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Abstract
The KP-I equation has family of solutions which decay
to zero at space infinity. One of these solutions is the
classical lump solution, which is a traveling wave, and
the KP-I equation in this case reduces to the Boussinesq
equation. In this paper we classify all the ‘lump-type’
solutions of the Boussinesq equation. Using a robust
inverse scattering transform developed by Bilman–
Miller for the Schrödinger equation, we show that the
lump-type solutions are rational and their 𝜏 functions
have to be polynomials of degree 𝑘(𝑘 + 1) for some inte-
ger 𝑘. In particular, this implies that the lump solution is
the unique ground state of the KP-I equation (as conjec-
tured by Klein–Saut). The problem studied in this paper
was mentioned in Airault–McKean–Moser, our result
can be regarded as a two-dimensional analogy of their
theoremon the classification of rational solutions for the
KdV equation.

MSC 2020
35A02, 35B99, 35Q99 (primary).

1 INTRODUCTION

The KP equation first appeared in the 1970 paper [31] by Kadomtsev and Petviashvili, where they
studied the transverse stability of the line solitons of KdV equation. It can be written as

𝜕𝑥
(
𝜕𝑡𝑈 + 𝜕

3
𝑥𝑈 + 3𝜕𝑥

(
𝑈2
))
− 𝜎𝜕2𝑦𝑈 = 0.
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Here 𝜎 is a parameter and if 𝜎 = 1, then it is called KP-I equation and has positive dispersion,
while the case of 𝜎 = −1 is of negative dispersion and called KP-II.
KP equation is an integrable system and can be regarded as a two-dimensional generalization of

the classical KdV equation. It is an important PDE both in mathematics and physics. Up to now,
there exists vast literature on KP equation. In the sequel, we will briefly mention some results
which are most closely related to our objective.
There are various ways to study the KP equation. One of them is to use the inverse scattering

transform (IST). Manakov [41] studied the IST of KP equation on a formal level. Segur in [50] then
analyzed the direct scattering and rigorously obtained the solution for the direct problem under
a small norm assumption, but lump solutions are not investigated in those works. Then Fokas–
Ablowitz [24] obtained the lump solution in their IST framework. Their results are later extended
to include higher order rational solutions in [52]. Zhou [55–57] then studied the KP-I equation and
related problems in a more abstract and rigorous way. There the lump solutions correspond to
poles of the associated eigenfunctions. Since the pole structure is still not well understood in the
general case, the lump solutions are actually not treated. Later Boiti, etc. have also studied the
IST of KP-I in [11], with initial data belonging to the Schwartz space. However, in spite of all these
important progresses, in general, the IST of KP-I equation is not completely understood yet.
Observe that if𝑈 is a traveling wave of the form 𝑢 (𝑥 − 𝑡, 𝑦), then the KP-I equation reduces to

the following Boussinesq equation:

𝜕2𝑥
(
𝜕2𝑥𝑢 + 3𝑢

2 − 𝑢
)
− 𝜕2𝑦𝑢 = 0. (1)

Due to the above mentioned difficulty, we would like to study the traveling wave solutions of the
KP-I equation using the IST of the Boussinesq equation, which should, in principle, be easier than
the KP case. The IST of the Boussinesq equation is first carried out in [20]. The first equation of
the associated Lax pair turns out to be a third-order ODE, in contrast with the second-order ODE
for the KdV case. In this direction, there are some related works. For instances, the IST for first-
order ODE systems with generic potentials (means that the poles are all simple) has been studied
in [5, 6] and the case of higher order ODEs has been treated in [7]. The case of general potentials
has been studied in [21, 55] using the augmented contour approach. Recently, the hyperbolic case
of the Boussinesq equation (so called ‘good’ Boussinesq equation ) is studied in [16, 17] using
Riemann–Hilbert approach. For Schwartz class initial data, long time dynamics is obtained. Note
that in this case, the equation does not have lump solution.
Let us write the solution 𝑢 of (1) in terms of the 𝜏 function: 𝑢 ∶= 2𝜕2𝑥 ln 𝜏. Then the Boussinesq

equation in bilinear form is (
𝔇4𝑥 −𝔇

2
𝑥 −𝔇

2
𝑦

)
𝜏 ⋅ 𝜏 = 0. (2)

Throughout the paper, we will use the symbol 𝔇 to denote the bilinear derivative operator. We
refer to the classical book by Hirota [28] for detailed exposition to the bilinear derivative operator
and the direct method in soliton theory, including that of the KP equation. One can check that the
function 𝜏 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 3 is a solution of the bilinear Equation (2). This function is even in
both 𝑥 and 𝑦 variables and corresponding to the classical lump solution. The lump can be regarded
as a special rogue wave extensively studied before and is a special one in the large class of lump-
type solutions, whose precise definition will be given below. Note that actually the lump solution
is first obtained in [42, 49] using a limiting procedure. The spectral property of lump solution is
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nowwell understood. Indeed, the first and second authors have proved in [40] using the Backlund
transformation that the it is nondegenerate, in the sense that the linearized KP-I operator at this
solution does not have any nontrivial kernels. This also implies that the lump is orbitally stable.
The importance of KP-I equation is also reflected by the fact that it appears in the study ofmany

other PDEs. For instance, in [8](see also the references therein), it is shown that KP equation is
related to the GP equation. The nondegeneracy result for the lump can then be used to construct
traveling wave solutions of the GP equation with subsonic speed, with a perturbation argument;
see [39].
It is now well known that the KP-I equation is globally well posed in the natural energy space;

see, for instance [32, 44, 45] and the references therein. To fully understand the long time dynamics
of the KP-I equation, a crucial step is to analyze the structure of all the lump-type solutions for the
Boussinesq equation.More general rational solutions of (2) with degree 𝑘 (𝑘 + 1) have been found
in [25, 48]. Then in [26] it is proved that around the higher energy lump-type solutions, the KP-I
equation has anomalous scattering with infinite phase shift. This indicates that the dynamics of
the KP-I equation will be more complicated than the KdV equation. A very fascinating and in-
depth description of KP equation and related dynamical, variational and other properties of its
solutions, including lump, can be found in the book of Klein–Saut [34]. We refer to it and also its
references for a detailed introduction on this subject.
It is worth mentioning that (1) is a special case of Boussinesq-type equation (its original form

described by Boussinesq in 1870s):

𝜕2𝑥
(
𝑝𝑢 + 𝑢2 + 𝜕2𝑥𝑢

)
+ 𝜎𝜕2𝑦𝑢 = 0,

where 𝜎 = ±1 and 𝑝 is a constant. Rational solutions of this equation has been studied in many
papers, such as [3, 4, 10, 18, 25, 37]. For instance, the special case of (𝜎, 𝑝) = (1, 0) is consid-
ered in [18], using the theory of Painlevé equations. Most of these works are concerned with the
construction of explicit solutions and the analysis of their mathematical or physical properties.
In view of all these developments, it is desirable to have some classification on the solutions of

the Boussinesq equation. In this paper, we would like to classify all the ‘lump-type’ solutions. Our
first result is the following

Theorem 1. Suppose 𝑢 is a real-valued 𝐶4 solution of the equation

𝜕2𝑥
(
𝜕2𝑥𝑢 + 3𝑢

2 − 𝑢
)
− 𝜕2𝑦𝑢 = 0 in ℝ

2.

Assume that there exists 𝛼 > 0 such that

|𝑢(𝑥, 𝑦)| ⩽ 𝐶(
1 + 𝑥2 + 𝑦2

)𝛼 . (3)

Then 𝑢 = 2𝜕2𝑥 ln 𝜏𝑘 , where 𝜏𝑘 is a polynomial in 𝑥, 𝑦 of degree 𝑘 (𝑘 + 1) for some 𝑘 ∈ ℕ.

We remark that the assumption that 𝑢 is real valued plays an essential role, since there are
many complex valued solutions whose 𝜏 functions have degree 𝑘(𝑘+1)+𝑗(𝑗+1)

2
. The classification of

complex valued solutions seems to be more difficult.
If we consider those solutions which are even, then we have
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Theorem 2. Suppose 𝜏 is a polynomial of degree 2𝑛 with real coefficients satisfying

𝜏(𝑥, 𝑦) = 𝜏(𝑥, −𝑦) = 𝜏(−𝑥, 𝑦)

and (
𝔇2𝑥 +𝔇

2
𝑦 −𝔇

4
𝑥

)
𝜏 ⋅ 𝜏 = 0.

Assume 𝑛 = 𝑘 (𝑘 + 1) ∕2 ⩽ 300 for some positive integer 𝑘. Then 𝜏 is unique, up to a multiplica-
tive constant.

We would like to emphasize that the upbound 300 is not optimal, and uniqueness of even
solution is expected to be true for all 𝑛 = 𝑘 (𝑘 + 1) ∕2. We refer to Section 5 for more details.
The KP-I equation has a variational structure and ground state solutions can be constructed

using variational methods (see [12, 38]). As a corollary of Theorem 1, we see that the classical
lump solution is the unique ground state of the KP-I equation, due to the fact that the energy is
determined by the degree of the 𝜏 function. This answers affirmatively the uniqueness question
raised in Remarks 18 and 19 by Klein–Saut in [33]. As already pointed out there, while the unique-
ness of ground state of the Schrödinger equation can be proved using ODE shooting method, the
uniqueness of lump is more complicated since it is not radially symmetric. We have in mind that
those even traveling wave solutions of the KP-I equation should play similar role as the radially
symmetric solutions of the Schrödinger equation. To our knowledge, our theorem seems to be
the first classification result for solutions of semilinear elliptic equations without symmetry (also
without any other assumptions such as stable or finite Morse index).
Solutions satisfying the assumptions of Theorem 1 will be called lump-type solutions. We

remark that for each fixed 𝑘, there is a family of lump-type solutions, already have been found
in [25]. We expect that all lump-type solutions should be included in this family. Those solutions
will be recalled in the next section. However, a full classification of this type would need further
detailed analysis, which will not be pursued in this paper. We expect that the moduli space of
real-valued solutions is a manifold of dimension 2𝑘. Such a full classification would presumably
yields some information of the lump-type solutions of the generalized KP equation.
Many questions remain to be answered. For instances, the classification of complex valued

solutions; the computation of theMorse indices of lump-type solutions; the asymptotical stability
of the lump solution; the classification of solutions to the general Boussinesq equation with zero
or nonzero condition near infinity, etc. Note that by a result of [12], Pohozaev type identity tells
us that the KP-II equation does not have lump-type solutions.
Let us now sketch themain ideas of our proof.We first use the robust IST developed by Bilman–

Miller [9] to show that lump-type solutions have to be rational. Then we use the technique of
[4], appealing to the Boussinesq hierarchy, to show that the degree of the 𝜏 function has to be
𝑘 (𝑘 + 1). This technique is used in [4] to prove that the 𝜏 function of the rational solution of the
KdV equation necessarily is a polynomial of degree 𝑘 (𝑘 + 1) ∕2. We hope that our method should
also be applicable to other integrable systems such as 2d Toda lattice.
This paper is organized as follows. In Section 2, we recall the construction of lump-type

solutions appeared in various papers of Pelinovskii and his collaborators. We emphasize that the
KP-I equation is a well-studied model equation and actually there are many other constructions,
using different methods. In Section 3, we use the robust IST to show that lump-type solutions
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 5 of 45

are rational. We then investigate the degree of the 𝜏 functions in Section 4. The last section is
devoted to analyze the even solutions. In particular, we prove that even solution is unique when
the degree of its 𝜏 function is not so large.

2 FAMILY OF LUMP-TYPE SOLUTIONS

In this section, we recall the construction of lump-type solutions. Although the materials in this
section will not be used in the proof of our main results, it will be helpful to provide a rough
picture of what lump solutions should be. We also feel that to fully classify and understand the
moduli space of all the lump-type solutions and prove the uniqueness of even solutions, it will be
a necessary step to have an explicit construction of solutions.
Real-valued rational solutions of the Boussinesq equation whose 𝜏 functions have degree

𝑘 (𝑘 + 1) have been obtained in [48] by a limiting procedure. These solutions are evenwith respect
to 𝑥 and 𝑦 variables. For instance, the function 𝑢 = 12𝜕2𝑥 ln 𝜏, where

𝜏(𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)3
+ 25𝑥4 + 90𝑥2𝑦2 + 17𝑦4 − 125𝑥2 + 475𝑦2 + 1875,

solves the equation (
−𝑢 +

𝑢2

2
+ 𝑢𝑥𝑥

)
𝑥𝑥

− 𝑢𝑦𝑦 = 0. (4)

Observe that the coefficients in Equation (4) are different from that of (1). However, they can be
transformed to one another simply by suitable scaling of the form 𝑎𝑢 (𝑏𝑥, 𝑐𝑦). In the rest of the
paper, we will consider the Boussinesq equation with other coefficients in different contexts. This
is to make them to be consistent with the corresponding literature.
In [25], more general families of rational solutions have been derived using Wronskian rep-

resentation of the solutions to the KP equation. Among these solutions, those traveling waves
reduces to theBoussinesq equation. Let us recall these results in the sequel.We adopt the notations
used in [25].
Consider the KP-I equation in the following form:(

−4𝑢𝑡3 +
(
3𝑢2
)
𝑡1
+ 𝑢𝑡1𝑡1𝑡1

)
𝑡1
− 3𝑢𝑡2𝑢𝑡2 = 0.

This equation has solutions expressed in terms of the 𝜏 function:

𝑢(𝑡1, 𝑡2, 𝑡3) = 2𝜕
2
𝑡1
ln 𝜏(𝑡1, 𝑡2, 𝑡3).

There are different forms for the 𝜏 functions. Let us explain it now.
Let Ψ±𝑛 be solutions of the system of differential equations{

±𝑖𝜕𝑡2Ψ
±
𝑛 = 𝜕

2
𝑡1
Ψ±𝑛 ,

𝜕𝑡3Ψ
±
𝑛 = 𝜕

3
𝑡1
Ψ±𝑛 .
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6 of 45 LIU te al.

We fix an integer 𝑁 and define
𝜏 = det𝑀𝑁, (5)

where 𝑀𝑁 is the 𝑁 ×𝑁 matrix whose entries are given by 𝑐𝑛𝑘 + 𝐼𝑛𝑘, 1 ⩽ 𝑛, 𝑘 ⩽ 𝑁. Here 𝑐𝑛𝑘 are
arbitrary complex parameters and

𝐼𝑛𝑘 = ∫
𝑡1

−∞
Ψ+𝑛 (𝑠, 𝑡2, 𝑡3)Ψ

−
𝑘 (𝑠, 𝑡2, 𝑡3)𝑑𝑠.

With this definition, the function 2𝜕2𝑡1 ln 𝜏 is a solution of the KP-I equation.
The KP-I equation has another family of solutions, for which the 𝜏 function has theWronskian

form:
𝜏 = 𝑊

(
Ψ±
1
, … ,Ψ±

𝑁

)
= det

(
𝐽±
𝑛𝑘

)
, (6)

where 𝐽±
𝑛𝑘
= 𝜕𝑘−1𝑡1

Ψ±𝑛 .
The two forms (5) and (6) are indeed related to each other. If we choose in (5) the function

Ψ−
𝑘
= exp

(
𝑝𝑘𝑡1 − 𝑝

2
𝑘
𝑡2 + 𝑝

3
𝑘
𝑡3
)
∶= exp

(
Φ−
𝑘

)
,

then integration by parts yields

𝐼𝑛𝑘 =

(
Ψ+𝑛
𝑝𝑘
−
𝜕𝑡1Ψ

+
𝑛

𝑝2
𝑘

+
𝜕2𝑡1
Ψ+𝑛

𝑝3
𝑘

+⋯

)
exp
(
Φ−
𝑘

)
.

Assuming 𝑝𝑘 ≫ 1, the leading terms of 𝜏 can be written as the product of a Vandermont
determinant and the Wronskian𝑊

(
Ψ+
1
, … ,Ψ+

𝑁

)
. Hence

𝜏 =

⎡⎢⎢⎢⎢⎢⎣

∏
1⩽𝑚<𝑘⩽𝑁

(𝑝𝑘 − 𝑝𝑚)

𝑁∏
𝑘=1

𝑝𝑁
𝑘

𝑊
(
Ψ+
1
, … ,Ψ+

𝑁

)
+ 𝑂

(
𝑝
−
(
𝑁(𝑁+1)
2
+1
))⎤⎥⎥⎥⎥⎥⎦
exp

(
𝑁∑
𝑘=1

Φ−
𝑘

)
.

Dividing the right-hand side by exp(
∑𝑁
𝑘=1Φ

−
𝑘
) and the constant before the Wronskian 𝑊, and

letting 𝑝 → ∞, we get (6).
Now let𝐾 ⩽ 𝑁 be a fixed integer. If the above limiting procedure is only carried out forΦ−

𝑘
, 𝑘 =

𝐾 + 1,… ,𝑁, then we obtain

𝜏 = det (𝑆𝑛𝑘), (7)

where

𝑆𝑛𝑘 =

⎧⎪⎨⎪⎩
𝐼𝑛𝑘, for 𝑘 = 1,… , 𝐾,

𝐽+
𝑛,𝑘−𝐾

, for 𝑘 = 𝐾 + 1,… ,𝑁.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 7 of 45

Let us now consider the function 𝜙𝑚 ∶= 𝜕𝑚𝑝 exp
(
Φ+ (𝑡1, 𝑡2, 𝑡3, 𝑝)

)
, where

Φ+(𝑡1, 𝑡2, 𝑡3, 𝑝) =

∞∑
𝑗=1

(
𝑝𝑗𝑡𝑗
)
.

We have

𝜙𝑚 = 𝑃𝑚 exp
(
Φ+(𝑡1, 𝑡2, 𝑡3, 𝑝)

)
.

Here 𝑃𝑚 is a polynomial of the variables 𝜃1, … , 𝜃𝑚, given by 𝜃𝑗 =
1

𝑗!
𝜕
𝑗
𝑝Φ
+. In particular,

𝜃1 = 𝑡1 + 2𝑝𝑡2 + 3𝑝
2𝑡3 +⋯ ,

𝜃2 = 𝑡2 + 3𝑝𝑡3 +⋯ ,

𝜃3 = 𝑡3 +⋯ ,

and 𝜃𝑗 only depends on 𝑡𝑗, 𝑡𝑗+1, …. We have

𝑃1 = 𝜃1, 𝑃2 = 2𝜃2 + 𝜃
2
1.

and the sequence of polynomials
{
𝑃𝑗
}
satisfies a recurrence relation of the form

𝑃𝑚+1 = 𝜃1𝑃𝑚 +

𝑚∑
𝑗=1

[
(𝑗 + 1)𝜃𝑗+1𝜕𝜃𝑗𝑃𝑚

]
. (8)

One can prove by induction that

𝜕𝜃𝑗𝑃𝑚 = 𝜕
𝑗

𝜃1
𝑃𝑚 =

𝑚!

(𝑚 − 𝑗)!
𝑃𝑚−𝑗. (9)

Let 𝑣 = − 1
3𝑝
and define the operator

(𝑣) = exp
(
−

+∞∑
𝑚=1

𝑣𝑚

𝑚
𝜕𝜃𝑚

)
.

Explicitly, (𝑣)𝑃𝑚 = 𝑃𝑚(𝜃1 − 𝑣, 𝜃2 − 𝑣22 , … , 𝜃𝑚 − 𝑣
𝑚

𝑚
). Using the recurrence relation (8) again, we

obtain

(𝑣)𝑃𝑚 =
(
1 − 𝑣𝜕𝜃1

)
𝑃𝑚.

The 𝜏 function will be a solution of the Boussinesq equation if it depends on the variables 𝑥 =
𝑡1 + 3𝑝

2𝑡3 and 𝑡2. This requires

𝜕𝜃2𝜏 = 𝑣𝜕𝜃3𝜏.
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8 of 45 LIU te al.

To construct solutions for the Boussinesq equation, we then define

Ψ+𝑛 =
(
𝑆𝑁−𝑛(𝑣)𝑃+2𝑛−1

)
exp
(
Φ+(𝑡1, 𝑡2, 𝑡3, 𝑝)

)
, for 1 ⩽ 𝑛 ⩽ 𝑁,

Ψ−
𝑘
=
(
𝑆𝐾−𝑘(𝑣)𝑃−2𝑘−1

)
exp (Φ−(𝑡1, 𝑡2, 𝑡3, 𝑝)), for 1 ⩽ 𝑘 ⩽ 𝐾.

Then the 𝜏 function defined by (7) will correspond to a solution of the Boussinesq equation. In
general, this solution is complex valued. But in the particular case of 𝐾 = 𝑁, if we choose 𝑃+

𝑘
, 𝑃−
𝑘

such that 𝑃+
𝑘
= 𝑃̄−

𝑘
and let 𝜇 = − 1

2𝑝
, then

𝜏 = det
(
𝑤+(𝑤−)𝑇

)
,

where 𝑤+ is a matrix of size 𝑁 × (2𝑁 − 1), whose entries are given by(
𝑤+
)
𝑛𝑘
= (−𝜇)𝑘−1𝜕𝑘−1𝑡1

[
𝑆−𝑘(𝜇)𝑆𝑁−𝑛(𝑣)𝑃+2𝑛−1

]
, 1 ⩽ 𝑛 ⩽ 𝑁, 1 ⩽ 𝑘 ⩽ 2𝑁 − 1.

The entries of 𝑤− are then defined to be 𝑤−
𝑛𝑘
= 𝑤̄+

𝑛𝑘
. This implies that the determinant can be

written as the sum of positive terms. Note that the condition 𝑃+
𝑘
= 𝑃̄−

𝑘
requires 𝑡2𝑘 to be imaginary

and 𝑡2𝑘+1 to be real. Hence there are in total 2𝑁 free (real) parameters, or𝑁 complex parameters.
The degree of the 𝜏 functions is equal to 𝑁 (𝑁 + 1). Let us mention that for the complex valued
solutions constructed there, their degree has the form

𝑁(𝑁 + 1)∕2 + 𝐾(𝐾 + 1)∕2.

We point out that in [53], an explicit family of rational solutions is also obtained with different
methods. In the degree 6 case, the family of functions 2𝜕2𝑥 ln 𝜏, where

𝜏(𝑥, 𝑦) = 𝑥6 + 𝑦6 + 3𝑥4𝑦2 + 3𝑥2𝑦4 + 14𝑥5 + 14𝑥𝑦4 + 28𝑥3𝑦2 + 90𝑥4

+ 128𝑥2𝑦2 + 22𝑦4 + 324𝑥3 + 316𝑥𝑦2 + 648𝑥2 + 360𝑦2 + 648𝑥 + 324

+ 2𝑎
(
𝑥3 − 3𝑥𝑦2 + 7𝑥2 − 7𝑦2 + 16𝑥 + 8

)
+ 2𝑏𝑦

(
𝑦2 − 3𝑥2 − 14𝑥 − 18

)
+ 𝑎2 + 𝑏2,

with 𝑎, 𝑏 being real-valued parameters, solve the following Boussinesq equation(
−3𝑢 + 3𝑢2 + 𝑢𝑥𝑥

)
𝑥𝑥
+ 3𝑢𝑦𝑦 = 0.

To conclude this section, we remark that there already exist many papers on the construction and
analysis of solutions to the KP and related equations, for instances, [1, 14, 15, 23, 27, 29, 30, 46, 47],
just to list a few of them.

3 INVERSE SCATTERING OF THE BOUSSINESQ EQUATION AND
THE RATIONALITY OF LUMP-TYPE SOLUTIONS

In this section, we will show that lump-type solutions of the Boussinesq equation have to be
rational functions. The equation to be studied here reads as

𝑞𝑦𝑦 = 3𝑞𝑥𝑥𝑥𝑥 − 12
(
𝑞2
)
𝑥𝑥
− 24𝑞𝑥𝑥. (10)
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 9 of 45

This can be obtained from the original Boussinesq equation (1) by a simple rescaling, that is, by
setting 𝑞(𝑥, 𝑦) = −6𝑢(2

√
2𝑥, 8

√
3𝑦).

Observe that every constant function solves (10). Here we will focus on the special class of solu-
tions decaying to zero at infinity. At this stage, we would like to point out that the usual inverse
scattering of the Boussinesq equation is developed in [20], with a ‘nonzero’ boundary condition
near infinity. It can be seen later on that in our case, the situation is much more complicated,
since the corresponding fundamental solutions have singularities in the complex plane of spec-
tral parameter. To overcome these difficulties, we will adopt the powerful method of ‘robust’ IST
to show that lump-type solutions of (10) have to be rational. This type of robust inverse scatter-
ing has been developed for the first time in [9], to analyze the rogue waves of the Schrödinger
equation.

3.1 Refined asymptotics of lump-type solutions

To carry out the robust inverse scattering transform, it turns out to be important to get a precise
decay estimate for the lump-type solutions.
We would like to prove the following refined asymptotics estimate.

Proposition 3. Suppose 𝑢 is a real-valued 𝐶4 solution of the Boussinesq equation

𝜕2𝑥
(
𝜕2𝑥𝑢 + 3𝑢

2 − 𝑢
)
− 𝜕2𝑦𝑢 = 0 in ℝ

2.

Assume that for some 𝛼 > 0,

|𝑢(𝑥, 𝑦)| ⩽ 𝐶(
1 + 𝑥2 + 𝑦2

)𝛼 . (11)

Then there holds

|𝑢(𝑥, 𝑦)| ⩽ 𝐶

1 + 𝑥2 + 𝑦2
. (12)

Proof. The solution 𝑢 satisfies

𝜕4𝑥𝑢 − 𝜕
2
𝑥𝑢 − 𝜕

2
𝑦𝑢 = −3𝜕

2
𝑥

(
𝑢2
)
.

Then

𝑢(𝑥, 𝑦) = 3∫ℝ2 𝐾(𝑥 − 𝑠, 𝑦 − 𝑡)𝑢
2(𝑠, 𝑡)𝑑𝑠𝑑𝑡,

where the kernel 𝐾 is defined through the Fourier transform:

𝐾(𝑥, 𝑦) = ∫ℝ2
𝜉2
1

𝜉4
1
+ 𝜉2

1
+ 𝜉2

2

𝑒𝑖𝑥𝜉1+𝑖𝑦𝜉2𝑑𝜉1𝑑𝜉2.
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10 of 45 LIU te al.

By [13, Lemma 3.6], we have (
𝑥2 + 𝑦2

)
𝐾 ∈ 𝐿∞

(
ℝ2
)
. (13)

To simplify the notation, we introduce 𝑟 =
√
𝑥2 + 𝑦2 and define

Ω1 ∶=

{
(𝑠, 𝑡) ∶ (𝑠 − 𝑥)2 + (𝑡 − 𝑦)2 ⩽

𝑟2

4

}
, and Ω2 ∶=

{
(𝑠, 𝑡) ∶ 𝑠2 + 𝑡2 ⩽

𝑟2

4

}
.

Using (11), (13) and the integrability of the kernel 𝐾 (𝑠, 𝑡) around (0, 0), we can estimate

∫Ω1 |𝐾(𝑥 − 𝑠, 𝑦 − 𝑡)|𝑢2(𝑠, 𝑡)𝑑𝑠𝑑𝑡 ⩽ ∫Ω1
|𝐾(𝑥 − 𝑠, 𝑦 − 𝑡)|(
1 + 𝑥2 + 𝑦2

)2𝛼 𝑑𝑠𝑑𝑡
⩽

𝐶 ln (2 + 𝑟)(
1 + 𝑥2 + 𝑦2

)2𝛼 .
We also have

∫Ω2 |𝐾(𝑥 − 𝑠, 𝑦 − 𝑡)|𝑢2(𝑠, 𝑡)𝑑𝑠𝑑𝑡 ⩽ ∫Ω2
𝑢2(𝑠, 𝑡)

1 + 𝑥2 + 𝑦2
𝑑𝑠𝑑𝑡

⩽
𝐶

1 + 𝑥2 + 𝑦2
+

𝐶(
1 + 𝑥2 + 𝑦2

)2𝛼 .
Moreover,

∫ℝ2∖(Ω1∪Ω2) |𝐾(𝑥 − 𝑠, 𝑦 − 𝑡)|𝑢2(𝑠, 𝑡)𝑑𝑠𝑑𝑡 ⩽ ∫ℝ2∖(Ω1∪Ω2)
𝐶𝑑𝑠𝑑𝑡(

1 + 𝑠2 + 𝑡2
)2+2𝛼

⩽
𝐶

1 + 𝑥2 + 𝑦2
+

𝐶(
1 + 𝑥2 + 𝑦2

)2𝛼 .
Combining all these estimates, we deduce

|𝑢(𝑥, 𝑦)| ⩽ 𝐶

1 + 𝑥2 + 𝑦2
+

𝐶(
1 + 𝑥2 + 𝑦2

) 3𝛼
2

.

A straightforward bootstrapping argument tells us that

|𝑢(𝑥, 𝑦)| ⩽ 𝐶

1 + 𝑥2 + 𝑦2
.

This is the required decay estimate. □

Estimate (12) is optimal, as can be seen from the classical lump solution and the examples
discussed in the previous section. Note that the optimal decay similar to (12) has been derived in
[13] assuming that the solution is integrable in a suitable sense, meaning that it belongs to the
appropriate natural energy space.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 11 of 45

We point out that the estimate of Proposition 3 actually still holds if we only assume that 𝑢
tends to zero at infinity, without any a priori algebraic decay assumption. However, proving this
fact will be quite involved. This will appear in a future work.

3.2 Inverse scattering

Introducing a new function 𝑝, Equation (10) can be transformed into the following system of
ODEs: {

𝑞𝑦 = −3𝑝𝑥,

𝑝𝑦 = −𝑞𝑥𝑥𝑥 + 8𝑞𝑞𝑥 + 8𝑞𝑥.

This system is corresponding to the following Lax pair equation (see [20, 54]):

𝑑𝐿

𝑑𝑦
= 𝑄𝐿 − 𝐿𝑄 = [𝑄, 𝐿],

where the operators 𝐿 and 𝑄 are defined by

⎧⎪⎨⎪⎩
𝐿 = 𝑖 𝑑

3

𝑑𝑥3
− 𝑖
[(
2(𝑞 + 1)

𝑑

𝑑𝑥
+ 𝑞𝑥

)]
+ 𝑝,

𝑄 = 𝑖
(
3 𝑑

2

𝑑𝑥2
− 4(𝑞 + 1)

)
.

Here 𝑖 is the imaginary unit. Let 𝑘 ∈ ℂ be a complex spectral parameter.Wewill consider the ODE

𝐿𝑓 =
(
𝑘3 + 2𝑘

)
𝑓. (14)

Introducing vector 𝐟 ∶= (𝑓1, 𝑓2, 𝑓3)
𝑇 by 𝑓1 = 𝑓, 𝑓2 = 𝑓′1, 𝑓3 = 𝑓

′
2
, we arrive at the following

system of ODEs:

𝑑

𝑑𝑥

⎛⎜⎜⎜⎝
𝑓1

𝑓2

𝑓3

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

0 1 0

0 0 1

𝑞𝑥 + 𝑝𝑖 − 𝑖
(
𝑘3 + 2𝑘

)
2(𝑞 + 1) 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑓1

𝑓2

𝑓3

⎞⎟⎟⎟⎠. (15)

The coefficient matrix of this system, denoted by 𝐴, will depend on the potentials 𝑞 and 𝑝. As
𝑥 → ±∞, 𝐴 will tend to the following trace-free constant matrix

𝑇 ∶=

⎛⎜⎜⎜⎝
0 1 0

0 0 1

−𝑖
(
𝑘3 + 2𝑘

)
2 0

⎞⎟⎟⎟⎠.
The eigenvalues of 𝑇 can be explicitly computed. They depend on parameter 𝑘 and are given by

𝜆1 = 𝑖𝑘, 𝜆2 =
−𝑖𝑘 +

√
3𝑘2 + 8

2
, 𝜆3 =

−𝑖𝑘 −
√
3𝑘2 + 8

2
.
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12 of 45 LIU te al.

It follows that 𝑇 can be written as 𝑃𝑀𝑃−1, where

𝑃(𝑘) =

⎛⎜⎜⎜⎜⎝
1 1 1

𝑖𝑘 −𝑖𝑘+
√
3𝑘2+8

2

−𝑖𝑘−
√
3𝑘2+8

2

−𝑘2 𝑘2+4−𝑖𝑘
√
3𝑘2+8

2

𝑘2+4+𝑖𝑘
√
3𝑘2+8

2

⎞⎟⎟⎟⎟⎠
,𝑀(𝑘) =

⎛⎜⎜⎝
𝜆1 0 0

0 𝜆2 0

0 0 𝜆3

⎞⎟⎟⎠.

Recall that for any constant matrix 𝐵, the matrix 𝑒𝑇𝑥𝐵 is a solution of the equation 𝑈′ = 𝑇𝑈.
We choose 𝐵 = 𝑃 and get the following matrix solution

𝑈𝑏g (𝑘, 𝑥) ∶= 𝑛(𝑘)𝑃(𝑘)𝑒
𝑀(𝑘)𝑥 ∶= 𝐸(𝑘)𝑒𝑀(𝑘)𝑥.

Here 𝑛 (𝑘) is chosen such that det
(
𝑈𝑏g
)
= 1. Explicitly,

𝑛(𝑘) =
((
3𝑘2 + 2

)√
3𝑘2 + 8

)−1
.

One can see that as 𝑘 tends to ±
√
6

3
𝑖 or ±2

√
6

3
𝑖, the function 𝑛 will blow up. For 𝑗 = 1, 2, 3, let us

denote the 𝑗th column of 𝐸 (𝑘) by 𝜉𝑗 .
Let 𝑘 = 𝑠 + 𝑡𝑖, with 𝑠, 𝑡 ∈ ℝ. Direct computation tells us that the condition Re (𝜆2) = Re (𝜆3)

implies Re
√
3𝑘2 + 8 = 0. That is,

𝑠 = 0 and 𝑡2 > 8
3
.

On the other hand, Re (𝜆1) = Re (𝜆2) or Re (𝜆3) requires

𝑠2 − 3𝑡2 + 2 = 0.

Let 𝑟 be a fixed large constant and 𝐵𝑟 be the ball of radius 𝑟 centered at the origin. In the region
𝐵𝑐𝑟 ∶= ℝ

2∖𝐵𝑟, we consider the curve

Σ1 ∶=
{
(𝑠, 𝑡) ∈ 𝐵𝑐𝑟 ∶ 𝑠

2 − 3𝑡2 + 2 = 0
}
∪
{
(𝑠, 𝑡) ∈ 𝐵𝑐𝑟 ∶ 𝑠 = 0 and 𝑡

2 >
8

3

}
.

Let us define

Ω1 = 𝐵
𝑐
𝑟∖Σ1.

Note that Ω1 has six connected components, which we will denote them by Ω1,1, … ,Ω1,6.
In the ball 𝐵𝑟, we consider the curve

Σ2 ∶=
{
(𝑠, 𝑡) ∶ 𝑠 = 0, 𝑡2 ⩽

8

3

}
.

We also define Ω2 ∶= 𝐵𝑟∖Σ2.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 13 of 45

Next we define a distinguished solution matrix for (15). Note that if the matrix 𝜙 satisfies 𝜙′ =
𝐴𝜙, then g ∶= 𝜙𝑒−𝑀𝑥 will satisfy

g ′ = 𝜙′𝑒−𝑀𝑥 + 𝜙(−𝑀)𝑒−𝑀𝑥 = 𝐴g − g𝑀.

For 𝑘 ∈ ℝ2∖𝐵𝑟, as will be explained below, we can choose g to be the matrix solution such that

‖g(𝑥)‖𝐿∞(ℝ) < +∞, and g(𝑥) → 𝐸(𝑘), as 𝑥 → −∞. (16)

We then define𝑈𝑜𝑢 = g𝑒𝑀𝑥. The solution 𝜙 = g𝑒𝑀𝑥 satisfies (16) is called Beals–Coifman funda-
mental solution. The existence of this solution is explained in [7, p, 8]. We will sketch the main
steps below. As has already been pointed out there, the first step is to construct a solution with
prescribed asymptotics at −∞, using the arguments of [19, Problem 29, p. 104]. Since this con-
struction will play an important role later on, we recall the precise statement of the result and its
proof in the following

Lemma 4. Assume 𝜆𝑗, 𝑗 = 1, 2, 3, are distinct. Then the equation

𝜙′ = 𝐴𝜙 (17)

has a solution 𝜙+
𝑗
satisfying

𝜙+
𝑗 (𝑥)𝑒

−𝜆𝑗𝑥 → 𝜉𝑗, as 𝑥 → +∞.

Similarly, (17) also has a solution 𝜙−
𝑗
with

𝜙−𝑗 (𝑥)𝑒
−𝜆𝑗𝑥 → 𝜉𝑗, as 𝑥 → −∞.

Proof. Let Re 𝜆𝑗 = 𝜎 and 𝑒𝑇𝑥 = 𝑌1 (𝑥) + 𝑌2 (𝑥), where the entries of 𝑌1 are linear combination of
𝑒𝜆𝑘𝑥 with Re 𝜆𝑘 < 𝜎, and the entries of 𝑌2 are linear combination of 𝑒𝜆𝑘𝑥 with Re 𝜆𝑘 ⩾ 𝜎. Thanks
to the assumption that 𝜆𝑗 are distinct, this decomposition always exists.
We use a Picard iteration scheme and set 𝜂0 (𝑥) = 𝑒

𝜆𝑗𝑥𝜉𝑗 . Let 𝑎 be a fixed constant. Then we
can define the sequence {𝜂𝑙} by

𝜂𝑙+1(𝑥) ∶= 𝑒
𝜆𝑗𝑥𝜉𝑗 + ∫

𝑥

𝑎
𝑌1(𝑥 − 𝑠)𝑅(𝑠)𝜂𝑙(𝑠)𝑑𝑠 − ∫

+∞

𝑥
𝑌2(𝑥 − 𝑠)𝑅(𝑠)𝜂𝑙(𝑠)𝑑𝑠.

The definition of 𝑌2 ensures that the last integral is well defined. Note that when 𝑥 ⩽ 0, there
holds ||𝑌2 (𝑥)|| ⩽ 𝐾2𝑒𝜎𝑥 for some constant 𝐾2. Now if we assume |𝜂 (𝑠)| ⩽ 𝐶𝑒𝜎𝑠, then there holds

|||||∫
+∞

𝑥
𝑌2(𝑥 − 𝑠)𝑅(𝑠)𝜂(𝑠)𝑑𝑠

||||| ⩽ 𝐶𝐾2 ∫
+∞

𝑥
𝑒𝜎(𝑥−𝑠)|𝑅(𝑠)|𝑒𝜎𝑠𝑑𝑠

= 𝐶𝐾2𝑒
𝜎𝑥 ∫

+∞

𝑥
|𝑅(𝑠)|𝑑𝑠.

 1460244x, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12619 by w

en Y
A

N
G

 - U
niversity O

f M
acau W

u Y
ee Sun , W

iley O
nline L

ibrary on [24/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 45 LIU te al.

On the other hand, there exists 𝛿, 𝐾1 > 0 such that ||𝑌1 (𝑥)|| ⩽ 𝐾1𝑒(𝜎−𝛿)𝑥 for𝑥 ⩾ 0. Hence if |𝜂 (𝑠)| ⩽
𝐶𝑒𝜎𝑠, then

||||∫ 𝑥

𝑎
𝑌1(𝑥 − 𝑠)𝑅(𝑠)𝜂(𝑠)𝑑𝑠

|||| ⩽ 𝐶𝐾1 ∫ 𝑥

𝑎
𝑒(𝜎−𝛿)(𝑥−𝑠)|𝑅(𝑠)|𝑒𝜎𝑠𝑑𝑠

⩽ 𝐶𝐾1𝑒
𝜎𝑥 ∫

𝑥

𝑎
𝑒−𝛿(𝑥−𝑠)|𝑅(𝑠)|𝑑𝑠 (18)

⩽ 𝐶𝐾1𝑒
𝜎𝑥 ∫

𝑥

𝑎
|𝑅(𝑠)|𝑑𝑠.

It follows from these two estimates that if 𝑎 is chosen such that

(𝐾1 + 𝐾2)∫
+∞

𝑎
|𝑅(𝑠)|𝑑𝑠 < 1,

then the sequence {𝜂𝑙} will converge to a solution 𝜙+𝑗 of Equation (17) satisfying

|||𝜙+𝑗 (𝑥)||| ⩽ 𝐶𝑒𝜎𝑥 for 𝑥 large.
Note that by the decay estimate (12) of the lump-type solution, we have

∫
+∞

𝑎
|𝑅(𝑠)|𝑑𝑠 ⩽ 𝐶

1 + |𝑦|
(
𝜋

2
− arctan

𝑎

1 + |𝑦|
)
. (19)

Hence such 𝑎 always exists.
Now since

𝜙+
𝑗
= 𝑒𝜆𝑗𝑥𝜉𝑗 + ∫

𝑥

𝑎
𝑌1(𝑥 − 𝑠)𝑅(𝑠)𝜙

+
𝑗 (𝑠)𝑑𝑠 − ∫

+∞

𝑥
𝑌2(𝑥 − 𝑠)𝑅(𝑠)𝜙

+
𝑗 (𝑠)𝑑𝑠.

we then can use (18) to deduce

𝜙+
𝑗
𝑒−𝜆𝑗𝑥 − 𝜉𝑗 → 0, as 𝑥 → +∞.

Similar arguments (with straightforward modification taking care of the definition of 𝑌1 and 𝑌2)
yield the solution 𝜙−

𝑗
. The choice of 𝑎 for 𝜙+

𝑗
and 𝜙−

𝑗
will be denoted by 𝑎+ and 𝑎− respectively.

This finishes the proof. □

Now without loss of generality we assume that Re 𝜆1 > Re 𝜆2 > Re 𝜆3. The matrices

Φ+ ∶=
[
𝜙+
1
, 𝜙+
2
, 𝜙+
3

]
, Φ− ∶=

[
𝜙−1 , 𝜙

−
2 , 𝜙

−
3

]
. (20)

are related by a matrix𝑀:

Φ− = Φ+𝑀.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 15 of 45

The matrix 𝑀 has a unique lower triangular–diagonal–upper triangular factorization 𝑀 =
𝐋𝛿𝐔−1, where the diagonal entries of 𝐋,𝐔 are equal to 1. We have Φ−𝐔 = Φ+𝐋𝛿. Moreover,

the 𝑗th column of Φ−𝐔𝑒−𝜆𝑗𝑥 → 𝜉𝑗, as 𝑥 → −∞,

the 𝑗th column of Φ+𝐋𝑒−𝜆𝑗𝑥 → 𝜉𝑗, as 𝑥 → +∞.

Hence Φ−𝐔 is the required Beals–Coifman fundamental solution matrix.
This solution is meromorphic in each Ω1,𝑗, 𝑗 = 1,… , 6. The restriction of 𝑈𝑜𝑢 to Ω1,𝑗 will be

denoted by 𝑈𝑜𝑢
𝑗
. On the common boundaries of Ω1,𝑗 and Ω1,𝑗+1, 𝑈𝑜𝑢𝑗 and 𝑈𝑜𝑢

𝑗+1
are related by the

transfer matrix 𝑉𝑗 . That is, for 𝑗 = 1,… , 6,

𝑈𝑜𝑢𝑗+1 = 𝑈
𝑜𝑢
𝑗 𝑉𝑗.

Here we set 𝑈𝑜𝑢7 = 𝑈
𝑜𝑢
1
.

Lemma 5. The transfer matrix 𝑉𝑘 is equal to the identity matrix 𝐼.

Proof. In terms of the functions Φ+ and Φ− defined in (20), we can write

𝑈𝑜𝑢
𝑗
= Φ−𝐔 = Φ+𝐋𝛿.

We use the same notation with a tilt to denote the corresponding functions of 𝑈𝑜𝑢
𝑗+1

. That is,

𝑈𝑜𝑢𝑗+1 = Φ̃
−𝐔̃ = Φ̃+𝐋̃𝛿̃.

The matrix 𝑉𝑗 is independent of 𝑥, 𝑦. On the common boundaries of Ω1,𝑗 and Ω1,𝑗+1, by (19), we
have, for 𝑘 = 1, 2, 3,

lim
𝑦→+∞

[(
𝜙+
𝑘
− 𝜙̃+

𝑘

)
𝑒−𝜆𝑘𝑥

]
= 0, uniformly for 𝑥 > 𝑎+,

lim
𝑦→+∞

[(
𝜙−
𝑘
− 𝜙̃−

𝑘

)
𝑒−𝜆𝑘𝑥

]
= 0, uniformly for 𝑥 < 𝑎−.

From this we deduce

lim
𝑦→+∞

𝑈𝑜𝑢𝑗+1

(
𝑈𝑜𝑢𝑗

)−1
= 𝐼.

Hence the transfer matrix 𝑉𝑗 equals identity. □

In Ω2, we define 𝑈𝑖𝑛, matrix solution of (15), such that

𝑈𝑖𝑛(0) = 𝐼.

A key property is that 𝑈𝑖𝑛 is holomorphic in Ω2. In general, assuming the jump matrix from the
interior to the outer solutions on the boundary circle 𝜕𝐵𝑟 has the form

𝐺(𝑘)𝐸(𝑘).

 1460244x, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12619 by w

en Y
A

N
G

 - U
niversity O

f M
acau W

u Y
ee Sun , W

iley O
nline L

ibrary on [24/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 45 LIU te al.

Then we have the following relation:

𝑈𝑜𝑢 = 𝑈𝑖𝑛𝐺(𝑘)𝐸(𝑘). (21)

Taking (𝑥, 𝑦) = (0, 0), we get

𝑈𝑜𝑢(0, 0) = 𝐺(𝑘)𝐸(𝑘).

It turns out that the Beals–Coifman fundamental solution 𝑈𝑜𝑢 (𝑘; 𝑥, 𝑦) has the form

𝑈𝑜𝑢(𝑘; 𝑥, 𝑦) =

⎡⎢⎢⎢⎣𝐼 +
∑
𝑘∗
𝑗

𝑛𝑗∑
𝑠=1

⎛⎜⎜⎜⎝
𝐴𝑗,𝑠(𝑥, 𝑦)(
𝑘 − 𝑘∗

𝑗

)𝑠
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦𝐸(𝑘)𝑒

𝑀(𝑘)𝑥, (22)

for certain complex numbers 𝑘∗
𝑗
. Here 𝐴𝑗,𝑠 are 3 × 3matrices. We then obtain

⎡⎢⎢⎢⎣𝐼 +
∑
𝑘∗
𝑗

𝑛𝑗∑
𝑠=1

⎛⎜⎜⎜⎝
𝐴𝑗,𝑠(𝑥, 𝑦)(
𝑘 − 𝑘∗

𝑗

)𝑠
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦𝐸(𝑘)𝑒

𝑀𝑥𝐸(𝑘)−1𝐺(𝑘)−1 = 𝑈𝑖𝑛. (23)

As we already mentioned, 𝑈𝑖𝑛 is a holomorphic function in the radius 𝑟 disk. This will yield a
system of equations for the entries of 𝐴𝑗,𝑠. Next we would like to show that the system has a
unique solution.

Lemma 6. For fixed 𝐺, the system (21) has a unique solution.

Proof. We have

𝑈𝑜𝑢(𝑘; 𝑥, 𝑦) = 𝑈𝑖𝑛(𝑘; 𝑥, 𝑦)𝐺(𝑘)𝐸(𝑘).

Suppose there is another pair
(
𝑈̃𝑜𝑢, 𝑈̃𝑖𝑛

)
such that

𝑈̃𝑜𝑢(𝑘; 𝑥, 𝑦) = 𝑈̃𝑖𝑛(𝑘; 𝑥, 𝑦)𝐺(𝑘)𝐸(𝑘).

We claim that 𝑈̃𝑜𝑢 = 𝑈𝑜𝑢.
Indeed, since 𝑈̃𝑜𝑢 is invertible, the matrix 𝑈𝑜𝑢 (𝑈̃𝑜𝑢)−1 is holomorphic outside 𝐵𝑟, while

𝑈𝑖𝑛
(
𝑈̃𝑖𝑛
)−1 is holomorphic inside 𝐵𝑟. Moreover, they are equal to each other on 𝜕𝐵𝑟. Hence

they patch up to an entire holomorphic function which is also bounded. Hence in view of their
asymptotics at infinity, we obtain

𝑈𝑜𝑢 = 𝑈̃𝑜𝑢, and 𝑈𝑖𝑛 = 𝑈̃𝑖𝑛.

This finishes the proof. □
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 17 of 45

With this result at hand, next we show that the solution 𝑞 has to be rational. Let us define

Φ ∶= 𝐸(𝑘)𝑒𝑀𝑥𝐸(𝑘)−1.

Lemma 7. The matrix Φ is holomorphic in 𝑘 with removable singularities at

𝑘1,± = ±

√
6

3
𝑖, 𝑘2,± = ±

2
√
6

3
𝑖.

Proof. For instance, if Φ𝑖,𝑗 represents the entry of Φ on the 𝑖th row and 𝑗th column, then

Φ12 =
𝑘𝑖
√
3𝑘2 + 8 − 3𝑘2 − 4(
6𝑘2 + 4

)√
3𝑘2 + 8

𝑒
−𝑥
2

(
𝑘𝑖+
√
3𝑘2+8

)
−

𝑘𝑖

3𝑘2 + 2
𝑒𝑘𝑖𝑥

+
𝑘𝑖
√
3𝑘2 + 8 + 3𝑘2 + 4(
6𝑘2 + 4

)√
3𝑘2 + 8

𝑒
−𝑥
2

(
𝑘𝑖−
√
3𝑘2+8

)
.

Letting 𝑡 = 𝑥
2

√
3𝑘2 + 8 𝑖, we see that

Φ12 =
𝑘𝑖

3𝑘2 + 2
𝑒−
𝑘𝑥𝑖
2 cos 𝑡 +

3𝑘2 + 4

6𝑘2 + 4
𝑥𝑒−

𝑘𝑥𝑖
2
sin 𝑡

𝑡
−

𝑘𝑖

3𝑘2 + 2
𝑒𝑘𝑖𝑥.

Note that cos 𝑡 and sin 𝑡 are holomorphic in 𝑘, and the derivatives of them with respect to 𝑘
contains polynomials of 𝑥 as coefficients. Similarly, for Φ22 ∶

Φ22 =

(
𝑘2 + 1

)√
3𝑘2 + 8 − 𝑘𝑖(

3𝑘2 + 2
)√
3𝑘2 + 8

𝑒
−𝑥
2

(
𝑘𝑖+
√
3𝑘2+8

)
+

𝑘2

3𝑘2 + 2
𝑒𝑘𝑖𝑥

+

(
𝑘2 + 1

)√
3𝑘2 + 8 + 𝑘𝑖(

3𝑘2 + 2
)√
3𝑘2 + 8

𝑒
−𝑥
2

(
𝑘𝑖−
√
3𝑘2+8

)

=
2𝑘2 + 2

3𝑘2 + 2
𝑒−
𝑘𝑥𝑖
2 cos 𝑡 +

𝑘𝑖

3𝑘2 + 2
𝑥𝑒−

𝑘𝑥𝑖
2
sin 𝑡

𝑡
+

𝑘2

3𝑘2 + 2
𝑒𝑘𝑖𝑥.

The other entries can be treated in a similar way.
Note that potentially Φ𝑖,𝑗 also has singularities when 𝑘 = ±

√
6

3
𝑖. However, one can also show

that they are removable. □

Note that the second equation in the Lax pair reads as

𝜕𝑦𝑓 = 𝑖

(
3
𝑑2

𝑑𝑥2
− 4(𝑞 + 1)

)
𝑓. (24)

Recall that we have defined 𝑓1 = 𝑓, and 𝐟 ∶= (𝑓1, 𝑓2, 𝑓3)
𝑇 , which solves (15), the ODE system

corresponding to the first equation of the Lax pair. In view of the asymptotic behavior imposed
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18 of 45 LIU te al.

on the Beals–Coifman solution, we have 𝐟 𝑒−𝜆𝑗𝑥 → 𝜉𝑗 as 𝑥 → +∞. We then see that the function

𝑒
𝑖
(
3𝜆2
𝑗
−4
)
𝑦
𝑓1(𝑥)

will solve Equation (24). Let us set 𝜎𝑗 = 𝑖(3𝜆2𝑗 − 4), and Λ𝑗 = 𝜆𝑗𝑥 + 𝜎𝑗𝑦.

Lemma 8. There holds

Λ1
(
𝑘1,+
)
= −

√
6

3
𝑥 − 2𝑖𝑦, Λ2

(
𝑘1,+
)
=
2
√
6

3
𝑥 + 4𝑖𝑦, Λ3

(
𝑘1,+
)
= −

√
6

3
𝑥 − 2𝑖𝑦,

Λ1
(
𝑘1,−
)
=

√
6

3
𝑥 − 2𝑖𝑦, Λ2

(
𝑘1,−
)
=

√
6

3
𝑥 − 2𝑖𝑦, Λ3

(
𝑘1,−
)
= −
2
√
6

3
𝑥 + 4𝑖𝑦.

Moreover,

Λ1
(
𝑘2,+
)
= −
2
√
6

3
𝑥 + 4𝑖𝑦, Λ2

(
𝑘1,+
)
=

√
6

3
𝑥 − 2𝑖𝑦, Λ3

(
𝑘1,+
)
=

√
6

3
𝑥 − 2𝑖𝑦,

Λ1
(
𝑘2,−
)
=
2
√
6

3
𝑥 + 4𝑖𝑦, Λ2

(
𝑘1,−
)
= −

√
6

3
𝑥 − 2𝑖𝑦, Λ3

(
𝑘1,−
)
= −

√
6

3
𝑥 − 2𝑖𝑦.

Proof. This follows from direct computation. □

Lemma 9. Suppose 𝑄 is a rational function of the 𝑥, 𝑦 variables. Then for each fixed 𝑦,

lim
𝑥→∞

𝜕𝑥𝑄

𝑄
= 0.

Proof. 𝑄 can be written as 𝑉
𝑊
, where𝑊,𝑉 are polynomials. For fixed 𝑦, without loss of generality,

we assume 𝑉,𝑊 > 0 for 𝑥 large. Then

𝜕𝑥𝑄

𝑄
= 𝜕𝑥 ln𝑄 = 𝜕𝑥 ln𝑉 − 𝜕𝑥 ln𝑊 =

𝜕𝑥𝑉

𝑉
−
𝜕𝑥𝑊

𝑊
.

Since 𝑉,𝑊 are polynomials, we conclude

lim
𝑥→∞

𝜕𝑥𝑄

𝑄
= 0.

The proof is then completed. □

Now we are ready to prove the main result of this section.

Theorem 10. Suppose 𝑞 is a solution of the Boussinesq equation satisfying the assumption of
Theorem 1, then 𝑞 is rational.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 19 of 45

Proof. Once the solution 𝑞 is given, the matrix 𝐺 is determined. On the other hand, the solution
𝑞, which appears as a potential in the Lax pair equation, is determined by the Beals–Coifman
function 𝑈𝑜𝑢 and 𝑈𝑖𝑛. To do this, we insert (22) into the equation

(𝑈𝑜𝑢)
′ = 𝐴𝑈𝑜𝑢.

Comparing the (3, 1) entry on both sides, we can see that 𝑞, 𝑝 are determined by 𝐴𝑗,𝑠. Hence we
need to determine the matrices 𝐴𝑗,𝑠 in (23).
We first show that the possible poles 𝑘∗

𝑗
in (23) have to be 𝑘1,± and 𝑘2,±. To see this, we use the

fact that the Beals–Coifman fundamental solution is unique (this follows from condition (16)).
Then for 𝑦 large, the constants 𝑎± appeared in the construction of Beals–Coifman fundamental
solution can both be chosen to be zero. Note that this construction works provided that 𝜆𝑗 are
distinct. Hence again using estimate (19), we then see that as 𝑦 tends to∞, the asymptotic behavior
of the solution𝜙+

𝑗
is ‘close’ to the asymptotic behavior of𝜙−

𝑗
for𝑥 large.Hence if a complex number

𝑘∗ is not equal to 𝑘1,± or 𝑘2,±, then it cannot appear in the set of poles.
Since the right-hand side of (23) is holomorphic in 𝑘, we see that the matrices 𝐴𝑗,𝑠 satisfy a

system of linear equation whose entries are polynomial in 𝑥. Now by Lemma 6, the solution has
to be unique. Hence the linear system does not have kernel and 𝑞 contains rational functions and
exponential functions in its expression.
We claim that 𝑞 is rational. Indeed, supposes 𝑞 also have exponential functions, then we can

write

𝑞(𝑥, 𝑦) =

+∞∑
𝑘,𝑗=0

[
𝑄𝑗,𝑘(𝑥, 𝑦)𝑒

−
√
2
3
𝑗𝑥−2𝑘𝑦𝑖

]
.

Inserting it into the equation

𝐾𝑃(𝑞) ∶= 3𝜕2𝑥
(
𝜕2𝑥𝑞 − 4𝑞

2 − 8𝑞
)
− 𝑞𝑦𝑦 = 0,

we see that 𝐾𝑃
(
𝑄0,0
)
= 0, and

3𝜕2𝑥

[
𝜕2𝑥

(
𝑄1,0𝑒

−
√
2
3
𝑥
)
− 8𝑄0,0𝑄1,0𝑒

−
√
2
3
𝑥 − 8

(
𝑄1,0𝑒

−
√
2
3
𝑥
)]
− 𝜕2𝑦

(
𝑄1,0𝑒

−
√
2
3
𝑥
)
= 0.

Let us set 𝑎 = −
√
2

3
. Then the left-hand side can be written as

(
3𝑎4 − 8𝑎2 + 𝑃(𝑥, 𝑦)

)
𝑄1,0 = 0,

where 𝑃 is determined by 𝑄0,0 and derivatives of 𝑄1,0. In particular, applying Lemma 9, we have

𝑃(𝑥, 𝑦) → 0, as 𝑥 → +∞.

It follows that

𝑄1,0 = 0.
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20 of 45 LIU te al.

Now for general 𝑄𝑗,𝑘, it satisfies an equation of the form[
3
(
(𝑎𝑗)4 − 8(𝑎𝑗)2

)
− (2𝑘𝑖)2 + 𝑃𝑗,𝑘

]
𝑄𝑗,𝑘 = 0.

Observe that

3
(
(𝑎𝑗)4 − 8(𝑎𝑗)2

)
− (2𝑘𝑖)2 =

4

3

(
𝑗4 − 12𝑗2 + 3𝑘2

)
.

This is nonzero for all integers 𝑗, 𝑘. Hence same arguments as above imply that𝑄𝑗,𝑘 = 0 for𝑘 + 𝑗 ⩾
1. We then conclude that 𝑞 is a rational solution.
It is worth pointing out that by the Krichever theorem (see [35, 36]), if the solution is rational

in 𝑥, then it will also be rational in the 𝑦 variable. □

4 THE BOUSSINESQ HIERARCHY AND THE STRUCTURE OF
RATIONAL SOLUTIONS

In this section, we will extend the elegant techniques developed by Airault–McKean–Moser [4]
for the complex valued rational solutions of KdV equation to the Boussinesq equation, and classify
its rational solutions. This problem is originally raised in [4, pp. 123–124], and is much more com-
plicated than the KdV case. In the KdV case, it has been shown in [4] that the space of rational
solutions with degree 𝑑 (𝑑 + 1) ∕2 is a manifold of complex dimension 𝑑. The polynomials cor-
responding to these rational solutions are the famous Adler–Moser polynomials, studied in [2].
However, in our case, a proof of similar result of this type turns out to be more delicate, due to the
facts that various differential operators involved in the Boussinesq hierarchy is of different orders,
and the locus𝑀 defined by (30) is not scaling invariant.

4.1 The Boussinesq hierarchy

In [43], Mckean found the Boussinesq hierarchy associated to the Boussinesq equation. The
equation he studied is the following:

𝜕2𝑦𝑞 = 3𝜕
2
𝑥

(
𝜕2𝑥𝑞 + 4𝑞

2
)
. (25)

Related works on the Boussinesq hierarchy can be found in [22].
We use 𝐷 to denote the differentiation with respect to the 𝑥 variable (this 𝐷 is not the bilinear

derivative operator). Define the operator

 =
[
0 𝐷

𝐷 0

]
.

Let

𝐿0 ∶= 𝐷
5 + 5

(
𝑞𝐷3 + 𝐷3𝑞

)
− 3
(
𝑞′′𝐷 + 𝐷𝑞′′

)
+ 16𝑞𝐷𝑞,
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 21 of 45

and define

0 =
[
𝐷3 + 𝑞𝐷 + 𝐷𝑞 3𝑝𝐷 + 2𝑝′

3𝑝𝐷 + 𝑝′ 1

3
𝐿0

]
.

Mckean used 0 to define recursively a sequence of vector fields, which generate the Boussi-
nesq hierarchy.
In our case, we are actually considering those solutions of the Boussinesq equation (25) with

nonzero boundary condition, say 𝑞 → −1
8
as 𝑥2 + 𝑦2 → +∞. Indeed, introducing new variable 𝑞

by 𝑞 = 𝑞 − 1
8
in (25), we obtain

𝜕2𝑦𝑞 = 3𝜕
2
𝑥

(
𝜕2𝑥𝑞 + 4𝑞

2 − 𝑞
)
. (26)

This is the equation we will study in this section. Note that if we set 𝑞 (𝑥, 𝑦) = 3
4
𝑢(𝑥,

√
3𝑦), then

𝑢 satisfies the version of the Boussinesq equation appeared in Section 1, that is,

𝜕2𝑥
(
𝜕2𝑥𝑢 + 3𝑢

2 − 𝑢
)
− 𝜕2𝑦𝑢 = 0.

We are thus lead to consider the shifted operator 𝐿 defined by

𝐿 ∶= 𝐷5 + 5
[(
𝑞 −
1

8

)
𝐷3 + 𝐷3

(
𝑞 −
1

8

)]
− 3
(
𝑞′′𝐷 + 𝐷𝑞′′

)
+ 16

(
𝑞 −
1

8

)
𝐷
(
𝑞 −
1

8

)
.

Note that

𝐿 = 𝐿0 −
5

4
𝐷3 − 2(𝑞𝐷 + 𝐷𝑞) +

1

4
𝐷.

We then define

𝑗 =
⎡⎢⎢⎣
𝐷3 +

(
𝑞 − 1

8

)
𝐷 + 𝐷

(
𝑞 − 1

8

)
3
(
𝑝 + (−1)𝑗𝑎

)
𝐷 + 2𝑝′

3
(
𝑝 + (−1)𝑗𝑎

)
𝐷 + 𝑝′ 1

3
𝐿

⎤⎥⎥⎦ .
Here the constant 𝑎 is chosen such that

(3𝑎)2 +
1

48
= 0.

We will explain later on why 𝑎 should be chosen in this way. Let 𝐻0 = ∫ 3

2
𝑝. Then a series of

vector fields can be defined recursively by

𝑋𝑗+1 = 𝑗∇𝐻𝑗, and∇𝐻𝑗 = 𝑋𝑗.
More precisely, once we obtained 𝑋𝑗 , we can find ∇𝐻𝑗 by using the relation ∇𝐻𝑗 = 𝑋𝑗 . Then
we can find 𝑋𝑗+1 by 𝑋𝑗+1 = ∇𝐻𝑗 .
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22 of 45 LIU te al.

In particular,

𝑋0 = ∇𝐻0 = 0, 𝑋1 = ∇𝐻0 = (3𝑝′, 𝑞′′′ + 8𝑞𝑞′ − 𝑞′)𝑇.
Hence 𝑋1 is the Boussinesq flow. Here ′ represents the derivative with respect to the 𝑥 variable.
As a matter of fact, there is another family of the Boussinesq hierarchy, starting from∇𝐻 = (1, 0).
But we will not use them.
Suppose 𝑢 is a rational solution of the KP-I equation. Then from [35, 36], we know that 𝑢 can

be written in the form

𝑢 = −
3

2

𝑛∑
𝑗=1

1(
𝑥 − 𝜉𝑗(𝑦, 𝑡)

)2 .
In this case, 𝑢 = 3

2
𝜕2𝑥 ln 𝜏, where 𝜏 is a polynomial in the 𝑥 variable.

For rational solutions 𝑞 of the Boussinesq equation, we have

𝑞 = −
3

2

𝑛∑
𝑗=1

1(
𝑥 − 𝜂𝑗(𝑦)

)2 . (27)

For real-valued solutions, as we will see, the main-order term of the 𝜏 function is (𝑥2 + 3𝑦2)𝑛.
Inserting (27) into Equation (26), we find that for each fixed index 𝑗 = 1,… , 𝑛, there holds

⎧⎪⎪⎨⎪⎪⎩

𝜕2𝑦𝜂𝑗 −
∑
𝑘≠𝑗

72

(𝜂𝑗−𝜂𝑘)
3 = 0,

𝜂′2
𝑗
+ 36

∑
𝑘≠𝑗
(
𝜂𝑗 − 𝜂𝑘

)−2
+ 3 = 0.

(28)

Recall that (28) is the famous Caloger–Moser system. More precisely, let 𝜕𝑦𝜂𝑗 = 𝛽𝑗 . Then the
CM flow can be written as

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑦𝜂𝑗 = 𝛽𝑗,

𝜕𝑦𝛽𝑗 =
∑
𝑘≠𝑗

72

(𝜂𝑗−𝜂𝑘)
3 .

(29)

Now one can show that the function (27) solves the Boussinesq equation if and only (𝜂, 𝛽)
satisfies the CM system (29) restricted to the set

𝑀 ∶=
{
(𝜂, 𝛽) ∈ ℂ2𝑛 ∶ ∇(𝐹1 + 𝐹3) = 0

}
,

where

𝐹1 = 3

𝑛∑
𝑗=1

𝛽𝑗, 𝐹3 =
1

3

𝑛∑
𝑗=1

𝛽3
𝑗
+ 36

𝑛∑
𝑗=1

∑
𝑘≠𝑗

𝛽𝑗(
𝜂𝑗 − 𝜂𝑘

)2 .
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 23 of 45

The proof of this fact follows from similar lines as that of [4], although in that paper the case
of hyperbolic Boussinesq equation is treated, instead of the elliptic case we are studying now.
Therefore the details of the computation will be omitted.
Explicitly, a point (𝜂1, … , 𝜂𝑛, 𝛽1, … , 𝛽𝑛) ∈ 𝑀 ⊂ ℂ2𝑛 if and only if for each fixed 𝑗 = 1,… , 𝑛, the

following identities hold:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
𝑘≠𝑗

𝛽𝑗 + 𝛽𝑘(
𝜂𝑗 − 𝜂𝑘

)3 = 0,
𝛽2
𝑗
+
∑
𝑘≠𝑗

36

(𝜂𝑗−𝜂𝑘)
2 + 3 = 0.

(30)

In the case of lump solution, we have 𝑛 = 2 and

𝜂1 = 𝑖
√
3𝑦2 + 3, 𝜂2 = −𝑖

√
3𝑦2 + 3,

𝛽1 =
3𝑦𝑖√
3𝑦2 + 3

, 𝛽2 = −
3𝑦𝑖√
3𝑦2 + 3

.

As a consequence of (30), a vector (𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛) ∈ 𝑇𝑀, the tangent space of 𝑀 at
(𝜂1, … , 𝜂𝑛, 𝛽1, … , 𝛽𝑛), if and only if for each fixed 𝑗 = 1,… , 𝑛,

⎧⎪⎪⎨⎪⎪⎩

∑
𝑘≠𝑗

⎛⎜⎜⎝
𝑏𝑗 + 𝑏𝑘(
𝜂𝑗 − 𝜂𝑘

)3 − 3
(
𝛽𝑗 + 𝛽𝑘

)(
𝑎𝑗 − 𝑎𝑘

)(
𝜂𝑗 − 𝜂𝑘

)4 ⎞⎟⎟⎠ = 0,
𝛽𝑗𝑏𝑗 −

∑
𝑘≠𝑗
36(𝑎𝑗−𝑎𝑘)

(𝜂𝑗−𝜂𝑘)
3 = 0.

(31)

Recall that the Boussinesq equation reads as{
𝑞𝑦 = 3𝑝

′,

𝑝𝑦 = 𝑞
′′′ + 8𝑞𝑞′ − 𝑞′.

The rational solution 𝑞 of the Boussinesq equation can be written as

𝑞 = −
3

2

𝑛∑
𝑗=1

1(
𝑥 − 𝜂𝑗

)2 .
Therefore, for this 𝑞, we have

𝑝 =
1

2

𝑛∑
𝑗=1

𝛽𝑗(
𝑥 − 𝜂𝑗

)2 .
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24 of 45 LIU te al.

where 𝛽𝑗 = 𝜕𝑦𝜂𝑗 . Now for initial condition (𝑞0, 𝑝0) of this form, for each 𝑘, the vector field 𝑋𝑘
corresponds the 𝑘th Boussinesq flow can be defined by(

𝑞𝑦, 𝑝𝑦
)𝑇
= 𝑋𝑘

(
(𝑞, 𝑝)𝑇

)
.

Denote the flow induced by this equation as 𝑒 (𝑦𝑋𝑘).

Proposition 11. The 𝑘th Boussinesq flow 𝑒 (𝑦𝑋𝑘) induces a flow on𝑀. More precisely,

𝑋𝑘
(
(𝑞, 𝑝)𝑇

)
=
⎛⎜⎜⎝6
𝑛∑
𝑗=1

𝑎𝑗(
𝑥 − 𝜂𝑗

)3 , − 𝑛∑
𝑗=1

⎛⎜⎜⎝
2𝛽𝑗𝑎𝑗(
𝑥 − 𝜂𝑗

)3 + 𝑏𝑗(
𝑥 − 𝜂𝑗

)2 ⎞⎟⎟⎠
⎞⎟⎟⎠
𝑇

, (32)

where (𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛) ∈ 𝑇𝑀.

Proof. The proof is quite tedious and long, and it may be omitted at the first reading.
We would like to compute the explicit form of each vector field 𝑋𝑘 acting on (𝑞, 𝑝)

𝑇 , in an
inductive way. For this purpose, we will use the recursive formula of 𝑋𝑘 defined through the
operator𝑘.
To simplify notations, let us set

𝑚𝑗(𝑥) ∶=
1(

𝑥 − 𝜂𝑗
)2 and 𝑛𝑗(𝑥) ∶=

1

𝑥 − 𝜂𝑗
.

Adopting the notation Σ𝑗 = Σ𝑛𝑗=1, we have

𝑞 = −
3

2
Σ𝑗𝑚𝑗 and 𝑝 =

1

2
Σ𝑗
(
𝛽𝑗𝑚𝑗

)
.

We split the proof into two steps.
Step 1. Suppose the vector 𝑋𝑘 already has the form (32), which implies

∇𝐻𝑘 =

[
0 𝐷−1

𝐷−1 0

] ⎛⎜⎜⎝6Σ𝑗
𝑎𝑗(

𝑥 − 𝜂𝑗
)3 , −Σ𝑗⎛⎜⎜⎝

2𝛽𝑗𝑎𝑗(
𝑥 − 𝜂𝑗

)3 + 𝑏𝑗(
𝑥 − 𝜂𝑗

)2 ⎞⎟⎟⎠
⎞⎟⎟⎠
𝑇

=
((
Σ𝑗
(
𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

))
, −3Σ𝑗

(
𝑎𝑗𝑚𝑗

))𝑇
,

we would like to show that 𝑋𝑘+1 also has the form (32).
Recall that 𝑋𝑘+1 is defined to be ∇𝐻𝑘. Let us denote the first component of ∇𝐻𝑘 by

(∇𝐻𝑘)(1). Assuming 𝑋𝑘 = ∇𝐻𝑘−1 already has the form (32), we find that (∇𝐻𝑘)(1) equals(
𝐷3 +

(
𝑞 −
1

8

)
𝐷 + 𝐷

(
𝑞 −
1

8

))(
Σ𝑗
(
𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

))
+
(
3(𝑝 + 𝑎)𝐷 + 2𝑝′

)(
−3Σ𝑗

(
𝑎𝑗𝑚𝑗

))
.

 1460244x, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12619 by w

en Y
A

N
G

 - U
niversity O

f M
acau W

u Y
ee Sun , W

iley O
nline L

ibrary on [24/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 25 of 45

The points 𝜂𝑗, 𝑗 = 1,…, are possible poles. To analyze the pole structure of function, wewould like
to expand it around each 𝜂𝑗 .
Let us fix an index 𝑗. The coefficient before 1

(𝑥−𝜂𝑗)
5 is(

−24 + 2
(
−
3

2

)
(−2) +

(
−
3

2

)
(−2) − 9

(
1

2

)
(−2) − 6

(
1

2

)
(−2)

)
𝛽𝑗𝑎𝑗 = 0.

Therefore, (∇𝐻𝑘)(1) does not have pole of order 5.
Next we consider the term 1

(𝑥−𝜂𝑗)
4 . We see that it only comes from(
𝐷3 + 𝑞𝐷 + 𝐷𝑞

)(
𝑏𝑗𝑛𝑗

)
.

The coefficient vanishes, since it equals

𝑏𝑗

(
(−1)(−2)(−3) +

(
−
3

2

)
(−1) +

(
−
3

2

)
(−3)

)
= 0.

For pole of order 3, that is, the term 1

(𝑥−𝜂𝑗)
3 , it comes from(

2𝑞 −
1

4

)
Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚

′
𝑗

)
+ 𝑞′Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚𝑗

)
+ 𝑞′Σ𝑗

(
𝑏𝑗𝑛𝑗

)
− 9(𝑝 + 𝑎)Σ𝑗

(
𝑎𝑗𝑚

′
𝑗

)
− 6𝑝′Σ𝑗

(
𝑎𝑗𝑚𝑗

)
.

Wewill use the notation Σ′
𝑘
to denote the summation over the index 𝑘 which is not equal to 𝑗. The

coefficient 𝐼3 of
1

(𝑥−𝜂𝑗)
3 equals

2
(
−
3

2

)
Σ′
𝑘

(
(−2)𝛽𝑗𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
−
1

4
(−2)𝛽𝑗𝑎𝑗

+
(
−
3

2

)
(−2)Σ′𝑘

(
𝛽𝑘𝑎𝑘𝑚𝑘

(
𝜂𝑗
)
+ 𝑏𝑘𝑛𝑘

(
𝜂𝑗
))

− 9
(
1

2

)
Σ′
𝑘

(
−2𝛽𝑘𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
− 9𝛼(−2)𝑎𝑗 − 6

(
1

2

)
(−2)Σ′𝑘

(
𝛽𝑗𝑎𝑘𝑚𝑘

(
𝜂𝑗
))
.

That is,

𝐼3 = 6Σ
′
𝑘

(
𝛽𝑗𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
+
1

2
𝛽𝑗𝑎𝑗

+ 3Σ′
𝑘

(
𝛽𝑘𝑎𝑘𝑚𝑘

(
𝜂𝑗
))
+ 3Σ′

𝑘

(
𝑏𝑘𝑛𝑘

(
𝜂𝑗
))

+ 9Σ′
𝑘

(
𝛽𝑘𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
+ 18𝛼𝑎𝑗 + 6Σ

′
𝑘

(
𝛽𝑗𝑎𝑘𝑚𝑘

(
𝜂𝑗
))
.

Next, to analyze the 1

(𝑥−𝜂𝑗)
2 term, we need to compute

2𝑞Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚

′
𝑗 + 𝑏𝑗𝑛

′
𝑗

)
+ 𝑞′Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

)
−
1

4
Σ𝑗

(
𝑏𝑗𝑛

′
𝑗

)
+ 3𝑝Σ𝑗

(
−3𝑎𝑗𝑚

′
𝑗

)
+ 2𝑝′Σ𝑗

(
−3𝑎𝑗𝑚𝑗

)
.
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Using the formula of 𝑞 and 𝑝, we can compute the corresponding coefficient 𝐼2∶

2
(
−
3

2

)[
(−2)Σ′𝑘

(
𝛽𝑗𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+ Σ′

𝑘

(
𝛽𝑘𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
))]

+
(
−
3

2

)[
Σ′
𝑘

(
𝛽𝑗𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+ (−2)Σ𝑘

(
𝛽𝑘𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
))]

+ 2
(
−
3

2

)
(−1)𝑏𝑗Σ

′
𝑘

(
𝑚𝑘
(
𝜂𝑗
))
+ 2
(
−
3

2

)
Σ′
𝑘

(
𝑏𝑘𝑛

′
𝑘

(
𝜂𝑗
))

+
(
−
3

2

)
(−2)Σ′𝑘

(
𝑏𝑘𝑛

′
𝑘

(
𝜂𝑗
))
−
1

4
(−1)𝑏𝑗

− 9
(
1

2

)[
(−2)Σ′𝑘

(
𝛽𝑘𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+ Σ′

𝑘

(
𝛽𝑗𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
))]

− 6
(
1

2

)[
Σ′
𝑘

(
𝛽𝑘𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+ (−2)Σ′𝑘

(
𝛽𝑗𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
))]
.

Simplifying this expression, we find that 𝐼2 equals

9

2
Σ′
𝑘

(
𝛽𝑗𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+ 6Σ′

𝑘

(
𝛽𝑘𝑎𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+
3

2
Σ′
𝑘

(
𝛽𝑗𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
))
+ 3𝑏𝑗Σ

′
𝑘

(
𝑚𝑘
(
𝜂𝑗
))
+
1

4
𝑏𝑗.

Note that on the locus𝑀 we have the following two identities:

12Σ′
𝑘

(
𝑚𝑘
(
𝜂𝑗
))
+ 1 = −

1

3
𝛽2𝑗 , and Σ′

𝑘

[
𝛽𝑘𝑚

′
𝑘

(
𝜂𝑗
)]
= −Σ′

𝑘

[
𝛽𝑗𝑚

′
𝑘

(
𝜂𝑗
)]
.

It follows that

𝐼2 =
3

2
Σ′
𝑘

[
𝛽𝑗
(
𝑎𝑘 − 𝑎𝑗

)
𝑚′
𝑘

(
𝜂𝑗
)]
−
1

12
𝑏𝑗𝛽

2
𝑗 .

Since (𝑎1, … , 𝑎𝑁, 𝑏1, … , 𝑏𝑁) belongs to the tangent space of𝑀, we obtain 𝐼2 = 0.
We proceed to compute the coefficient of 1

𝑥−𝜂𝑗
. It comes from

2𝑞Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚

′
𝑗 + 𝑏𝑗𝑛

′
𝑗

)
+ 𝑞′Σ𝑗

(
𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

)
− 9𝑝Σ𝑗

(
𝑎𝑗𝑚

′
𝑗

)
− 6𝑝′Σ𝑗

(
𝑎𝑗𝑚𝑗

)
.

The corresponding coefficient 𝐼1 is

2
(
−
3

2

)
Σ′
𝑘

(
𝛽𝑘𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
)
+ 𝑏𝑘𝑛

′′
𝑘

(
𝜂𝑗
))
+ 2
(
−
3

2

)
Σ′
𝑘

(
(−2)

1

2
𝛽𝑗𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))

+ 2
(
−
3

2

)
Σ′
𝑘

(
(−1)𝑏𝑗𝑚

′
𝑘

(
𝜂𝑗
))

+
(
−
3

2

)
(−2)Σ′𝑘

(
1

2
𝛽𝑘𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
)
+
1

2
𝑏𝑘𝑛

′′
𝑘

(
𝜂𝑗
))

+
(
−
3

2

)
Σ′
𝑘

(
𝛽𝑗𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))
+
(
−
3

2

)
Σ′
𝑘

(
𝑏𝑗𝑚

′
𝑘

)
− 9
(
1

2

)(
Σ′
𝑘

(
𝛽𝑗𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
))
+ Σ′

𝑘

(
(−2)

1

2
𝛽𝑘𝑎𝑗𝑚

′′
𝑘

))
− 6
(
1

2

)(
(−2)Σ′𝑘

(
1

2
𝛽𝑗𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
))
+ Σ′

𝑘
𝛽𝑘𝑎𝑗𝑚

′′
𝑘

)
.
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It follows that

𝐼1 =
3

2
Σ′
𝑘

(
𝛽𝑗𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))
+
3

2
Σ′
𝑘

(
𝛽𝑘𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))

−
3

2
Σ′
𝑘

(
𝛽𝑗𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
))
−
3

2
Σ′
𝑘

(
𝛽𝑘𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
))

+
3

2
Σ′
𝑘

(
𝑏𝑗𝑚

′
𝑘

(
𝜂𝑗
))
+
3

2
Σ′
𝑘

(
𝑏𝑘𝑚

′
𝑘

(
𝜂𝑗
))
.

(33)

Using the first identity of (31), we then deduce that 𝐼1 = 0.
Now we consider the second component (∇𝐻𝑘)(2) of the vector field∇𝐻𝑘. We have

(∇𝐻𝑘)(2) = −𝐿Σ𝑗(𝑎𝑗𝑚𝑗) + (3(𝑝 + 𝑎)𝐷 + 𝑝′)Σ𝑗(𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗).
Similar (but more tedious, and the most complicated term is 16𝑞𝐷𝑞) computation as above

shows that the coefficient of the term 1

(𝑥−𝜂𝑗)
𝑙 vanishes for 𝑙 = 1, 4, 5, 6, 7.

Let us compute the coefficient 𝐽3 of
1

(𝑥−𝜂𝑗)
3 . Recall that

𝐿 = 𝐿0 −
5

4
𝐷3 − 2(𝑞𝐷 + 𝐷𝑞) +

1

4
𝐷,

where
𝐿0 ∶= 𝐷

5 + 5
(
𝑞𝐷3 + 𝐷3𝑞

)
− 3
(
𝑞′′𝐷 + 𝐷𝑞′′

)
+ 16𝑞𝐷𝑞.

Observe that 𝐷3
(
𝑞Σ𝑗
(
𝑎𝑗𝑚𝑗

))
does not contain 1

(𝑥−𝜂𝑗)
3 term. From the operator 𝐿0, the

contribution to the coefficient is

5
(
−
3

2

)
(−24)Σ′𝑘

(
1

2
𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))

− 3
(
−
3

2

)(
2(6)Σ′𝑘𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
)
+ 2(−2)Σ′𝑘

(
𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))
+ (−24)Σ′𝑘

(
1

2
𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
)))

+ 16
(
9

4

)[
Σ′
𝑘

(
(−2)𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
))
− 2Σ′

𝑘
𝑚𝑘
(
𝜂𝑗
)
Σ′
𝑘

((
𝑎𝑘 + 𝑎𝑗

)
𝑚𝑘
(
𝜂𝑗
))]
.

From the operator −5
4
𝐷3 − 2 (𝑞𝐷 + 𝐷𝑞) +

1

4
𝐷, we get

−2
(
−
3

2

)[
2(−2)Σ′𝑘

(
𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
− 2Σ′

𝑘

(
𝑎𝑘𝑚𝑘

(
𝜂𝑗
))]
+
1

4

(
−2𝑎𝑗

)
Finally, from (

3(𝑝 + 𝑎)𝐷 + 𝑝′
)
Σ𝑗
(
𝛽𝑗𝑎𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

)
,

we obtain

3
(
1

2

)
Σ′
𝑘

(
(−2)𝛽𝑘𝛽𝑗𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
+ 3𝑎(−2)𝛽𝑗𝑎𝑗

+
(
1

2

)
(−2)Σ′𝑘

(
𝛽𝑗𝛽𝑘𝑎𝑘𝑚𝑘

(
𝜂𝑗
))
+
1

2
(−2)Σ′𝑘𝛽𝑗𝑏𝑘𝑛𝑘

(
𝜂𝑗
)
.
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Combining these, we find that

𝐽3 = 72Σ
′
𝑘

(
𝑚𝑘
(
𝜂𝑗
))
Σ′
𝑘

((
𝑎𝑘 + 𝑎𝑗

)
𝑚𝑘
(
𝜂𝑗
))

+ 12Σ′
𝑘

(
𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
+ 6Σ′

𝑘

(
𝑎𝑘𝑚𝑘

(
𝜂𝑗
))
+
1

2
𝑎𝑗

− 3Σ′
𝑘

(
𝛽𝑘𝛽𝑗𝑎𝑗𝑚𝑘

(
𝜂𝑗
))
− Σ′

𝑘

(
𝛽𝑗𝛽𝑘𝑎𝑘𝑚𝑘

(
𝜂𝑗
))

− Σ′
𝑘

(
𝛽𝑗𝑏𝑘𝑛𝑘

(
𝜂𝑗
))
− 6𝛼𝛽𝑗𝑎𝑗.

Now using the identity

𝛽2𝑗 + 36Σ
′
𝑘
𝑚𝑘
(
𝜂𝑗
)
+ 3 = 0,

we see that 𝐽3 = −
1

3
𝛽𝑗𝐼3.

The coefficient of 1

(𝑥−𝜂𝑗)
2 is in general nonzero and can be computed in a similar way. The result

is

𝐽2 = 9𝑎𝑗Σ
′
𝑘
𝑚′
𝑘
(𝜂𝑗) +

3

2
Σ′
𝑘
𝑎𝑗𝑚

′′′
𝑘
(𝜂𝑗) −

15

2
Σ′
𝑘
𝑎𝑘𝑚

′′′
𝑘
(𝜂𝑗) + 108Σ

′
𝑘
𝑚𝑘(𝜂𝑗)Σ

′
𝑘
𝑎𝑗𝑚

′
𝑘
(𝜂𝑗)

+ 36Σ′
𝑘
𝑚′
𝑘
(𝜂𝑗)Σ

′
𝑘
𝑎𝑘𝑚𝑘(𝜂𝑗) +

1

2
𝛽𝑗Σ

′
𝑘
(𝑎𝑘𝛽𝑘𝑚

′
𝑘
(𝜂𝑗) + 𝑏𝑘𝑛

′
𝑘
(𝜂𝑗)) −

3

2
𝑏𝑗Σ

′
𝑘
𝛽𝑘𝑚𝑘(𝜂𝑗)

−
5

2
𝛽𝑗𝑎𝑗Σ

′
𝑘
𝛽𝑘𝑚

′
𝑘
(𝜂𝑗) − 36𝑎𝑏𝑗.

In the sequel, for 𝑗 = 1,… , 𝑛, we use 𝐼𝑗 to denote the coefficient of degree−3 term for the pole 𝜂𝑗 .
Up to now, we have proved that 𝑋𝑘+1 = ∇𝐻𝑘 has the form

⎛⎜⎜⎝6Σ𝑗
𝐼𝑗(

𝑥 − 𝜂𝑗
)3 , −Σ𝑗⎛⎜⎜⎝

2𝛽𝑗𝐼𝑗(
𝑥 − 𝜂𝑗

)3 + 𝐵𝑗(
𝑥 − 𝜂𝑗

)2 ⎞⎟⎟⎠
⎞⎟⎟⎠
𝑇

= ∇𝐻𝑘+1.

Step 2. We show that the vector

(𝐼1, … , 𝐼𝑛, 𝐵1, … , 𝐵𝑛)

lies in the tangent space of𝑀 at the point (𝜂1, … , 𝜂𝑛, 𝛽1, … , 𝛽𝑛).
To see this, it will be suffice to show that∇𝐻𝑘+1 is residue free at each pole due to our previous

computation, this means exactly it is in the tangent space of the locus𝑀.
Let us write the operator as

 =
[
𝐾11 𝐾12
𝐾21 𝐾22

]
.

We also write ∇𝐻𝑘+1 = (𝜙1, 𝜙2)
𝑇 . That is,

(𝜙1, 𝜙2) =
(
Σ𝑗
(
𝐼𝑗𝛽𝑗𝑚𝑗 + 𝐵𝑗𝑛𝑗

)
, −3Σ𝑗

(
𝐼𝑗𝑚𝑗

))
.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 29 of 45

Introducing

𝜎 = Σ𝑗
(
𝑎𝑗𝛽𝑗𝑚𝑗 + 𝑏𝑗𝑛𝑗

)
, 𝜏 = −3Σ𝑗

(
𝑎𝑗𝑚𝑗

)
, (34)

we get

𝜙′1 = 𝐾21𝜎 + 𝐾22𝜏, 𝜙
′
2 = 𝐾11𝜎 + 𝐾12𝜏. (35)

Let 𝑙 be a closed path around the pole 𝜂𝑗 in the complex 𝑥 plane. To see that the residue is zero(that
is, does not have 1

𝑥−𝜂𝑗
term in the Laurent expansion around 𝜂𝑗), we compute the integral

𝑄 ∶= ∫𝑙
(∇𝐻𝑘+1)𝑇𝑑𝑥 = ∫𝑙 [𝐾11𝜙1 + 𝐾12𝜙2, 𝐾21𝜙1 + 𝐾22𝜙2]𝑑𝑥.

It is important to observe that each operator𝐾11, 𝐾22 is skew-symmetric, andmoreover the adjoint
of 𝐾12 is −𝐾21, that is,

∫ (g𝐾12ℎ) = −∫ (ℎ𝐾21g).

This is to say that the matrix operator  is skew-symmetric. Integrating by parts tells us that 𝑄
equals

−∫𝑙 [𝜙1𝐾11(1) + 𝜙2𝐾21(1), 𝜙1𝐾12(1) + 𝜙2𝐾22(1)]𝑑𝑥.

Let us define

𝜇 =

[
𝜇1
𝜇2

]
∶= 

[
1

0

]
and 𝑣 =

[
𝑣1
𝑣2

]
∶= 

[
0

1

]
.

Then for some functions 𝑤, 𝑧, we have

𝜇 = (𝑤1, 𝑤2)𝑇 and 𝑣 = (𝑧1, 𝑧2)𝑇.
Explicitly,

𝜇 =
(
𝑞′, 𝑝′

)𝑇
, 𝑣 =

(
2𝑝′,

1

3

(
2𝑞′′′ + 16𝑞𝑞′ − 2𝑞′

))𝑇
.

With these notations,

𝑄 = −∫𝑙 [𝜙1𝜇1 + 𝜙2𝜇2, 𝜙1𝑣1 + 𝜙2𝑣2]𝑑𝑥

= −∫𝑙
[
𝜙1𝑤

′
2 + 𝜙2𝑤

′
1, 𝜙1𝑧

′
2 + 𝜙2𝑧

′
1

]
𝑑𝑥 = ∫𝑙

[
𝜙′1𝑤2 + 𝜙

′
2𝑤1, 𝜙

′
1𝑧2 + 𝜙

′
2𝑧1
]
𝑑𝑥.
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30 of 45 LIU te al.

Using (35), we find that 𝑄 is equal to

∫𝑙 [(𝐾21𝜎 + 𝐾22𝜏)𝑤2 + (𝐾11𝜎 + 𝐾12𝜏)𝑤1, (𝐾21𝜎 + 𝐾22𝜏)𝑧2 + (𝐾11𝜎 + 𝐾12𝜏)𝑧1]𝑑𝑥

= −∫𝑙 [(𝐾11𝑤1 + 𝐾12𝑤2)𝜎 + (𝐾21𝑤1 + 𝐾22𝑤2)𝜏, (𝐾11𝑧1 + 𝐾12𝑧2)𝜎 + (𝐾21𝑧1 + 𝐾22𝑧2)𝜏]𝑑𝑥.

On the other hand, using integration by parts,

∫𝑙 [(𝐾11𝑤1 + 𝐾12𝑤2)𝑤1 + (𝐾21𝑤1 + 𝐾22𝑤2)𝑤2]𝑑𝑥

= −∫𝑙 [(𝐾11𝑤1 + 𝐾12𝑤2)𝑤1 + (𝐾21𝑤1 + 𝐾22𝑤2)𝑤2]𝑑𝑥.

This implies

∫𝑙 [(𝐾11𝑤1 + 𝐾12𝑤2)𝑤1 + (𝐾21𝑤1 + 𝐾22𝑤2)𝑤2]𝑑𝑥 = 0. (36)

Therefore, if we write


[
𝑤1
𝑤2

]
=
(
−3Σ𝑗

(
𝑠𝑗𝑚

′
𝑗

)
, Σ𝑗

(
𝑠𝑗𝛽𝑗𝑚

′
𝑗 + 𝑡𝑗𝑛

′
𝑗

))𝑇
,

then in view of (33), (𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑛) satisfies the first equation of (31). That is,

Σ′
𝑘

⎛⎜⎜⎝
𝑡𝑗 + 𝑡𝑘(
𝜂𝑗 − 𝜂𝑘

)3 − 3
(
𝛽𝑗 + 𝛽𝑘

)(
𝑠𝑗 − 𝑠𝑘

)(
𝜂𝑗 − 𝜂𝑘

)4 ⎞⎟⎟⎠ = 0, 𝑗 = 1,… , 𝑛. (37)

We would like to show that (𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑛) also satisfies the second equation of (31). To do
this, we first compute(𝑤1, 𝑤2)𝑇 and derive that

𝑠𝑗 = Σ
′
𝑘
(𝛽𝑗 + 𝛽𝑘)𝑚𝑘(𝜂𝑗) +

1

24
𝛽𝑗 +

3

2
𝑎,

and

𝑡𝑗 = −
9

2
Σ′
𝑘
𝑚′
𝑘
(𝜂𝑗) + 3Σ

′
𝑘
𝑚′′′
𝑘
(𝜂𝑗) − 72Σ

′
𝑘
𝑚𝑘(𝜂𝑗)Σ

′
𝑘
𝑚′
𝑘
(𝜂𝑗) + 𝛽𝑗Σ

′
𝑘
(𝛽𝑘𝑚

′
𝑘
(𝜂𝑗)).

Then, we get that

𝛽𝑗𝑡𝑗 − 36Σ
′
𝑘

𝑠𝑗 − 𝑠𝑘

(𝜂𝑗 − 𝜂𝑘)
3

= 72𝛽𝑗Σ
′
𝑘

1

(𝜂𝑗 − 𝜂𝑘)
3
Σ′
𝑘

1

(𝜂𝑗 − 𝜂𝑘)
2
− 72𝛽𝑗Σ

′
𝑘

1

(𝜂𝑗 − 𝜂𝑘)
5

− 36Σ′
𝑘
Σ𝑙≠𝑗

𝛽𝑗 + 𝛽𝑙

(𝜂𝑙 − 𝜂𝑗)
2(𝜂𝑗 − 𝜂𝑘)

3
+ 36Σ′

𝑘
Σ𝑙≠𝑘

𝛽𝑘 + 𝛽𝑙
(𝜂𝑗 − 𝜂𝑘)

3(𝜂𝑙 − 𝜂𝑗)
2
.

(38)
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 31 of 45

Now we claim the right-hand side of the above equation is 0. Without loss of generality, we
consider the case 𝑗 = 1 and rewrite the right-hand side of (38) as

72𝛽1
∑

1<𝑙<𝑘⩽𝑛

(
1

(𝜂1 − 𝜂𝑙)
3(𝜂1 − 𝜂𝑘)

2
+

1

(𝜂1 − 𝜂𝑙)
2(𝜂1 − 𝜂𝑘)

3

)

− 36
∑

1<𝑙<𝑘⩽𝑛

(
𝛽1 + 𝛽𝑘

(𝜂1 − 𝜂𝑙)
3(𝜂1 − 𝜂𝑘)

2
+

𝛽1 + 𝛽𝑙
(𝜂1 − 𝜂𝑙)

2(𝜂1 − 𝜂𝑘)
3

)

+ 36
∑

1<𝑙<𝑘⩽𝑛

(
𝛽𝑙 + 𝛽𝑘

(𝜂1 − 𝜂𝑙)
3(𝜂𝑙 − 𝜂𝑘)

2
+

𝛽𝑘 + 𝛽𝑙
(𝜂𝑙 − 𝜂𝑘)

2(𝜂1 − 𝜂𝑘)
3

)
.

(39)

Using the identity det

|||||||||
1 1

(𝜂1−𝜂𝑙)
2

1

(𝜂1−𝜂𝑙)
3

1 1

(𝜂𝑙−𝜂𝑘)
2

1

(𝜂𝑙−𝜂𝑘)
3

1 1

(𝜂𝑘−𝜂1)
2

1

(𝜂𝑘−𝜂1)
3

|||||||||
≡ 0. We can further rewrite the third term of (39) as

36
∑

1<𝑙<𝑘⩽𝑛

(
𝛽𝑙 + 𝛽𝑘

(𝜂1 − 𝜂𝑙)
3(𝜂1 − 𝜂𝑘)

2
+

𝛽𝑙 + 𝛽𝑘
(𝜂1 − 𝜂𝑙)

2(𝜂𝑙 − 𝜂𝑘)
3

)

− 36
∑

1<𝑙<𝑘⩽𝑛

(
𝛽𝑙 + 𝛽𝑘

(𝜂𝑙 − 𝜂𝑘)
3(𝜂1 − 𝜂𝑘)

2
+

𝛽𝑙 + 𝛽𝑘
(𝜂1 − 𝜂𝑙)

2(𝜂𝑘 − 𝜂1)
3

)
.

Substituting it into (39) and using the second equation of (30) we get that the right-hand side of
(38) can be written as

72𝛽1
∑
𝑙≠1
∑
𝑘≠1

1

(𝜂1 − 𝜂𝑙)
2(𝜂1 − 𝜂𝑘)

3
− 72𝛽1

∑
𝑙≠1

1

(𝜂1 − 𝜂𝑙)
5

+ 36
∑
𝑙≠1

𝛽1 + 𝛽𝑙
(𝜂1 − 𝜂𝑙)

5
+ 36

∑
𝑙≠1

1

(𝜂1 − 𝜂𝑙)
2

(
−
∑
𝑘≠1

2𝛽1
(𝜂1 − 𝜂𝑘)

3
+
𝛽1 − 𝛽𝑙
(𝜂1 − 𝜂𝑙)

3

)
= 0.

Hence we can conclude that

𝛽𝑗𝑡𝑗 −
∑
𝑘≠𝑗
36
(
𝑠𝑗 − 𝑠𝑘

)(
𝜂𝑗 − 𝜂𝑘

)3 = 0. (40)

Next, for 𝜎, 𝜏 with the form (34), we compute the first component of the integral 𝑄 along the
closed circle 𝑙 which surrounds the 𝑗th pole 𝑥𝑗 . We have

𝐼𝑄,1 ∶=∫𝑙 ((𝐾11𝑤1 + 𝐾12𝑤2)𝜎 + (𝐾21𝑤1 + 𝐾22𝑤2)𝜏)𝑑𝑥

= − 3∫𝑙
[
Σ𝑘
(
𝑠𝑘𝑚

′
𝑘

)
Σ𝜇
(
𝑎𝜇𝛽𝜇𝑚𝜇 + 𝑏𝜇𝑛𝜇

)
+ Σ𝜇

(
𝑠𝜇𝛽𝜇𝑚

′
𝜇 + 𝑡𝜇𝑛

′
𝜇

)
Σ𝑘(𝑎𝑘𝑚𝑘)

]
𝑑𝑥

= − 3Σ′
𝑘

[
(−1)𝑠𝑗𝑎𝑘𝛽𝑘𝑚

′′
𝑘

(
𝜂𝑗
)]
− 3Σ′

𝑘

[
(−1)𝑠𝑗𝑏𝑘𝑛

′′
𝑘

]
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32 of 45 LIU te al.

− 3Σ′
𝑘

[
𝑠𝑘𝑚

′′
𝑘

(
𝜂𝑗
)
𝑎𝑗𝛽𝑗

]
− 3Σ′

𝑘

[
𝑠𝑘𝑚

′
𝑘

(
𝜂𝑗
)
𝑏𝑗
]

− 3Σ′
𝑘

[
(−1)𝑠𝑗𝛽𝑗𝑎𝑘𝑚

′′
𝑘

(
𝜂𝑗
)]
− 3Σ′

𝑘

[
(−1)𝑡𝑗𝑎𝑘𝑚

′
𝑘

(
𝜂𝑗
)]

− 3Σ′
𝑘

[
𝑎𝑗𝑠𝑘𝛽𝑘𝑚

′′
𝑘

(
𝜂𝑗
)]
− 3Σ′

𝑘

[
𝑎𝑗𝑡𝑘𝑛

′′
𝑘

]
.

Using (37), we find that it equals

3Σ′
𝑘

[(
𝛽𝑗 + 𝛽𝑘

)(
𝑠𝑗 − 𝑠𝑘

)
𝑎𝑗𝑚

′′
𝑘

(
𝜂𝑗
)]
− 3Σ′

𝑘

[(
𝛽𝑗 + 𝛽𝑘

)(
𝑎𝑗 − 𝑎𝑘

)
𝑠𝑗𝑚

′′
𝑘

(
𝜂𝑗
)]

− 3Σ′
𝑘

[(
𝑠𝑗𝑏𝑘 + 𝑠𝑘𝑏𝑗 − 𝑡𝑗𝑎𝑘 − 𝑎𝑗𝑡𝑘

)
𝑚′
𝑘

(
𝜂𝑗
)]

= −3Σ′
𝑘

[(
𝑎𝑗
(
𝑡𝑗 + 𝑡𝑘

)
− 𝑠𝑗
(
𝑏𝑗 + 𝑏𝑘

)
+ 𝑠𝑗𝑏𝑘 + 𝑠𝑘𝑏𝑗 − 𝑡𝑗𝑎𝑘 − 𝑎𝑗𝑡𝑘

)
𝑚′
𝑘

(
𝜂𝑗
)]

= −3Σ′
𝑘

[(
𝑎𝑗 − 𝑎𝑘

)
𝑡𝑗𝑚

′
𝑘

(
𝜂𝑗
)]
+ 3Σ′

𝑘

[(
𝑠𝑗 − 𝑠𝑘

)
𝑏𝑗𝑚

′
𝑘

(
𝜂𝑗
)]
.

=
𝛽𝑗𝑏𝑗𝑡𝑗

6
+ 3Σ′

𝑘

[(
𝑠𝑗 − 𝑠𝑘

)
𝑏𝑗𝑚

′
𝑘

(
𝜂𝑗
)]
.

By (40), this is equal to 0.
Now applying the similar computation to 𝜎 = 𝑧1, 𝜏 = 𝑧2, we find that


[
𝑧1
𝑧2

]
=
(
−3Σ𝑗

(
𝑠𝑗𝑚

′
𝑗

)
, Σ𝑗

(
𝑠𝑗𝛽𝑗𝑚

′
𝑗 + 𝑡𝑗𝑛

′
𝑗

))𝑇
,

where (𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑛) also lies in the tangent space of𝑀. With this at hand, we can then com-
pute the integral 𝑄 using similar residue computation as that for 𝐼𝑄,1, and show that the second
component of 𝑄 also equals zero, which readily implies that the vector

(𝐼1, … , 𝐼𝑛, 𝐵1, … , 𝐵𝑛)

lies in the tangent space of𝑀 at the point (𝜂1, … , 𝜂𝑛, 𝛽1, … , 𝛽𝑛). The proof is thus completed. □

It will be interesting if one can find another simpler proof of the above result. We can also
compare our result with that of [51], where the relation between CM hierarchy and KP hierarchy
has been studied from different point of view.
Next we show that the 𝑘th Boussinesq flow will be trivial in suitable sense, provided that 𝑘 is

large.

Lemma 12. Let 𝑛 be fixed. Then for 𝑘 large, 𝑋(1)
𝑘
= 0.

Proof. Since parameter 𝑎 in the recursive operator  is chosen such that (3𝑎)2 + 1

48
= 0, we can

compute [
−𝐷
4

−3𝑎𝐷

−3𝑎𝐷 𝐷

12

][
0 𝐷−1

𝐷−1 0

][
−𝐷
4
3𝑎𝐷

3𝑎𝐷 𝐷

12

]
= 0.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 33 of 45

This identity guarantees that if the main-order term of the 𝑋𝑘 is 𝑥−𝑘, then the main-order term of
𝑋𝑘+2 will be at the order 𝑥−𝑘−2. Therefore, if the index 𝑘 is an odd number, then the main-order
term of 𝑋𝑘 is 𝑂(

1

𝑥𝑘+2
).

We define

𝜋𝑠 ∶= Σ𝑗𝜂
𝑠
𝑗
, Π𝑠 ∶= Σ𝑗

(
𝛽𝑗𝜂

𝑠
𝑗

)
.

Since

1

(1 − 𝑡)2
=

+∞∑
𝑠=0

[(𝑠 + 1)𝑡𝑠],

we can write, for 𝑥 large,

𝑞 = −
3

2

∞∑
𝑠=0

[
(𝑠 + 1)Σ𝑗𝜂

𝑠
𝑗

𝑥𝑠+2

]
, 𝑝 =

1

2

∞∑
𝑠=0

⎡⎢⎢⎢⎣
(𝑠 + 1)Σ𝑗

(
𝛽𝑗𝜂

𝑠
𝑗

)
𝑥𝑠+2

⎤⎥⎥⎥⎦.
Proposition 11 tells us that 𝑋𝑘 induces a flow on𝑀. We can then write

𝑋𝑘
(
(𝑞, 𝑝)𝑇

)
=

∞∑
𝑠=0

⎛⎜⎜⎝−
3(𝑠 + 1)𝑋

(1)
𝑘
𝜋𝑠

2𝑥𝑠+2
,
(𝑠 + 1)𝑋

(2)
𝑘
Π𝑠

2𝑥𝑠+2

⎞⎟⎟⎠
𝑇

.

Since the main order of 𝑋𝑘 (𝑞, 𝑝) is 𝑥−𝑘−2, we see that if 𝑠 < 𝑘, then

𝑋(
1)
𝑘
𝜋𝑠 = 0 and 𝑋(

2)
𝑘
Π𝑠 = 0.

On the other hand, on 𝑀, those 𝜂𝑗 have to be distinct to each other (if some of them are equal,
then the 𝜏 function reduces to a lower degree 1). It follows that if 𝑘0 ⩾ 𝑛, then 𝜋1, … , 𝜋𝑘0 form a
basis for the first 𝑛 coordinate components of the locus𝑀. From this we deduce that if 𝑘 > 𝑛, then
the first component of the flow 𝑋𝑘 is trivial. It is also worth to be pointed out that if 𝑦 = 0, then it
is possible that all the 𝛽𝑗 in Π𝑠 vanish, making the analysis of 𝑋

(2)
𝑘

to be more delicate. □

4.2 Degree of the 𝝉 function

We need some information on the high degree terms of the 𝜏 functions. For this purpose, we first
prove the following:

Lemma 13. Suppose 𝜂 is a homogeneous polynomial in 𝑥, 𝑦 of degree𝑚 and(
𝔇2𝑥 +𝔇

2
𝑦

)
𝜂 ⋅ 𝜂 = 0.
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34 of 45 LIU te al.

Then

𝜂(𝑥, 𝑦) = 𝑎
(
𝑥2 + 𝑦2

)𝑗
(𝑥 + 𝑦𝑖)𝑘,

where 𝑎 is a constant and 2𝑗 + 𝑘 = 𝑚. In particular, if 𝜂 is real valued, then 𝜂 = 𝑎(𝑥2 + 𝑦2)𝑚∕2 for
some real number 𝑎.

Proof. In the polar coordinate (𝑟, 𝜃), where 𝑟 =
√
𝑥2 + 𝑦2, we can write 𝜂 = 𝑟𝑚g (𝜃). Then(

𝔇2𝑥 +𝔇
2
𝑦

)
𝜂 ⋅ 𝜂 = 2

(
𝜂Δ𝜂 − |∇𝜂|2)

= 2𝑟𝑚g
(
𝑚2𝑟𝑚−2g + 𝑟𝑚−2g ′′

)
− 2
(
𝑚2𝑟2𝑚−2g2 + 𝑟2𝑚−2g ′2

)
.

From this we obtain

gg ′′ − g ′2 = 0,

which implies g (𝜃) = 𝑎𝑒𝑏𝜃 for some constants 𝑎 and 𝑏. Since g has to be 2𝜋-periodic in 𝜃, we have
𝑏 = 𝑘𝑖 for some integer 𝑘. It follows that

𝜂 = 𝑎𝑟𝑚
(
𝑒𝑖𝜃
)𝑘
= 𝑎𝑟𝑚−𝑘(𝑥 + 𝑦𝑖)𝑘.

Setting 𝑗 = 𝑚−𝑘
2
, we arrive at the desired result. □

Let 𝜏 be a polynomial solution of the bilinear equation(
𝔇4𝑥 −𝔇

2
𝑥 −𝔇

2
𝑦

)
𝜏 ⋅ 𝜏 = 0, (41)

with deg (𝜏) = 𝑚. Note that the bilinear equation corresponding to (26) differs from (41) only by
a scaling of the variables 𝑥, 𝑦.
By Lemma 13, we can assume without loss of generality that the highest degree terms of 𝜏 are

of the form (
𝑥2 + 𝑦2

)𝑗
(𝑥 + 𝑦𝑖)𝑘 = 𝑧𝑗+𝑘𝑧̄𝑗 ∶= 𝜏𝑚,

where 𝑧 = 𝑥 + 𝑦𝑖 and 𝑧̄ = 𝑥 − 𝑦𝑖 are complex variables. Let us denote those terms of 𝜏with degree
𝑚 − 1 by 𝜏𝑚−1. The previous lemma can also be proved using the (𝑧, 𝑧̄) coordinate. In the sequel,
we study 𝜏𝑚−1 in this new coordinate.

Lemma 14. 𝜏𝑚−1 = 𝑎1𝑧𝑗+𝑘−1𝑧̄𝑗 + 𝑎2𝑧𝑗+𝑘𝑧̄𝑗−1 for some constants 𝑎1, 𝑎2. In particular, if 𝜏 is real
valued, then for some constant 𝑎,

𝜏𝑚−1 = 𝑎𝑧
𝑗−1𝑧̄𝑗 + 𝑎̄𝑧𝑗𝑧̄𝑗−1.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 35 of 45

Proof. The sum of degree 2𝑚 − 3 terms in the left-hand side of (41) will be of the form

−
(
𝔇2𝑥 +𝔇

2
𝑦

)
𝜏𝑚 ⋅ 𝜏𝑚−1.

Suppose 𝑧𝑟𝑧̄𝑠 is a term appearing in 𝜏𝑚−1, then there holds

𝔇𝑧𝔇𝑧̄
(
𝑧𝑗+𝑘𝑧̄𝑗

)
⋅ (𝑧𝑟𝑧̄𝑠) = 0.

Direct computation of the left-hand side tells us that

(𝑗 + 𝑘 − 𝑟)(𝑗 − 𝑠)𝑧𝑗+𝑘+𝑟−1𝑧̄𝑗+𝑠−1 = 0.

In the case of 𝑘 = 0, we have 𝑟 = 𝑗 or 𝑠 = 𝑗.
If in addition 𝜏 is real valued, then 𝑘 = 0 and 𝜏𝑚 = 𝑧𝑗𝑧̄𝑗 . Hence

𝜏𝑚−1 = 𝑎𝑧
𝑗−1𝑧̄𝑗 + 𝑎̄𝑧𝑗𝑧̄𝑗−1.

This completes the proof. □

By this lemma, in the real-valued case, if we introduce new variables 𝑍 = 𝑧 + 𝑎
𝑗
and 𝑍̄ = 𝑧̄ + 𝑎̄

𝑗
,

then we see that

𝑧𝑗𝑧̄𝑗 + 𝑎𝑧𝑗−1𝑧̄𝑗 + 𝑎̄𝑧𝑗𝑧̄𝑗−1 = 𝑍𝑗𝑍̄𝑗 + 𝑃,

where 𝑃 is a polynomial of 𝑍, 𝑍̄ with degree less than 𝑗 − 1. This means that we can find real
numbers 𝑏1, 𝑏2 such that in the new variables 𝑥̃ = 𝑥 + 𝑏1, 𝑦̃ = 𝑦 + 𝑏2, the highest degree term of
𝜏 is
(
𝑥̃2 + 𝑦̃2

)𝑗 and 𝜏 does not have terms with degree 2𝑗 − 1.
Lemma 15. Suppose 𝑞 = 3

2
𝜕2𝑥 ln 𝜏 is a real-valued rational solution of the Boussinesq equation (26),

where 𝜏 is a polynomial of degree 2𝑛. Let 𝑝 = ∫ 𝑥−∞ 𝜕𝑦𝑞𝑑𝑥. Then for 𝑥 large, at 𝑦 = 0,

𝑞 = −
3𝑛

𝑥2
+ 𝑂
(
𝑥−3
)
, 𝑝 = 𝑂

(
𝑥−5
)
, 𝑝′ = 𝑂

(
𝑥−6
)
.

Proof. The fact that 𝑞 = 3𝑛
𝑥2
+ 𝑂

(
𝑥−3
)
is relatively easy to check. We focus on the estimate of 𝑝.

We use 𝜏𝑗 to denote the sum of those degree 𝑗 terms in 𝜏. Since 𝜏 is real valued, after a possible
translation of the coordinate (and a scaling of the 𝑦 variable), we can assume

𝜏2𝑛 = 𝑧
𝑛𝑧̄𝑛 and 𝜏2𝑛−1 = 0.

By Lemma 18, we have

𝜏2𝑛−2 =
1

2

(
𝑛 − 𝑛2

)
𝑧𝑛+1𝑧̄𝑛−3 + 3𝑛2𝑧𝑛−1𝑧̄𝑛−1 +

1

2

(
𝑛 − 𝑛2

)
𝑧𝑛−3𝑧̄𝑛+1

+ 𝑐𝑧𝑛𝑧̄𝑛−2 + 𝑐𝑧𝑛−2𝑧̄𝑛.

(42)
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36 of 45 LIU te al.

On the other hand, we have

𝑝 = −
3

2
𝜕𝑦𝜕𝑥 ln 𝜏 = −

3

2

𝜏𝜕𝑦𝜕𝑥𝜏 − 𝜕𝑥𝜏𝜕𝑦𝜏

𝜏2
.

By (42), in terms of the 𝑥, 𝑦 coordinates, 𝜏2𝑛−2 does not have the term 𝑥2𝑛−3𝑦. Hence when 𝑦 = 0,

𝑝 = 𝑂
(
𝑥−5
)
, 𝑝′ = 𝑂

(
𝑥−6
)
.

This is the desired estimate for 𝑝. We emphasize that the estimate is not true if 𝑦 ≠ 0. □

Now we are at a position to prove the main result of this section.

Theorem 16. Assume that 𝑞 is a real-valued rational solution of the Boussinesq equation (26) satis-
fies the decay assumption (3). Then 𝑞 = 3

2
𝜕2𝑥 ln 𝜏, where 𝜏 is a polynomial in𝑥, 𝑦with degree 𝑘 (𝑘 + 1)

for some 𝑘 ∈ ℕ.

Proof. For 𝑥 large, the main-order term of 𝑞 in its Laurent expansion is 𝑚
𝑥2
. Since the degree of the

polynomial is expected to be 𝑘 (𝑘 + 1), we expect𝑚 to be −3
2
𝑘 (𝑘 + 1).

We compute the third-order derivatives in the (1, 1) entry of:
(
𝐷3 + 𝑞𝐷 + 𝐷𝑞

)( 1
𝑥𝑗

)
= [−𝑗(𝑗 + 1)(𝑗 + 2) − 𝑚(𝑗 + 𝑗 + 2)]

1

𝑥𝑗+3

= −(𝑗 + 1)(𝑗(𝑗 + 2) + 2𝑚)
1

𝑥𝑗+3
∶= 𝑏𝑚(𝑗)

1

𝑥𝑗+3
.

Similarly, the third-order derivatives in the (2, 2) entry of:(
−
5

4
𝐷3 − 2(𝑞𝐷 + 𝐷𝑞)

)(
1

𝑥𝑗

)
=
5

4
𝑗(𝑗 + 1)(𝑗 + 2) + 2𝑚(𝑗 + 𝑗 + 2)

1

𝑥𝑗+3

=
1

8
(𝑗 + 1)(10𝑗(𝑗 + 2) + 32𝑚)

1

𝑥𝑗+3
=∶ 𝐵𝑚(𝑗)

1

𝑥𝑗+3
.

By Lemma 15, the off-diagonal operators in do not enter the computation of main-order terms.
On the other hand, Lemma 12 tells us that the first component of the 𝑘th flow is trivial for 𝑘 large.
Hence vanishing of terms requires

1

4
𝑏𝑚(𝑗) −

1

4
𝐵𝑚(𝑗) = 0.

That is,

𝑚 = −
3

8
𝑗(𝑗 + 2).
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 37 of 45

Note that 𝑗 should be even since 𝑞 = 𝑂( 𝑚
𝑥2
). Taking 𝑗 = 2𝑘, we find that

𝑚 = −
3

2
𝑘(𝑘 + 1).

This completes the proof. □

Summarizing all the previous discussion, we conclude that Theorem 1 is proved.
Now suppose 𝑞 is a solution of the equation

𝜕2𝑦𝑞 = 3𝜕
2
𝑥

(
𝜕2𝑥𝑞 + 4𝑞

2 − 𝑞
)
. (43)

The energy of 𝑞 is

𝐸(𝑞) ∶= ∫ℝ2
[
3

2
||𝜕𝑥𝑞||2 − 4𝑞3 + 32𝑞2 + |||𝜕−1𝑥 𝜕𝑦𝑞|||2

]
.

We now know that 𝑞 has the form 3

2
𝜕2𝑥 ln 𝜏, where 𝜏 is a polynomial with degree 𝑘 (𝑘 + 1). The

classical lump solution for (43) is

𝑢0(𝑥, 𝑦) =
3

2
𝜕2𝑥 ln

(
𝑥2 + 3𝑦2 + 3

)
.

Note that up to a translation in the 𝑥 and 𝑦 variables, the 𝜏 function with degree 2 is unique.
Following the same proof as that of the appendix of Gorshkov–Pelinovskii–Stepanyants [26]

(see Equation (A6) there), we obtain

𝐸(𝑞) =
𝑘(𝑘 + 1)

2
𝐻(𝑢0). (44)

On the other hand, we also know from [12] that Equation (43) has variational structure and pos-
sesses a ground state. From the energy quantization identity (44), we infer immediately that the
classical lump solution is the unique ground state, up to translation in the plane.

5 THE ANALYSIS OF EVEN SOLUTIONS

In this section, we would like to analyze the uniqueness of the (nontrivial) even solutions of the
Boussinesq equation. Combining our classification result obtained in the previous section with
the existence result of [48] mentioned in Section 2, we can show that even solutions exist if and
only if their 𝜏 functions are polynomials of degree 2𝑛 = 𝑘 (𝑘 + 1).
The importance of even solutions comes from the fact that in principle, using them, we can

construct traveling wave solutions of the GP or generalized KP equation. This construction relies
on certain nondegeneracy properties of the solutions, which is expected to be true for the even
solutions in the space of even perturbations. Note that without evenness assumption, we will not
have nondegeneracy, since the space of solutions will be a manifold. From the semilinear elliptic
PDE point of view, even solutions should play similar role as the radially symmetric solutions of
the Schrödinger equation.
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38 of 45 LIU te al.

Now suppose 𝑞 is an even solution. From Lemma 13, we can assume that the sum of the degree
2𝑛 terms of 𝜏 is 𝑇𝑛,0 =

(
𝑥2 + 𝑦2

)𝑛. We also denote the sum of all the degree 2𝑛 − 2𝑗 terms in 𝜏 by
𝑇𝑛,𝑗 .
We will first analyze the even solution in the 𝑥-𝑦 coordinate. Then later on we will adopt a

slightly different approach using the 𝑧-𝑧̄ coordinate.
Let us define functions (throughout this section, 𝑖 is set to be an index number)

g𝑗 ∶=
(
𝑥2 + 𝑦2

)𝑛−3𝑗
𝑥2𝑗𝑦2𝑗 , and 𝜉𝑖,𝑗 ∶=

(
𝔇2𝑥 +𝔇

2
𝑦

)
g𝑖 ⋅ g𝑗.

Observe that actually 𝜉𝑖,𝑗 can be divided by
(
𝑥2 + 𝑦2

)2𝑛−3𝑖−3𝑗−1. We then introduce the constants
𝑑𝑖,𝑗 ∶=

(
𝔇2𝑥 +𝔇

2
𝑦

)
g𝑖 ⋅ g𝑗(

𝑥2 + 𝑦2
)2𝑛−3𝑖−3𝑗−1 ||||(𝑥2=−1,𝑦2=1).

Direct computation shows that

𝑑𝑖,𝑗 = −12(𝑖 − 𝑗)
2(−1)𝑖+𝑗.

We also need the function

𝔇4𝑥
(
𝑥2 + 𝑦2

)𝑛−3𝑖
⋅
(
𝑥2 + 𝑦2

)𝑛−3𝑗
.

Since we have taken the fourth-order derivatives, this function is dividable by (𝑥2 + 𝑦2)2𝑛−3𝑖−3𝑗−4.
Define

𝑝𝑖,𝑗 =
𝔇4𝑥g𝑖 ⋅ g𝑗(

𝑥2 + 𝑦2
)2𝑛−3𝑖−3𝑗−4 ||||(𝑥2=−1,𝑦2=1).

Explicitly, (−1)𝑖+𝑗 𝑝𝑖,𝑗 is equal to

1296𝑖4 − 5184𝑖3𝑗 + 7776𝑖2𝑗2 − 5184𝑖𝑗3 + 1296𝑗4 + 2592𝑖3 − 2592𝑖2𝑗

− 1728𝑖2𝑛 − 2592𝑖𝑗2 + 3456𝑖𝑗𝑛 + 2592𝑗3 − 1728𝑗2𝑛 + 1584𝑖2 − 1440𝑖𝑗

− 576𝑖𝑛 + 1584𝑗2 − 576𝑗𝑛 + 192𝑛2 + 288𝑖 + 288𝑗 − 192𝑛.

With all these constants 𝑑𝑖,𝑗, 𝑝𝑖,𝑗 at hand, wewould like to define, in a recursive way, a sequence
of numbers 𝑎𝑚,𝑚 = 0, 1, …, depending on 𝑛, in the following way.
First take 𝑎0 = 1. Then 𝑎𝑚 is determined by 𝑎1, … , 𝑎𝑚−1 through the following recursive

relation: ∑
𝑖,𝑗⩽𝑚,𝑖+𝑗=𝑚

(
𝑎𝑖𝑎𝑗𝑑𝑖,𝑗

)
=

∑
𝑖,𝑗⩽𝑚,𝑖+𝑗=𝑚−1

(
𝑎𝑖𝑎𝑗𝑝𝑖,𝑗

)
.

These 𝑎𝑗 can also be regarded as polynomials of the variable 𝑛. To state our result, the following
constant 𝐽𝑛 will be important:

𝐽𝑛 ∶=
∑

𝑖,𝑗⩽[𝑛∕3],𝑖+𝑗=[𝑛∕3]+1

(
𝑎𝑖𝑎𝑗𝑑𝑖,𝑗

)
−

∑
𝑖,𝑗⩽[𝑛∕3],𝑖+𝑗=[𝑛∕3]

(
𝑎𝑖𝑎𝑗𝑝𝑖,𝑗

)
.
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 39 of 45

Here [𝑚] denotes the largest integer which does not exceed 𝑚. The following result provides a
necessary condition for the existence of even solutions.

Proposition 17. Let 𝑛 be a fixed integer. If 𝐽𝑛 ≠ 0, then the Boussinesq equation has no rational
even solution with degree 2𝑛.

Proof. First of all, observe that 𝑇𝑛,𝑗 has the form

𝑎𝑗
(
𝑥2 + 𝑦2

)𝑛−3𝑗
𝑥2𝑗𝑦2𝑗 +

(
𝑥2 + 𝑦2

)𝑛−3𝑗+1
Γ(𝑥, 𝑦),

where Γ is a homogeneous polynomial in 𝑥, 𝑦 with degree 4𝑗 − 2.
Let us denote the function (𝔇4𝑥 − 𝔇

2
𝑥 −𝔇

2
𝑦)𝑓 ⋅ 𝑓 by 𝐾𝑓 . Since we have chosen 𝑎0 to be 1, 𝐾𝑓 is

a polynomial of degree at most 4𝑛 − 4. The terms with degree 4𝑛 − 4 are given by

𝔇4𝑥𝑇𝑛,0 ⋅ 𝑇𝑛,0 − 2
(
𝔇2𝑥 +𝔇

2
𝑦

)
𝑇𝑛,0 ⋅ 𝑇𝑛,1.

This function is dividable by (𝑥2 + 𝑦2)2𝑛−4. We write is as

𝑏1
(
𝑥2 + 𝑦2

)2𝑛−4
𝑥2𝑦2 +

(
𝑥2 + 𝑦2

)2𝑛−3
𝑀(𝑥, 𝑦).

Inserting 𝑥2 = −1, 𝑦2 = 1 into this function, we find that necessary 𝑏1 = 0. Therefore, we get

𝑎20𝑝0,0 − 𝑎0𝑎1𝑑0,1 = 0.

Similarly, consider the terms with degree 4𝑛 − 6, we get

𝔇4𝑥𝑇𝑛,0 ⋅ 𝑇𝑛,1 −
(
𝔇2𝑥 +𝔇

2
𝑦

)
𝑇𝑛,1 ⋅ 𝑇𝑛,1 −

(
𝔇2𝑥 +𝔇

2
𝑦

)
𝑇𝑛,0 ⋅ 𝑇𝑛,2 = 0.

Then

𝑎0𝑎1𝑝0,1 − 𝑎
2
1𝑑1,1 − 𝑎0𝑎2𝑑0,2 = 0.

Similarly, for𝑚 ⩽ [𝑛∕3], ∑
𝑖,𝑗⩽𝑚,𝑖+𝑗=𝑚

(
𝑎𝑖𝑎𝑗𝑑𝑖,𝑗

)
=

∑
𝑖,𝑗⩽𝑚,𝑖+𝑗=𝑚−1

(
𝑎𝑖𝑎𝑗𝑝𝑖,𝑗

)
.

Since we require that the solution is a polynomial, the function∑
𝑖,𝑗⩽[𝑛∕3],𝑖+𝑗=[𝑛∕3]+1

𝑎𝑖𝑎𝑗

(
𝔇2𝑥 +𝔇

2
𝑦

)
𝑇𝑛,𝑖 ⋅ 𝑇𝑛,𝑗 −

∑
𝑖,𝑗⩽[𝑛∕3],𝑖+𝑗=[𝑛∕3]

𝑎𝑖𝑎𝑗𝔇
4
𝑥𝑇𝑛,𝑖 ⋅ 𝑇𝑛,𝑗

should be dividable by (𝑥2 + 𝑦2)𝑛−1, this implies that 𝐽𝑛 = 0. □
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40 of 45 LIU te al.

We have computed the constants 𝑎𝑗 and 𝐽𝑛, using software likeMathematica. It turns out that
at least for 𝑛 ⩽ 300, 𝐽𝑛 is equal to zero if and only if 𝑛 =

𝑘(𝑘+1)

2
for some integer 𝑘.

The previous analysis can also be viewed in a slightly different way, in terms of the 𝑧 and 𝑧̄
variables. Let us explain this in more details.
From the proof of Lemma 14, we know that if 𝜂 satisfies

𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅ 𝜂 = 0,

then for some constants 𝑐1, 𝑐2,

𝜂 = 𝑐1𝑧
𝑛𝑧̄𝑠 + 𝑐2𝑧

𝑚𝑧̄𝑛.

This also tells us that the equation

𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅ 𝜂 = 𝑧
𝛼𝑧̄𝛽,

is not solvable if either 𝛼 or 𝛽 equal 2𝑛 − 1. Since 𝑇𝑛,0 = 𝑧𝑛𝑧̄𝑛, another necessary condition is that

𝛼 ⩾ 𝑛 − 1 and 𝛽 ⩾ 𝑛 − 1.

Lemma 18. The 𝑇𝑛,1 term has the following form:

𝑇𝑛,1 =
1

2

(
𝑛 − 𝑛2

)
𝑧𝑛+1𝑧̄𝑛−3 + 3𝑛2𝑧𝑛−1𝑧̄𝑛−1 +

1

2

(
𝑛 − 𝑛2

)
𝑧𝑛−3𝑧̄𝑛+1

+ 𝑐𝑧𝑛𝑧̄𝑛−2 + 𝑐𝑧𝑛−2𝑧̄𝑛,

where 𝑐 is a real-valued constant.

Proof. We compute

𝔇4𝑥𝑇𝑛,0 ⋅ 𝑇𝑛,0 =
(
12𝑛2 − 12𝑛

)
𝑧2𝑛𝑧̄2𝑛−4 + 24𝑛2𝑧2𝑛−2𝑧̄2𝑛−2 +

(
12𝑛2 − 12𝑛

)
𝑧2𝑛−4𝑧̄2𝑛.

Since our solution is even, the conclusion then follows from the fact that 𝑇𝑛,1 solves the equation
(note that the constant is 8, rather than 4)

8𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅ 𝑇𝑛,1 = 𝔇
4
𝑥𝑇𝑛,0 ⋅ 𝑇𝑛,0.

The fact the our solution is real and even forces the coefficients before 𝑧𝑛𝑧̄𝑛−2 and 𝑧𝑛−2𝑧̄𝑛 to be a
same real constant. This completes the proof. □

Weemphasize that in general the constant 𝑐will not be zero. For instance, the degree 12 solution
obtained in [48] is

(𝑥2 + 𝑦2)6 + 2(𝑥2 + 𝑦2)3(49𝑥4 + 198𝑥2𝑦2 + 29𝑦4)

+ 5(147𝑥8 + 3724𝑥6𝑦2 + 7490𝑥4𝑦4 + 7084𝑥2𝑦6 + 867𝑦8)
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UNIQUENESS OF LUMP SOLUTION TO THE KP-I EQUATION 41 of 45

+
140

3
(539𝑥6 + 4725𝑥4𝑦2 − 315𝑥2𝑦4 + 5707𝑦6)

+
1225

9
(391 314𝑥2 − 12 705𝑥4 + 4158𝑥2𝑦2 + 40 143𝑦4 + 736 890𝑥2 + 717 409).

It can also be written as

𝑧6𝑧̄6 − 15𝑧7𝑧̄3 + 10𝑧6𝑧̄4 + 108𝑧5𝑧̄5 + 10𝑧4𝑧̄6 − 15𝑧3𝑧̄7

− 45𝑧8 + 150𝑧7𝑧̄ − 875𝑧6𝑧̄2 − 1050𝑧5𝑧̄3 + 4375𝑧4𝑧̄4 − 1050𝑧3𝑧̄5 − 875𝑧2𝑧̄6 + 150𝑧𝑧̄7 − 45𝑧̄8

− 22 330𝑧6∕3 + 20 895𝑧5𝑧̄ − 52850𝑧4𝑧̄2 + 103 950𝑧3𝑧̄3 − 52 850𝑧2𝑧̄4 + 20 895𝑧𝑧̄5 − 22 330𝑧̄6∕3

+ 594 125𝑧4∕3 − 1 798 300𝑧3𝑧̄ + 1 471 225𝑧2𝑧̄2 − 1 798 300𝑧𝑧̄3 + 594 125𝑧4∕3

+ 38 390 275𝑧2 + 76 780 550𝑧𝑧̄ + 38 390 275𝑧̄2 + 878 826 025∕9.

As a polynomial of variables 𝑧, 𝑧̄, the total degree of the homogeneous polynomial 𝑇𝑛,𝑗 is equal
to 2𝑛 − 2𝑗. For each fixed 𝑗, inspecting the term in 𝑇𝑛,𝑗 with lowest degree in 𝑧̄, we find that it has
to be of the form 𝜎𝑗𝑧𝑛+𝑗𝑧̄𝑛−3𝑗 . Indeed, the constants 𝜎𝑗 can be defined recursively and uniquely
by the following equation: For 𝑗 = 1,…,

4𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅
(
𝜎𝑗𝑧

𝑛+𝑗𝑧̄𝑛−3𝑗
)

=
∑

𝑘+𝑚=𝑗−1

[
𝔇4𝑥
((
𝜎𝑘𝑧

𝑛+𝑘𝑧̄𝑛−3𝑘
))

⋅
(
𝜎𝑚𝑧

𝑛+𝑚𝑧̄𝑛−3𝑚
)]

− 4
∑

𝑘,𝑚⩽𝑗−1,𝑘+𝑚=𝑗

[
𝔇𝑧𝔇𝑧̄

((
𝜎𝑘𝑧

𝑛+𝑘𝑧̄𝑛−3𝑘
))

⋅
(
𝜎𝑚𝑧

𝑛+𝑚𝑧̄𝑛−3𝑚
)]
.

Observe that the degree of 𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅
(
𝑧𝑛+𝑗𝑧̄𝑛−3𝑗

)
is equal to 𝑧2𝑛+𝑗−1𝑧̄2𝑛−3𝑗−1. However, as

discussed above, the equation

𝔇𝑧𝔇𝑧̄𝑇𝑛,0 ⋅ 𝜂 = 𝑧
2𝑛+𝑗−1𝑧̄2𝑛−3𝑗−1 (45)

will not be solvable if

2𝑛 − 3𝑗 − 1 < 𝑛 − 1.

That is, 𝑛 < 3𝑗. This means that it necessary condition for an even solution to exist is

𝜎𝑗0 = 0, for 𝑗0 =
[
𝑛

3

]
+ 1.

Wehave also verified that for 0 ⩽ 𝑛 ⩽ 300, 𝜎𝑛 equals zero if and only if 𝑛 = 𝑘 (𝑘 + 1) ∕2 for some
integer 𝑘.
This algorithm inspires us to study the uniqueness of even solution. The possible nonunique-

ness arises from the fact that Equation (45) has kernels of the form 𝑧𝑛𝑧̄𝑛−2𝑞 + 𝑧𝑛−2𝑞𝑧̄𝑛. Note that
for each fixed 𝑞 = 1,… , [𝑛∕2], the lowest possible degree term generated by the function 𝑧𝑛𝑧̄𝑛−2𝑞
in 𝑇𝑛,𝑞+𝑗 is of the form 𝛽𝑗𝑧𝑛+𝑗𝑧̄𝑛−2𝑞−3𝑗 . Here 𝛽0 = 1, and similar to 𝜎𝑗 , for 𝑗 ⩾ 1, the sequence 𝛽𝑗
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42 of 45 LIU te al.

is determined by the following recursive formula:

4𝔇𝑧𝔇𝑧̄(𝑧
𝑛𝑧̄𝑛) ⋅

(
𝛽𝑗𝑧

𝑛+𝑗𝑧̄𝑛−2𝑞−3𝑗
)

=
∑

𝑘+𝑚=𝑗−1

[
𝔇4𝑥
((
𝜎𝑘𝑧

𝑛+𝑘𝑧̄𝑛−3𝑘
))

⋅
(
𝛽𝑚𝑧

𝑛+𝑚𝑧̄𝑛−2𝑞−3𝑚
)]

− 4
∑

𝑘,𝑚⩽𝑗−1,𝑘+𝑚=𝑗

[
𝔇𝑧𝔇𝑧̄

((
𝜎𝑘𝑧

𝑛+𝑘𝑧̄𝑛−3𝑘
))

⋅
(
𝛽𝑚𝑧

𝑛+𝑚𝑧̄𝑛−2𝑞−3𝑚
)]
.

Note that 𝛽𝑗 are also depending on 𝑞. The degree of 𝑧̄ in𝔇𝑧𝔇𝑧̄ (𝑧𝑛𝑧̄𝑛) ⋅
(
𝛽𝑗𝑧

𝑛+𝑗𝑧̄𝑛−2𝑞−3𝑗
)
is 2𝑛 −

2𝑞 − 3𝑗 − 1. For

𝑗 = 𝑗̄ ∶= [(𝑛 − 2𝑞)∕3] + 1,

there holds

2𝑛 − 2𝑞 − 3𝑗 − 1 < 𝑛 − 1.

We then define, for 𝑞 = 1,… , [𝑛∕2],

𝛾𝑞 ∶= 𝛽
(
𝑗̄
)
.

We have the following:

Lemma 19. For given 𝑛 = 𝑘 (𝑘 + 1) ∕2, if 𝛾𝑞 ≠ 0 for all 𝑞 = 1,… , [𝑛∕2], then the even solution
is unique.

Proof. Note that the kernel terms 𝑧𝑛𝑧̄𝑛−2𝑞 + 𝑧𝑛−2𝑞𝑧̄𝑛 are the only possible sources of nonunique-
ness. We consider them for each 𝑞, starting from 𝑞 = 1.
Since 𝛾1 ≠ 0, we see that the coefficient of 𝑧𝑛𝑧̄𝑛−2 + 𝑧𝑛−2𝑧̄𝑛 is uniquely determined in 𝑇𝑛,1,

otherwise one of the equations for the terms in 𝑇𝑛,[(𝑛−2)∕3]+2 will not be solvable. Once 𝑧𝑛𝑧̄𝑛−2 +
𝑧𝑛−2𝑧̄𝑛 is determined, we use the assumption that 𝛾2 ≠ 0 to conclude that we do not have the
freedom to choose the kernel 𝑧𝑛𝑧̄𝑛−4 + 𝑧𝑛−4𝑧̄𝑛 in 𝑇𝑛,2. Proceeding with this argument, we see
that all the kernel terms 𝑧𝑛𝑧̄𝑛−2𝑞 + 𝑧𝑛−2𝑞𝑧̄𝑛 are uniquely determined. This finishes the proof. □

We can compute the precise value of the constant 𝛾𝑞 explicitly for each 𝑛 (we usedMathemat-
ica). It turns out that for 𝑛 = 𝑘 (𝑘 + 1) ∕2 ⩽ 300, all the constants 𝛾𝑞 are nonzero. For example,
when 𝑛 = 15, we have

𝛾1 =
3 219 950 475

374
, 𝛾2 = −

800 391 375

416
, 𝛾3 = 24 045 525∕4,

𝛾4 =
34 505 100

187
, 𝛾5 = −

74 025

52
, 𝛾6 =

55 335

2
, 𝛾7 = −

5460

17
.

It should be pointed out that all these computations are actually rigorous. We are therefore
arriving at the following:
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Theorem 20. Suppose 𝜏 is a polynomial of degree 2𝑛 with real coefficients satisfying

𝜏(𝑥, 𝑦) = 𝜏(𝑥, −𝑦) = 𝜏(−𝑥, 𝑦)

and (
𝔇2𝑥 +𝔇

2
𝑦 −𝔇

4
𝑥

)
𝜏 ⋅ 𝜏 = 0.

Assume 𝑛 = 𝑘 (𝑘 + 1) ∕2 ⩽ 300 for some positive integer 𝑘. Then 𝜏 is unique, up to a multiplica-
tive constant.

The upper bound 300 appeared in this theorem can be significantly improved. We actually
expect the uniqueness of even solution to be true for all fixed 𝑛 ∈ ℕ (obviously, by our result, 𝑛
has to be 𝑘 (𝑘 + 1) ∕2). We believe this is true and leave it for another work.
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