Coo([(), +00); VR).

Proof Supposing that V = {x;}1<i<m, We express any C* ([0, +00); VR) function u(x, t)
as

u(x, 1) =Y di(t)8y (x), (6.10)

i=1

where 8y, is defined as in (2.1), the coefficient d; (¢) belongs to C*° ([O, +oo)) forl <i <m.
Thus it is equivalent to seeking for a function u(x, ¢) of the form (6.10) satisfying that

d(0) = di(0)8, (xi) = u(xg, 0) = ug(xp), 1 <k <m, (6.11)

i=1

and
, 1
dG() — —— Y g (di (1) — de () + ¢k, Dk (1) = f(xx, 1), 1 € (0, +00),
w(xk) =

1<k <m. (6.12)

Applying the existence and uniqueness results of ordinary differential equations (see [24]),
we obtain a unique C°°([O, +00), R™) function d(¢) = (d(¢),--- ,dn (1)), t € [0, +00)
verifying (6.11) and (6.12). This completes the proof of Theorem 6.3. O

Remark 7 (a) In Theorem 6.3, if c(x, 1), f(x, 1) € C*([0, T]; V) for some T > 0, then
(6.9) admits a unique solution u € C*([0, T1; VE).
(b) By Theorem 6.3, for any 7 > 0, we conclude that {¢x} and {1/} given by (6.7) and (6.8)

are well-defined. Here we refer the readers to the arguments of Step 1 in the proof of
Theorem 2.6.

Next we present the maximum principle for the heat equation on graph.

Lemma 6.4 (Maximum principle) Suppose that T > 0 and u(x,t) € C'([0, T]; V)
satisfies

Uy — Au = f(x,1), inV x (0,T],
u(x,0) = Q(x), onV,
where f(x,1) € C([0, T1; VF). Then

(@) if f(x,1) <0inV x [0, T], we have maxy x[o,7] u(x, 1) = maxyey Q(x);
(b) if f(x,t) >0inV x [0, T], we have miny y (o, 7] u(x, t) = minyey Q(x).

Remark. The existence of u(x,t) € C 1 ([0, T, VR) is guaranteed by the same arguments of
Theorem 6.3.

Proof (a) We first assume that f(x, ) < 0in V x [0, T'] and prove this conclusion. Suppose
that

max u(x,t) = u(xg, ty), forsomexp € Vand0 <ty <T.
Vx[0,T]
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Then —Au(xg, to) > 0.If0 < 19 < T, thenu,(xg, t9) = 0;iftg = T, then u,(xg, t9) > 0.
Thus, we have

0 < u(x0, to) — Au(xo, to) = f(x0, 1) <O.

Contradiction arises. Therefore, ) = 0 and the conclusion holds. For the general case
f(x,t) < 0in V x [0, T], we denote by u®(x,t) = u(x,t) — et for ¢ > 0. Direct
computation shows that

uf — Au® = f(x,1) —e <0, inV x(0,T],

uf(x,0) = Q(x), onV.

As a consequence, we deduce that

max
XU,

u®(x, 1) = max Q(x),
V(0,71 eV

which implies that maxy x[o, 7] u(x, t) = max,cy Q(x). In fact, one can check that

max Q(x) = max u®(x,t) < max u(x,t)= max (u®(x,t)+ st)
xeV Vx[0,T] Vx[0,T] Vx[0,T]
< max u’(x,t)+eT =max Q(x) +¢&T — max 0(x),
xXe

Vx|[0,T] xeV

as ¢ — 0. This finishes the proof of (a).
(b) One can easily get it by applying (a) to —u.
[m]

Lemma 6.5 (Maximum principle) Suppose that T > 0 and u(x,t) € Cl([O, TI; VR)
satisfies

Uy — Au+c(x,t)u = f(x,1), inV x (0,T],
u(x,0) = Q(x), onV,
where f(x,t),c(x,t) € C([O, T1; VR) andc(x,t) >0inV x [0, T]. Then

(a) if f(x,1) <0inV x [0, T], we have maxy xjo,77u(x, t) < maxcey QT (x);
(b) if f(x,1) 2 0inV x [0, T], we have miny »jo,7) u(x,t) > —maxyey O~ (x);
(c) if f(x,1) =0inV x [0, T], we have maxy x[o,77 [u(x, 1)| = maxyey |Q(x)].

Proof One can prove it similarly to Lemma 6.4. O

6.2 Heat-flow method for EL equation
We give the proof of Theorem 2.6.

Proof of Theorem 2.6 For any T > 0, we see that ¢o(x, t) and ¥ (x, 1), defined in (6.6),
are sub- and super-solutions to (6.5), respectively, in V' x [0, T']. Let {¢x} and {y} be the
sequences defined by (6.7) and (6.8). Choose A = A(A, B, up) > 0 large enough such that

ag(x, u)
u

For brevity, we split the proof into three steps.

+ A > 0 with respectto u € [A1, A2]. (6.13)

@ Springer



The Einstein-scalar field Lichnerowicz equations ... Page370f45 138

Step 1. We establish the short-time existence result for heat flow (6.5). To this end, we first
check that the sequences {¢y } and {} are monotone increasing and decreasing respectively.
Therefore, there exists a unique u* such that u* = Fu™* and

lim ¢ =u*= lim . (6.14)
k—+o00 k—+00

In other words, u* is a positive solution to

hu* — Aut =g(x,u*), inV x(,T],
z* 8( ) 0,T] 6.15)
u”(x,0) = up(x), onV.
Proof of Step 1 We claim that
Ok, Yk € COO([O, Tl; VR) are well-defined for any k£ > 1, 6.16)
<< << =<Yp < <Y1 <YoinV x [0, T]. '
In fact, by (6.7) and (6.8), {¢x} and {1} satisfy
0 Pk+1 — A@rkt1 + Ak = g(x, k) + Agr,  InV x (0, T],
(6.17)
@k+1(x, 0) = uo(x), onV,
and
O Vk+1 — Ak + A1 = g(x, Yu) + AY,  inV x (0, T], 6.18)
Yrr1(x, 0) = up(x), onV. ’

By Theorem 6.3, ¢; € C*® ([0, T1; VR) is well-defined. Since ¢ is a sub-solution to (6.5),
combining (6.17) with k£ = 0, we have

9 (@1 — @o) — Alp1 — o) + A(p1 —@o) =0, inV x(O,T],
(o1 — ¢o)(x,0) >0, onV.

Applying Lemma 6.5-(b), we have ¢; > ¢o in V x [0, T]. Again by Theorem 6.3, ¥ €

Cc>® ([0, T, VR) is well-defined. Since v is a super-solution to (6.5), combining (6.18) with

k = 0, we deduce that /| < ¥9in V x [0, T'] via Lemma 6.5-(a). In addition, by (6.17) and
(6.18) with k = 0, we have

0 (o1 — Y1) — Algr — Y1) + Alg1r — Y1)
= g(x, @0) — g(x, ¥o) + Alpo —¥o) <0, inV x (0, 7],
(o1 —¥1)(x,0) =0, onV,
via (6.13) and g9 < Yo in V x [0, T]. Thus by Lemma 6.5-(a), we deduce that ¢; < ¢ in
V x [0, T].
Inductively, we assume that

{ i i € C=([0, T; VR) are well-defined for 1 <i <k, (6.19)
<@ <- <@g <yYp<---<Y <yPYoinV x [0, T].
It remains to show
{ Prt1, Vi1 € C([0, T1; VE) are well-defined, 6.20)
Gk = @rr1 < Vit < YrinV x [0, T1.
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By Theorem 6.3, g1 € C*°([0, T1; VF) is well-defined. Applying (6.17), we have

0 (Pk+1 — 1) — A(@k+1 — 9k) + A@k+1 — @k)

=g, o) —8(x, gk—1) + Aok —r—1) =20, inV x(0,T],

(Yk+1 — o) (x,0) = 0, onV.
Here we have used (6.13) and the assumption (6.19). It follows from Lemma 6.5-(b) that
@k+1 = @k in V x [0, T]. Again by Theorem 6.3, Y41 € C*([0, T]; V®) is well-defined.

Applying (6.13), (6.18) and (6.19), we deduce that Y < ¥ in V x [0, T]. In addition, by
(6.17) and (6.18), we get

O (@rt1 — Vier) — D@kt — Vit 1) + M@kt 1 — Vit 1)
=g(x, @r) — g(x, ) + Mgk — ¥i) = 0, inV x(0,T],
(Pk+1 — Y41 (x,0) = 0, onV.
Applying Lemma 6.5-(a), we have ¢x41 < ¥4+1 in V x [0, T]. Thus, (6.20) is obtained and

the claim (6.16) is proved.
By claim (6.16), we are able to define

u*(x,t) = lim @i(x,1), v*(x,t) = lim Yp(x,1), V(x,1) €V x[0,T],
k—+o00 k—+00

then u*(x, 1) < v*(x, 1) and u*(x, 1), v*(x, 1) € [A1, A2]in V x [0, T]. Letting k — +00
in (6.17) and (6.18), we conclude that u*, v* € C*([0, T1; V¥) satisfy that

ou™ — Au* =g(x,u*™), inV x(0,T],
¢ u g(x,u™) 0,T] ©21)
u*(x,0) = up(x), onV,

and
vt — Av* =g(x,v*), inV x(0,T],
t* 8( ) ( ] (6.22)
v¥(x,0) = up(x), onV.

In fact, by (6.16), (6.17) and (6.18), we see that {¢y (x, -)} and { (x, -)}, seen as functions
of ¢ for any fixed x € V, are uniformly bounded and equicontinuous in [0, T']. Applying the
Arzela—Ascoli Theorem, we conclude that u™, v* € C ([0, T1; VR), and up to a subsequence,
still denoted by {¢x} and {y}, we have

@ (x, ) = u*(x, -) uniformly in [0, T], as k — +o0;
Y (x, ) = v*(x, -) uniformly in [0, T], as k — +oo.

Differentiating (6.17) and (6.18) with respect to ¢, and combining (6.16), we see that {9, ¢}
and {0, ¥ } are uniformly bounded and equicontinuous in [0, 7] as well. Again by the Arzela-
Ascoli Theorem, we conclude that there exist functions Du*, Dv* € C ([O, T1; V]R), and up
to a subsequence, still denoted by {¢x} and {y}, such that for any x € V,

3@ (x,-) = Du*(x, -) uniformly in [0, T], as k — +o0;
0¥y (x, -) = Dv*(x, -) uniformly in [0, T, as k — +o0.

Thus we can check that 9;u™ = Du*, 9,v* = Dv*, and then u™, v* € Cl([O, T, VR).
Inductively, we get u*, v* € COO([O, T1; V]R).
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Next, we claim that u™*(x, t) = v*(x,t) in V x [0, T]. In fact, since u™*(x, t) < v*(x, )
inV x [0, T],

g, u*) — g(x,v*) = ((p — DB)O (x, )P — (p + DAX)O2(x, 1) P72)
W*(x,t) —v*(x, 1)
= —8(x, )W (x,1) —v*(x,1)),

where u™(x, 1) < 6;(x,1) < v*(x,t)fori =1,2,and 8(x,t) > 0in V x [0, T]. Subtracting
(6.22) from (6.21), we get

{a,(u TV) S AW —v) A DT v =0, iV 0.7 oo

w* —v*(x,0) =0, onV.

By Lemma 6.5-(c), we conclude that u*(x, 1) = v*(x,¢) in V x [0, T], that is, (6.14) is
proved. Thus, u*(x, t) is a positive solution to (6.15) satisfying u*(x,7) € [Aj, Az] in
V x[0,T].

The uniqueness of positive solution to (6.15) can be obtained by the same arguments of
(6.23). In fact, if w € C'([0, T1; VR) is another positive solution to (6.15), then

{ Y =) — AW* — ) = gx,u™) — g(x, @), inV x (0,T],

w* =W (x,0)=0, onV, (6:24)

and

glr,u®) — g, = ((p — DB (x, )2 = (p + DA (x, 1) "7?)
(u*(x, 1) — A(x, 1))
= —8(x, ) (x, 1) —u(x, 1)),

where 6; (x,1),i = 1, 2 are between u* and , and § (x, ) > 0in V x [0, T']. Then by Lemma
6.5-(c), we conclude that u*(x, t) = u(x, t) in V x [0, T], as required. This finishes the proof
of Step 1. O

Step 2. We establish the global existence result of the heat-flow (6.5). By Step I, for any
T > 0, (6.5) has a unique positive solution u*(x, r) with u*(x, 7) € [A1, A2]in V x [0, T].
Thus, we immediately obtain the global existence result. In fact, for any 7Tp > 0, we get the
unique positive solution u*(x, ) in V x [0, Tp]. We denote by u(x, ¢) the unique positive
in V x [0, Ty + 1]. Naturally, by the uniqueness, u*(x, t) = u(x,t) in V x [0, Ty]. Thus,
the global existence follows by continuation in such a way. For the uniqueness of global
existence, we just consider it in any finite interval and apply the same arguments of (6.23)
or (6.24). In particular, we conclude that the global solution u(x, 1) € C*([0, +00); VE)
satisfying

u*(x,t) € [A1, Ap], forany (x,7) € V x [0, +00). (6.25)

Step 3. Finally, we analyze the asymptotic behavior of the global solution u*(x,?) as
I — +oo. Combining (6.4), (6.6) and (6.25), we see that there exists some constant
C = C(A, B, ugp) > 0 such that

u*(x,t) > C, ¥ (x,1) € V x [0, +00). (6.26)

Indeed, we can choose C = A . We can verify (6.26) in another way. For any fixed T > 0,
set

u*(xo, tp) ;= min u*(x,1t).
Vx[0,T]
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If t9 = 0, then u*(x, t) > minycy ug(x) in V x [0, T]. Otherwise, 0 < tg < T, and we have
0> (3 — A)u*(x0, 10) = B(x0) (™ (x0, 10))P ™1 + A(xo) (u* (x0, 10)) P71,

which implies that

1 1
. Ao) \¥ (L A\
u™(xo, to) > <—B(xo)) = (Ecnel\r/l —B(X)> -

Hence we conclude that

w*(x, 1) > min [ mi‘rlluo(x),g] > AL, V(1) eV x[0,T]. (6.27)
XxXe

Since T > 0 is arbitrary, this gives (6.26).
For any ¢ > 0, multiplying (6.5) by d;u™ and then integrating in V x [0, ¢], we have

t t
//Iatu*(x,s)lzduds—i-/ /(—Au*(x,s))atu*(x,s)duds
0o Jv 0o Jv
t
:/ / B(x)(u*(x, )P~ o,u* (x, s)duds
0o Jv

t
+/ /A(x)(u*(x,s))_P_latu*(x,s)dpLds.
0o JV

(6.28)
Now we shall compute (6.28) term by term. Using integration by parts we get that
| s oo o = [ 1. s, )
v
=) H@ e )wayw (y,8) = u*(x, ) @u*(y, s) — du*(x, 5))
xeV y~x
= qu( e );wxya,(u*(y,w—u*(x,s))z
—ld T, ) /IV( )IXd
=34 u)(x, s M_Zdt u*(x,s)|“du.
Hence
! * * 1 * 2 1 2
(=Au™(x, s)gu™ (x, s)dpds = —f [Vu'(x, O1"dp — 5 | [Vug(x)|“dp.
o Jv 2 )y 2 )y
(6.29)

Notice that

/ BOo)u*(x, )P~ o (x, ) = Y () BO) (u* (x, )P~ du* (x, )

xeV

*ZM(X)B(X)E%(M (x, )P = **/ B(x)(*(x, 5)Pdp,

xeV

which implies that
! 1
/ /B(x)(u*(x,S))"_]Bzu*(x,S)duds=7/ Bx)(u*(x,1)Pdu
0o JV pPJv
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1
_7/ B(x)(uo(x))Pdpu. (6.30)
pJv

Similarly, we can check
! 1
f / AQ) * (x, )P 9u* (x, s)duds = —f/ A@) (" (x, 1) Pdu
0o JV pJv
1
—1——/ A(X)(uo(x))~"Pdu. (6.31)
pJv
Substituting (6.29), (6.30) and (6.31) into (6.28), we get
! * 2 1 * 2 1 *
|0:u™ (x, s)|“duds + = [Vu*(x, t)|"du — — | B(x)(u*(x,1)Pdu
0o Jv 2 )y pJv
1
4L / A (x, 10)Pdu
pPJv
1 5 1 » 1 —p
=5 [Vup()|"du — — | Bx)(wo(x)du + — [ Ax)(uo(x)) " "dp.
\% pJv pJv
Thus there exists some constant C = C (A, B, ug) > 0 such that for any > 0,
t
/(u*(x, )Pdu < C, / / |9pu* (x, $)|*dpds < C. (6.32)
1% o Jv

Then by Lemma 3.1-(b), there exists a function us, € L (V) and a sequence {z;} with
ty — 400 as k — —+00 such that

/ 10, (x, t1)Pdi — 0, w™(x, tr) = oo (x) in LX(V), ask — +oo.
v
Letting k — +o0 in (6.5) with t = #;, and combining (6.26), we see u, is a point-wise

positive solution to the EL Eq. (6.1), that is, (2.9) holds. This completes the proof of Theorem
2.6. ]

6.3 Topological degree
In this part, we calculate the topological degree for Eq. (6.1).

Lemma 6.6 Suppose that A(x) > 0, B(x) < 0 on V, and {u,} is a sequence of positive
solutions to (6.1), that is,

— Aty (¥) = By ()t ()P~ + Ay ()uy (1), Vx eV,
where {A,} and { B, } satisfy that
nETOO A,(x) = A(x), nlir_‘r_loo B,(x) =B(x), VxeV.
Then up to a subsequence (still denoted by {u,}), we have {u,} is bounded in L*(V).
Proof By Remark 6, the conclusion is trivial. O

Finally, we give the proof of Theorem 2.7.

@ Springer



138  Page 42 of 45 L.Cuietal.

Proof of Theorem 2.7 Suppose that max,cy A(x) = Ag and minyey B(x) = Bo. Let {u;},,
t € [0, 1] satisfy
— Aup = ((1 =B +1Bo)ul ™ + (1 =A+tA))u; " on V.  (633)

By Lemma 6.6 or Remark 6, {u,} is uniformly bounded in L°° (V). We omit the details and
refer the readers to the same arguments of Theorem 2.3-(c). So the topological degree do 4, 5
is well-defined. By the homotopy invariance, we have do 4, p = do,4,,B,. Noticing that by

1
Remark 6 or Example 3, u1(x) = (—Ao/Bp) 2 is the unique positive solution to (6.33) with
t = 1. Therefore, we obtain

do, 4,8 = do, 4,,B, = sgn det (DAO,AO,BO (ul)) =1.

In fact, direct computation shows that

D Ao, 4.8y (u1) =
p=2 p+2
% po _oxxn _ Oy _ Oxjam
1+2pAy" (=Bo) > ]]gz(X|) w(xn) u(xr)
_ Wnx 2P (_ % _Pxx3 .. _ Wxyxm
w(x2) 1+2pAy" (=Bo) ,,’fv(”) u(x2)
_ Wx3x _ P39 LV % . _ @x3xm
w(x3) u(x3) 1+2pAy™ (=Bo) u(x3)
1’*.2 +2
_ Pomxy _ Pxmxy _ Lumx3 . 7 (_Bo) 2
wCom) wCom) wm) 1+2pAy" (—Bo) ™

which is a strictly diagonally dominant and symmetric matrix whose principal diagonal
elements are positive. Hence it is positive definite. O

6.4 Detailed conclusions derived by heat flow

We consider the heat flow (6.5) with B(x) = —1 and A(x) = 1 on V, that is,

{u, — Au=g(x,u) = —uP~ 4 u”’*l, inV x (0, +00), 6.34)

u(x, 0) = ug(x), onV,
where p > 2 and ug(x) > 0 is a given function on V.

Corollary 6.7 (a) If 0 < ug(x) < 1 on V, then the positive solution u(x,t) to Eq. (6.34)
satisfies that

u(x,t) = 1uniformlyonV, ast — +o0.

(b) If 0 < up(x) < L onV for some L > 1, then the positive solution u(x, t) to Eq. (6.34)
satisfies that

u(x,t) = 1 uniformlyonV, ast — +o0.

Proof (a) By Theorem 2.6, the global solution u(x,t) € COO([O, 00); VR) is obtained
for (6.34). For any T > 0, let (x’,¢) € V x [0,T] be such that u(x’,t) =
maxy x[o,7] 4(x, t). Thus either
(1) ' =0, then u(x,t) < maxyey ug(x) <1inV x [0, T]; or
(i) ¢ > 0, then du(x’, 1) > 0, —Au(x’,#') > 0, and hence —(u(x’, 1))’ ™" +

(u(x’, 1) ""~" = 0, which implies that u(x’, ') < 1.
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(b)

Combining the above arguments and (6.27), we get min,ey ug(x) < u(x,t) < 1in
V x [0, T].
Next, we check that u(x, t) — 1 uniformly on V as t — +o00. We define

Umin (1) = mi‘r/lu(x, fy=min{u(x;, 1) |1 <i <m}=u(x,1), fort € (0,+00),
Xe
tmax (1) = max u(x, 1) = max {ui,0) |1 <i <m}=u(x],1), fort € (0,+00),
xXe
where x;, x; € V. Then the upper derivatives of umin and umax are given by

i t4h) — Unmi t
D+umin/max(t) — Tim sup umm/max( +h) Mmm/max( )’

Vit>O0.
h—0t h

One can check that up;, is locally Lipschitz continuous in (0, +00) since u(x,t) €
C>® ([0, +00); V]R). Without loss of generality, we may assume that uy;j, is differentiable
in (0, 400). If there exists some &y > 0 such that uy;,(#) < 1 — g9 for any ¢ > 0, then
we have

d _ e
— Umin > —u? ! +u ! = (_ (= 80)[)-2 + 1= 80)_p_2)umin > C(&0)umin > 0,

dr min min

which yields that umin (f) > exp (C (go)t)umin(O) — 400 as t — +00. Contradiction
arises. Thus for any ¢ > 0 and any x € V, there exists some 7" = T (¢) > 0 such that
u(x,t) > 1 — & whenever t+ > T. We conclude that u(x, ) — 1 uniformly on V as
t — +00.

By (6.27), the global solution u(x, t) € C°°([O, +00); VR) to (6.34) satisfies

u(x,t) > mi‘t/luo(x) > 0, forany (x,7) € V x [0, +00).
xXe

Forany T > 0, let (x',#') € V x [0, T] be such that u(x', t') = maxy o, 77 u(x,t).
Thus, either

(1) ' =0, then u(x’, ") = max,ey uo(x); or
Gi) ¢/ > 0, then du(x’, 1) = 0, —Au(x’,') > 0 and hence —(u(x’,1))"”" +
(ux’, 1)) """ = 0, which implies that u(x’, ') < 1.

Therefore, if max,cy up(x) < 1, we get u(x,t) < 1in V x [0, T], and the conclusion
(b) holds directly by (a). So, without loss of generality, we assume that max,cy up(x) €
(1, L]. In addition, if umax (fo) < 1 for some #y > 0, then we can derive that un. (1) <1
for any ¢ > 1o by repeating almost the same argument. Then using conclusion (a) we
get the desired conclusion. Therefore, without loss of generality we may assume that
1 < umax(t) < L for any ¢ € [0, +00).

Notice that u(x) = 1 is indeed the positive solution to (6.1) with B(x) = —1 and
A(x) = 1 on V. Then by Theorem 2.6 and the same arguments of (a), it remains to show
that for any x € V,

ulx,t) > 1, ast - +oo. (6.35)

In fact, if there exists some g9 > 0 such that uyi,(f) < 1 —gg forall # > 0, then we have

d
aumin > C(e0)Umin > 0,

which implies that umin (1) > exp (C(€0)t)umin(0) — ~+00 as t — +o0. Contradiction
arises. Hence for any ¢ > 0 and any x € V, there exists some 7 = T (¢) > 0 such
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that u(x,t) > 1 — & whenever ¢+ > T. Similarly, if there exists some &9 > 0 such that
Umax (1) = 1 + &g for all + > 0, then we have

d
aumax < C(ep)umax <O,

which implies that 1 < upmax(f) < exp (C(so)t)umax (0) - 0ast — +0o0, a contradic-
tion. Hence for any ¢ > 0 and any x € V, there exists some T’ = T’(¢) > 0 such that
u(x,r) < 1+¢& whenevers > T'. Combining the above two parts, we obtain (6.35). This
finishes the proof of Corollary 6.7.

]

Corollary 6.8 Suppose that —A(x)/B(x) = C on V for some constant C > 0. For any
positive initial data uo(x), let u(x, t) be the unique positive solution to (6.5). Then u(x, t) —

1
C 2 uniformly on 'V as t — +00.
Proof The proof of Corollary 6.8 is similar to Corollary 6.7. O
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