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Abstract
In recent years, tensor networks have emerged as powerful tools for solving large-scale
optimization problems. One of the most promising tensor networks is the tensor ring (TR)
decomposition, which achieves circular dimensional permutation invariance in the model
through the utilization of the trace operation and equitable treatment of the latent cores.
On the other hand, more recently, quaternions have gained significant attention and have
been widely utilized in color image processing tasks due to their effectiveness in encoding
color pixels by considering the three color channels as a unified entity. Therefore, in this
paper, based on the left quaternion matrix multiplication, we propose the quaternion tensor
left ring (QTLR) decomposition, which inherits the powerful and generalized representation
abilities of the TR decomposition while leveraging the advantages of quaternions for color
pixel representation. In addition to providing the definition of QTLR decomposition and an
algorithm for learning the QTLR format, the paper further proposes a low-rank quaternion
tensor completion (LRQTC) model and its algorithm for color image inpainting based on
the defined QTLR decomposition. Finally, extensive experiments on color image inpainting
demonstrate that the proposed LRQTC method is highly competitive.
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1 Introduction

Tensor networks have gained prominence in recent years as powerful tools for tackling
large-scale optimization problems [6, 17, 27, 42, 44]. Among them, the tensor ring (TR)
decomposition [42] is one of the most advanced tensor networks. The TR decomposition
represents an N -th order tensor T ∈ R

I1×I2×...×IN by multiplying a sequence of third-order
tensors Zn , n = 1, 2, . . . , N in a circular manner. Specifically, it can be expressed in an
element-wise form given by

T (i1, i2, . . . , iN ) = Tr{Z1(i1)Z2(i2) . . .ZN (iN )}, (1)

where T (i1, i2, . . . , iN ) denotes the (i1, i2, . . . , iN )-th element of T , Tr{·} denotes the trace
operator, Zn(in) ∈ R

rn×rn+1 denotes the in-th lateral slice of the TR factor Zn , the last TR
factor ŻN is of size rN × IN × r1, i.e., rN+1 = r1. The TR decomposition has been widely
utilized in various image processing tasks due to its powerful and generalized representation
ability. In particular, the TR-based low-rank tensor completion (LRTC) methods for image
inpainting have been extensively studied recently [12, 29, 34, 38]. For example, Wang et al.
presented a TR-based completion algorithm in [32], which involves alternately updating each
TR factor. Nevertheless, the performance of the algorithm is influenced by the pre-defined
TR-rank, leading to a significant increase in computational cost. In [38], Yuan et al. addressed
these challenges by applying matrix nuclear norm regularization to the mode-2 unfolding of
each TR factor, thereby improving the stability of the performance. In [11, 36], the authors
proposed a TR nuclear norm minimization model using a tensor circular unfolding scheme
for tensor completion. Notably, this approach does not rely on a pre-defined TR-rank and
demonstrates superior performance compared to previous TR decomposition-basedmethods.
However, when dealing with color pixels comprising RGB channels, real-valued third-order
tensors may not fully exploit the strong correlation among the three channels. This limitation
arises from the fact that real-valued third-order tensors represent color images by simply
concatenating the RGB channels together, treating both the ‘intra-channel relationship’ (the
relationship within each channel) and the ‘spatial relationship’ (the relationship between
pixels) equally [26].

On the other hand, quaternions have gained considerable attention in the field of color
image processing as a more suitable tool for representing color pixels. Concretely, the
quaternion-based method encodes the RGB three-channel pixel values on the three imag-
inary parts of a quaternion [18]. That is,

ṫ = 0 + tr i + tg j + tbk, (2)

where ṫ denotes a color pixel, tr , tg , and tb are RGB three-channel pixel values, i , j , and k are
the three imaginary units. While both real-valued third-order tensors and quaternion matrices
can be utilized for representing color images, quaternion matrices, being a novel represen-
tation, possess more favorable characteristics and advantages in this context. Quaternions
treat the three channels of color pixels as a cohesive entity [2, 5, 14, 22], thereby effectively
preserving the intra-channel relationship. Hence, quaternion matrices, particularly their low-
rank approximation models, have been extensively utilized for color image processing tasks
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recently. For instance, quaternion matrix rank minimization methods [13, 15, 20, 35] and
quaternion matrix factorization methods [3, 22]. These methods have achieved remarkable
results in tasks such as color image inpainting and color image denoising. While there has
been a significant amount of research progress on quaternion matrices recently, the study
on quaternion tensors has just begun, particularly in the context of quaternion tensor net-
works,1 which remains largely unexplored. The research on quaternion tensors goes beyond
a mere expansion of quaternion theory; it is primarily driven by applications. Most notably,
for color videos, a third-order quaternion tensor is required for representation in the most
intuitive manner [10, 24]. Additionally, there has been a proliferation of techniques for data
reshuffling or dimensionality enhancement, such as KA [1], OKA [40], Hankelization [43],
and methods that leverage non-local data similarity to rearrange image or video data [19].
These methods typically bring certain prior information within the original data into clearer
focus, leading to substantial improvements in the final processing outcomes for specific tasks.
However, these techniques generally result in an increase in data dimensions. Therefore, for
color data, the exploration of higher-order quaternion arrays, namely higher-order quaternion
tensors, becomes particularly essential. Currently, research on quaternion tensors is primarily
focused on their singular value decomposition methods [23, 28]. However, the singular value
decomposition of quaternion tensors often involves a high computational workload, making
it unsuitable for processing large-scale data in practical applications. Thus, it is necessary
to study the theory of quaternion tensor networks, which involves representing large quater-
nion tensors using relatively smaller quaternion tensors. This approach helps alleviate the
challenges of storage and processing of large-scale data.

Consequently, in this paper, we aim to propose the quaternion tensor left ring (QTLR)2

decomposition, which will inherit the powerful and generalized representation capabilities
of the TR decomposition while leveraging the advantages of quaternions for color pixel
representation. It is important to note that QTLR diverges from a straightforward extension
of TR to quaternions, primarily due to the non-commutativity of quaternion multiplication.
This inherent non-commutativity gives rise to disparities in the definitions and associated
properties of QTLR in comparison to TR, which is the rationale behind the introduction of
QTLR as a distinct concept from TR. Furthermore, as an important application of the defined
QTLR, we propose a low-rank quaternion tensor completion (LRQTC) method based on
QTLRdecomposition to address the inpainting task in color images. Thismethod canmitigate
the limitations of quaternion matrix-based approaches, which are not suitable for higher-
dimensional quaternion data, and tensor-based methods, which may be unable to distinguish
between the intra-channel relationship and spatial relationship of color pixels. Therefore,
the proposed QTLR-based LRQTC method is expected to make further advancements in the
inpainting of color images compared to existing methods.

We outline the primary contributions of this paper as follows:

– We define the QTLR decomposition for quaternion tensors and prove its cyclic per-
mutation property. It is worth noting that when quaternion tensors degenerate into real
tensors, the definition of QTLR decomposition and the cyclic permutation property will
degenerate into their corresponding real counterparts as presented in [42]. Furthermore,

1 The term ‘tensor network’ refers to the representation of higher-order tensors through interconnected lower-
order tensors [7]. Within the tensor networks family, CP, Tucker, tensor train (TT), and TR decompositions
are all included.
2 The term ‘left’ originates from our use of left quaternion matrix multiplication (see Definition 5) to define
quaternion tensor ring decomposition.
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inspired by the TR-SVD algorithm introduced in [42], we also present the QTLR-QSVD
algorithm for learning the QTLR format.

– We generalize the tensor circular unfolding scheme from [11, 36] to quaternion tensors
and define the quaternion tensor circular unfolding. For the circular unfolding quaternion
matrices that satisfy a certain condition, we prove the relationship between their rank and
the defined QTLR-rank. Based on this, we propose a LRQTC model along with its cor-
responding computational method, which can be considered as an important application
of QTLR decomposition.

– We extend a tensor augmentation technique called OKA [40] to quaternion matrices,
enabling the transformation of quaternion matrices into higher-order quaternion tensors.
Subsequently, we apply the proposed LRQTC method to color image inpainting tasks.
Experimental results validate the competitiveness of it.

The reminder of this paper is organized as follows. In Sect. 2, we present certain notations
and foundational concepts pertaining to quaternion algebra. This encompasses quaternion
matrices and quaternion tensors. In Sect. 3, we provide the definition of QTLR along with its
associated properties. Additionally, within this section, we present a learning algorithm for
the QTLR format, termedQTLR-QSVD. In Sect. 4, we propose an LRQTCmodel along with
its corresponding algorithm. Section5 outlines the concrete process of color image inpainting
and presents the experimental results. The conclusion is ultimately provided in Sect. 6.

2 Preliminary

Within this section, we introduce specific notations and fundamental principles related to the
realm of quaternion algebra, quaternion matrices, and quaternion tensors.

2.1 Notations

In this paper, R, C, andH respectively denote the real space, complex space, and quaternion
space. A scalar, a vector, a matrix, and a tensor are written as a, a,A, andA respectively. ȧ, ȧ,
Ȧ, and Ȧ respectively represent a quaternion scalar, a quaternion vector, a quaternion matrix,
and a quaternion tensor. The (i1, i2, . . . , iN )-th element of Ȧ ∈ H

I1×I2×...×IN is denoted as
Ȧ(i1, i2, . . . , iN ). (·)∗, (·)T , and (·)H denote the conjugate, transpose, and conjugate trans-
pose, respectively. rank(·) and Tr{·} respectively denote the rank and trace operators. R(·)
denotes the real part of quaternion (scalar, vector, matrix, and tensor). diag(·), reshape(·), and
permute(·) are command operations inMATLAB that respectively represent the generation of
a diagonal matrix, reshaping of arrays, and rearrangement of array dimensions. In addition,
‖ · ‖F , ‖ · ‖w,∗, and 〈·, ·〉 are respectively the Frobenius norm, the weighted nuclear norm
[37], and the inner product operation.

2.2 Introduction to Quaternions

Quaternion was introduced by Hamilton [9]. A quaternion q̇ ∈ H has a Cartesian form given
by:

q̇ = q0 + q1i + q2 j + q3k, (3)
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where ql ∈ R (l = 0, 1, 2, 3) are called its components, i , j , and k are the three imaginary
units related through the famous relations:{

i2 = j2 = k2 = i jk = −1,
i j = − j i = k, jk = −k j = i, ki = −ik = j .

(4)

Quaternions have similar rules for addition, subtraction, multiplication, and division as com-
plex numbers, as well as similar definitions for conjugation and modulus. However, the
difference lies in the non-commutativity property of quaternion multiplication. That is, in
general ṗq̇ �= q̇ ṗ.

A multidimensional array or an N -th order tensor is named a quaternion tensor if its
elements are quaternions (quaternion matrices can be regarded as second-order quater-
nion tensors), i.e., Ṫ = (ṫi1i2...iN ) ∈ H

I1×I2×...×IN = T0 + T1i + T2 j + T3k, where
Tl ∈ R

I1×I2×...×IN (l = 0, 1, 2, 3), Ṫ is pure if T0 is a zero tensor [24]. The definition of the
inner product between two quaternion tensors, Ẋ ∈ H

I1×I2×...×IN and Ẏ ∈ H
I1×I2×...×IN ,

is given by: 〈Ẋ , Ẏ〉 = ∑I1
i1=1

∑I2
i2=1 . . .

∑IN
iN=1 ẋ

∗
i1i2...iN

ẏi1i2...iN . The Frobenius norm of

quaternion tensor Ẋ is ‖Ẋ‖F =
√

〈Ẋ , Ẋ 〉.
The most common approach in studying higher-order tensors is to unfold them into matri-

ces. Thus, we extend three unfolding methods for real tensors in [42] to quaternion tensors.

Definition 1 (Multi-Index Operation [29]) The multi-index operation is defined as follows:

i1i2 . . . iN = i1 + (i2 − 1)I1 + (i3 − 1)I1 I2 + . . . + (iN − 1)
N−1∏
n=1

In,

where in ∈ [In].
Definition 2 (k-Unfolding) Let Ṫ ∈ H

I1×I2×...×IN be an N -th order quaternion tensor, the
k-unfolding of Ṫ is a quaternion matrix, denoted by Ṫ〈k〉 of size

∏k
n=1 In × ∏N

n=k+1 In ,
whose elements are defined by

Ṫ〈k〉(m, n) = Ṫ (i1, i2, . . . , iN ),

where m = i1i2 . . . ik , n = ik+1ik+2 . . . iN .

Definition 3 (Mode-kUnfolding) Let Ṫ ∈ H
I1×I2×...×IN be an N -th order quaternion tensor,

the mode-k unfolding of Ṫ is a quaternion matrix, denoted by Ṫ[k] of size Ik × ∏
n �=k In ,

whose elements are defined by

Ṫ[k](ik, t) = Ṫ (i1, i2, . . . , iN ),

where t = ik+1 . . . iN i1 . . . ik−1.

Definition 4 (ClassicalMode-k Unfolding) Let Ṫ ∈ H
I1×I2×...×IN be an N -th order quater-

nion tensor, the classical mode-k unfolding of Ṫ is a quaternion matrix, denoted by Ṫ(k) of
size Ik × ∏

n �=k In , whose elements are defined by

Ṫ(k)(ik, t) = Ṫ (i1, i2, . . . , iN ),

where t = i1 . . . ik−1ik+1 . . . iN .

In order to provide the definition of QTLR decomposition, we first introduce the left and
right quaternion matrix multiplications.
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Definition 5 (Left and Right Quaternion Matrix Multiplications [30]) Given two quaternion
matrices Ȧ ∈ H

M×N and Ḃ ∈ H
N×P , the left and right multiplications are respectively

defined as

(Ȧ ·L Ḃ)mp =
N∑

n=1

ȧmnḃnp and (Ȧ ·R Ḃ)mp =
N∑

n=1

ḃnpȧmn . (5)

It is easy to verify the following relationship between the left and right quaternion matrix
multiplications:

Ȧ ·R Ḃ = (ḂT ·L ȦT )T , (6)

For the sake of brevity in expression, we use Ȧ ·R Ḃ to denote the right quaternionmatrix mul-
tiplication of Ȧ and Ḃ instead of using (ḂT ·L ȦT )T . Note that due to the non-commutativity
of quaternion multiplication, generally Ȧ ·L Ḃ �= Ȧ ·R Ḃ.3 For simplicity, we also define
ȧ ·L ḃ = ȧḃ and ȧ ·R ḃ = ḃȧ for quaternion scalars ȧ and ḃ. Additionally, if we do not specify
whether it is left multiplication or right multiplication, it is assumed to be left multiplication,
i.e., ȦḂ = Ȧ ·L Ḃ. The defined left and right quaternion matrix multiplications have the
following associativity property [31]:

(Ȧ ·L Ḃ) ·L Ċ = Ȧ ·L (Ḃ ·L Ċ) and (Ȧ ·R Ḃ) ·R Ċ = Ȧ ·R (Ḃ ·R Ċ). (7)

However, in general

(Ȧ ·L Ḃ) ·R Ċ �= Ȧ ·L (Ḃ ·R Ċ) and (Ȧ ·R Ḃ) ·L Ċ �= Ȧ ·R (Ḃ ·L Ċ). (8)

In addition, the property that rank(Ȧ·L Ḃ) ≤ min(rank(Ȧ), rank(Ḃ)) can be obtained from [4,
39], where the rank of a quaternionmatrix Ȧ is defined to be themaximumnumber of columns
of Ȧ which are right linearly independent [39]. In the following lemma, we demonstrate the
same property for the right multiplication of two quaternion matrices.

Lemma 1 For any two quaternion matrices Ȧ ∈ H
M×N and Ḃ ∈ H

N×P , we have

rank(Ȧ ·R Ḃ) ≤ min(rank(Ȧ), rank(Ḃ)). (9)

Proof Denote the right row null spaces of Ḃ and Ȧ·R Ḃ asRRN (Ḃ) = {ẋ ∈ H
P : Ḃ·R ẋ = 0}

andRRN (Ȧ·R Ḃ) = {ẋ ∈ H
P : (Ȧ·R Ḃ)·R ẋ = 0} [31]. One can easily find thatRRN (Ḃ) ⊆

RRN (Ȧ ·R Ḃ). Thus, dimRRN (Ḃ) ≤ dimRRN (Ȧ ·R Ḃ) and rank(Ȧ ·R Ḃ) ≤ rank(Ḃ).
Similarly, Denote the right column null spaces of Ȧ and Ȧ ·R Ḃ as RCN (Ȧ) = {ẋ ∈ H

M :
ẋT ·R Ȧ = 0T } and RCN (Ȧ ·R Ḃ) = {ẋ ∈ H

M : ẋT ·R (Ȧ ·R Ḃ) = 0T } [31]. One can
also find that RCN (Ȧ) ⊆ RCN (Ȧ ·R Ḃ). Thus, dimRCN (Ȧ) ≤ dimRCN (Ȧ ·R Ḃ) and
rank(Ȧ ·R Ḃ) ≤ rank(Ȧ). In all, rank(Ȧ ·R Ḃ) ≤ min(rank(Ȧ), rank(Ḃ)).


�

3 Quaternion Tensor Left Ring Decomposition

In this section, we first define the QTLR decomposition. Following the definition, we present
an important property of the QTLR decomposition, and finally propose an algorithm for
learning the QTLR format.

3 From Ȧ ·L Ḃ �= Ȧ ·R Ḃ and (6), we can directly obtain another quaternion matrix property distinct from real
matrices, namely, in general (ḂT ·L ȦT )T �= Ȧ ·L Ḃ.
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3.1 The Definition of QTLR Decomposition

Definition 6 (QTLR Decomposition) Let Ṫ ∈ H
I1×I2×...×IN be an N -th order quaternion

tensor with In-dimension along the n-th mode, then QTLR representation is to decompose
it into a sequence of third-order quaternion tensors Żn ∈ H

rn×In×rn+1 (which can be also
called the n-th core of Ṫ ), n = 1, 2, . . . , N , which can be represented using an element-wise
formulation as4

Ṫ (i1, i2, . . . , iN ) = Tr{Ż1(i1) ·L Ż2(i2) ·L . . . ·L ŻN (iN )}, (10)

where Ṫ (i1, i2, . . . , iN ) denotes the (i1, i2, . . . , iN )-th element of Ṫ , Żn(in) = Żn(:, in, :) ∈
H

rn×rn+1 denotes the in-th lateral slice quaternion matrix of the third-order quaternion tensor
Żn , the last third-order quaternion tensor ŻN is of size rN × IN × r1, i.e., rN+1 = r1, which
ensures the product of these quaternion matrices is a square quaternion matrix. In addition,
the vector r = [r1, r2, . . . , rN ] is defined as the QTLR-rank of the quaternion tensor Ṫ .

Note that formula (10) can also be expressed in index form as follows:

Ṫ (i1, i2, . . . , iN )=
r1∑

α1=1
· · ·

rN∑
αN=1

Ż1(α1, i1, α2) ·L Z2(α2, i2, α3) ·L . . .·L ZN (αN , iN , αN+1),

(11)

whereαN+1 = α1. Thus, one can easily find that quaternion tensor train (QTT)decomposition
[25] is a special case of the defined QTLR decomposition when r1 = 1.

For an efficient representation of QTLR decomposition, we introduce two quaternion
tensor multiplications for third-order quaternion tensors, namely the quaternion tensor left
connection multiplication and the quaternion tensor right connection multiplication.

Definition 7 (Quaternion Tensor Left and Right Connection Multiplications) Let Żn ∈
H

rn×In×rn+1 , n = 1, 2, . . . , N , be N third-order quaternion tensors, the quaternion tensor
left and right connection multiplications between Żn and Żn+1 are respectively defined as

Żn ·L Żn+1 ∈ H
rn×In In+1×rn+2 = reshape(ŻL

n ·L ŻR
n+1, [rn, In In+1, rn+2]) (12)

and

Żn ·R Żn+1 ∈ H
rn×In In+1×rn+2 = reshape(ŻL

n ·R ŻR
n+1, [rn, In In+1, rn+2]), (13)

where ŻL
n ∈ H

rn In×rn+1 = (Żn)〈2〉 and ŻR
n+1 ∈ H

rn+1×In+1rn+2 = (Żn+1)〈1〉.
Then, following the definition (12), the QTLR decomposition (10) can be represented as

Ṫ = f (Ż) = f (Ż1 ·L Ż2 ·L . . . ·L ŻN ), (14)

where function f is a trace operation on Ż(:, k, :), k = 1, 2, . . . ,
∏N

i=1 Ii , followed by
a reshaping operation from vector of the length

∏N
i=1 Ii to quaternion tensor of the size

I1 × I2 × . . . × IN .

Definition 8 (Quaternion Tensor Permutation) For any N -th order quaternion tensor
Ṫ ∈ H

I1×I2×...×IN , the n-th quaternion tensor permutation is defined as Ṫ Pn ∈
H

In×...×IN×I1×...×In−1 :

Ṫ Pn (in, . . . , iN , i1, . . . , in−1) = Ṫ (i1, i2, . . . , iN ). (15)

4 One can also use the right quaternion matrix multiplication to define the QTRR decomposition, which is
Ṫ (i1, i2, . . . , iN ) = Tr{Ż1(i1) ·R Ż2(i2) ·R . . . ·R ŻN (iN )}. Due to the analogous analysis process and
application effects between QTRR and QTLR, we will exclusively consider QTLR throughout this paper.
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In the following theorem, based on the definition of quaternion tensor permutation and
QTLR decomposition, we present the cyclic permutation property of QTLR decomposition.

Theorem 1 (Cyclic Permutation Property of QTLR Decomposition) The quaternion tensor
permutation of Ṫ is equivalent to its cores circularly shifting, as follows:

Ṫ Pn = f
(
(Żn ·L . . . ·L ŻN ) ·R (Ż1 ·L . . . ·L Żn−1)

)
, (16)

with elements

Ṫ Pn (in, . . . , iN , i1, . . . , in−1) = Tr{(Żn(in) ·L . . . ·L ŻN (iN )
) ·R

(
Ż1(i1) ·L . . . ·L Żn−1(in−1)

)}.
(17)

Proof

Ṫ Pn (in, . . . , iN , i1, . . . , in−1)

=
r1∑

α1=1

· · ·
rN∑

αN=1

Ż1(α1, i1, α2) ·L Z2(α2, i2, α3) ·L . . . ·L ZN (αN , iN , αN+1)

=
r1∑

α1=1

· · ·
rN∑

αN=1

(
Ż1(α1, i1, α2) ·L . . . ·L Zn−1(αn−1, in−1, αn)

)·L
(
Zn(αn, in, αn+1) ·L . . . ·L ZN (αN , iN , αN+1)

)

=
r1∑

α1=1

· · ·
rN∑

αN=1

(
Zn(αn, in, αn+1) ·L . . . ·L ZN (αN , iN , αN+1)

)·R
(
Ż1(α1, i1, α2) ·L . . . ·L Zn−1(αn−1, in−1, αn)

)
= Tr{(Żn(in) ·L . . . ·L ŻN (iN )

) ·R
(
Ż1(i1) ·L . . . ·L Żn−1(in−1)

)},

(18)

where the first equality holds due to (15) and (11), the second and third equalities hold directly
as a result of the definitions of left and right multiplications between quaternion scalars. 
�

Note that, when quaternion tensors degenerate into real tensors, the cyclic permutation
property will degenerate into its real counterpart as presented in [42]. Although, due to the
non-commutativity of quaternionmultiplication, there are significant differences in the cyclic
permutation property between our defined QTLR decomposition and the TR decomposition
in [42], they exhibit a similar form, which is why we refer to the decomposition of (10) as
quaternion tensor left ‘ring’.

In the following, we develop an algorithm to learn the QTLR format.

3.2 QTLR-QSVD Algorithm

Considering that exact quaternion tensor decompositions often demand extensive com-
putational resources and storage, our focus shifts towards low-rank quaternion tensor
approximation within the QTLR format. Inspired by the TR-SVD algorithm for TR decom-
position in [42], we propose QTLR-QSVD algorithm for learning the QTLR format in this
section. Before deriving the QTLR-QSVD algorithm, we first present a required definition
and a theorem.
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Definition 9 (Quaternion Subchain Tensors) Four quaternion subchain tensors are defined
and denoted by

Ż<k ∈ H
r1×∏k−1

n=1 In×rk = Ż1 ·L Ż2 ·L . . . ·L Żk−1,

Ż≤k ∈ H
r1×∏k

n=1 In×rk+1 = Ż1 ·L Ż2 ·L . . . ·L Żk,

Ż>k ∈ H
rk+1×∏N

n=k+1 In×r1 = Żk+1 ·L Żk+2 ·L . . . ·L ŻN ,

Ż≥k ∈ H
rk×∏N

n=k In×r1 = Żk ·L Żk+1 ·L . . . ·L ŻN .

(19)

Note that the lateral slice matrices of Ż<k are Ż<k(:, t, :) = ∏k−1
n=1 Żn(in), where t =

i1i2 . . . ik−1. Similar results can be obtained for Ż≤k , Ż>k , and Ż≥k .

Theorem 2 Assume Ṫ can be represented by a QTLR decomposition. Then,

Ṫ〈k〉 = Ż≤k
(2) ·L (Ż>k[2] )T .

Proof Based on the definition of k-unfolding of quaternion tensor Ṫ , we can express the
QTLR decomposition in the following form:

Ṫ〈k〉(t1, t2) = Tr{Ż1(i1) ·L Ż2(i2) ·L . . . ·L ŻN (iN )}

= Tr

{
k∏

n=1

Żn(in)
N∏

n=k+1

Żn(in)

}

= Tr
{
Ż≤k(:, t1, :)Ż>k(:, t2, :)

}

= reshape(Ż≤k(:, t1, :), [1, r1rk+1]) ·L reshape((Ż>k(:, t2, :))T , [r1rk+1, 1])

=
r1rk+1∑
p=1

Ż≤k
(2)(t1, p) ·L ((Ż>k[2] )T )(p, t2),

(20)

where t1 = i1i2 . . . ik and t2 = ik+1ik+2 . . . iN . Thus, we have Ṫ〈k〉 = Ż≤k
(2) ·L (Ż>k[2] )T . 
�

Now, we present an algorithm that utilizes N sequential quaternion singular value decom-
positions (QSVDs) [39] for computing the QTLR decomposition. From Theorem 2, we have
Ṫ〈1〉 = Ż≤1

(2) ·L (Ż>1[2] )T , then we truncate the QSVD5 of Ṫ〈1〉 to obtain its low-rank approxi-
mation, i.e., such that

Ṫ〈1〉 = U̇1�1V̇H
1 + ε̇1. (21)

Let Ż≤1
(2) = U̇1 and (Ż>1[2] )T = �1V̇H

1 , then the first core Ż1 and quaternion subchain tensor

Ż>1 can be obtained by the proper reshaping and permutation of U̇1 and�1V̇H
1 , respectively.

Afterwards, let Ż>1 = reshape(Ż>1, [r2 I2,∏N
n=3 Inr1]), then truncate the QSVD of Ż>1 to

obtain its low-rank approximation, i.e., such that

Ż>1 = U̇2�2V̇H
2 + ε̇2. (22)

Then, the second core Ż2 and quaternion subchain tensor Ż>2 can be obtained by the proper
reshaping of U̇2 and �2V̇H

2 , respectively. This procedure can be carried out in a sequential

5 The δ-truncated QSVD of a quaternion matrix Ṫ means that we use a truncation threshold δ to truncate the
singular values of Ṫ, retaining only those that are greater than or equal to δ2. The symbol rankδ(Ṫ) represents
the number of singular values in Ṫ that are greater than or equal to δ2.
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manner to acquire all N cores Żn, n = 1, 2, . . . , N . Similar to the TR-SVD algorithm [42],
for QTLR-QSVD algorithm, we set the truncation threshold as

δn =
{√

2εp‖Ṫ ‖F/
√
N , n = 1,

εp‖Ṫ ‖F/
√
N , n > 1,

(23)

where εp is a given prescribed relative error. The detailed procedure of the QTLR-QSVD
algorithm is listed in Algorithm 1.

Algorithm 1 QTLR-QSVD

Input: An N -th order quaternion tensor Ṫ ∈ H
I1×I2×...×IN and the prescribed relative error εp .

Step1: Compute truncation threshold δn for n = 1 and n > 1 via (23).
Step2: Choose the first mode as the start point and obtain 1-unfolding quaternion matrix Ṫ〈1〉.
Step3: Low-rank approximation by applying δ1-truncated QSVD: Ṫ〈1〉 = U̇1�1V̇H

1 + ε̇1.
Step4: Split ranks r1 and r2 by: min

r1,r2
|r1 − r2|, s.t. r1r2 = rankδ1 (Ṫ〈1〉).

Step5: Obtain Ż1 via Ż1 = permute(reshape(U̇1, [I1, r1, r2]), [2, 1, 3]).
Step6: Obtain Ż>1 via Ż>1 = permute(reshape(�1V̇H

1 , [r1, r2,
∏N

n=2 In ]), [2, 3, 1]).
Step7: Perform the following iterative procedure:
for n = 2 to N − 1 do
Ż>n−1 = reshape(Ż>n−1, [rn In ,

∏N
p=n+1 Ipr1]).

Compute δn -truncated QSVD: Ż>n−1 = U̇n�nV̇H
n + ε̇n .

rn+1 = rankδn (Ż>n−1).
Żn = reshape(U̇n , [rn , In , rn+1]).
Ż>n = reshape(�nV̇H

n , [rn+1,
∏N

p=n+1 Ip, r1]).
end for

Output: N cores Żn , n = 1, 2, . . . , N of QTLR decomposition.

The QTLR-QSVD algorithm possesses inherent computational efficiency as a result of
its non-recursive nature, enabling it to achieve a high degree of approximation for any given
quaternion tensor. We know that the most intuitive application of rank truncation (or singular
value truncation) is low-rank reconstruction of images. For matrices or quaternion matrices,
methods such as truncated SVD or truncated QSVD [39] can be applied. However, for
tensors (including quaternion tensors), since the definition of rank is not unique (depending
on the tensor decomposition), the truncation of tensor singular values varies in form under
different rank definitions. For example, low-rank reconstruction of images can be based on
truncated higher-order singular value decomposition (HOSVD) [8, 23], truncated t-SVD
decomposition [16, 23, 28], and truncated TT decomposition [25, 27], among others. In this
section, to validate the feasibility of low-rank approximation using our proposed QTLR-
QSVD algorithm and the superiority of introducing quaternions, we compared the effects
of QTLR-QSVD and TR-SVD on low-rank reconstruction of color images (as shown in
Fig. 1), that is, comparing their reconstruction effects under the same truncation threshold to
determine which performs better.

Based on the comparison results, we can conclude that the incorporation of quaternions
enables QTLR-QSVD to achieve better performance in the reconstruction of color images
compared to TR-SVD. Similar results can be obtained for other color images as well.

Note that the non-commutativity of quaternion multiplication prevents the learning algo-
rithm for the QTLR model from achieving the same level of richness as the algorithm for the
TR model, which is essentially a degenerate version of the QTLR model in the real number
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Fig. 1 The reconstruction of one color image ‘peppers’ by using QTLR-QSVD and TR-SVD. The color image
is tensorized to 9th-order quaternion tensor 4×4×. . .×4 (10th-order tensor 4×4×. . .×4×3 for TR-SVD) by
the OKA procedure (see Sect. 5.1). a The reconstruction results are displayed for different prescribed relative
errors (the first and second terms of PSNR correspond to QTLR-QSVD and TR-SVD, respectively). b The
reconstruction relative errors are shown for different prescribed relative errors

domain. For instance, the TR-ALS series algorithms used for learning the TR model in [42]
cannot be applied to the learning of the QTLR model.6

As mentioned in the introduction section, the introduction of the QTLR model primarily
aims to combine the structural advantages of the TR model with the benefits of quaternion
representation for color pixels. It is anticipated that methods based on the QTLR decompo-
sition will yield improved results in tasks related to color image processing. In this paper, we
will use the example of color image inpainting based on an LRQTC model as an application
case to validate this assertion.

4 Low-Rank Quaternion Tensor Completion

In this section, we will propose an LRQTC model and its corresponding optimization algo-
rithm based on the previously defined QTLR decomposition and QTLR-rank.

6 In fact, one can verify that based on our definition of QTLR and its satisfied cyclic permutation property,
the inability of the TR-ALS algorithms [42] to be applied to learning the QTLR format primarily stems from
property (8).
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4.1 LRQTCModel Based on QTLRWeighted Nuclear NormMinimization

In order to introduce the QTLR weighted nuclear norm formulation, we first define the
circular unfolding of a quaternion tensor and then theoretically establish its connection to
the QTLR-rank. This method does not rely on a pre-specified QTLR-rank, thus transforming
the problem of approximating higher-order quaternion tensors with a low QTLR-rank into a
low-rank approximation problem of quaternion matrices.

Definition 10 (Quaternion Tensor Circular Unfolding) Let Ṫ ∈ H
I1×I2×...×IN be an N -th

order quaternion tensor, its circular unfolding is a quaternionmatrix, denoted by Ṫ{k,l}, which
first permutes Ṫ with order [k, . . . , N , 1 . . . , k − 1] and then performs matricization along
the first l modes, i.e., l-unfolding. The indices of Ṫ{k,l}(p, q) are formulated as

Ṫ{k,l}(p, q) = Ṫ (i1, i2, . . . , iN ), (24)

where p = 1+∑k+l−1
s=k (is−1)

∏s−1
t=k It and q = 1+∑k−1

s=k+l(is−1)
∏s−1

t=k+l It . Additionally,
we use fold{k,l}(Ṫ{k,l}) to denote the inverse process of quaternion tensor circular unfolding.

Note that when l = 1, the quaternion tensor circular unfolding is reduced to the quaternion
tensor mode-k unfolding of Ṫ , i.e., Ṫ{k,1} = Ṫ[k].

Theorem 3 Assume that Ṫ ∈ H
I1×I2×...×IN is an N-th order quaternion tensor with QTLR-

rank r = [r1, r2, . . . , rN ], and then when l = N − k + 1, for each Ṫ{k,l}, we have

rank(Ṫ{k,l}) ≤ rkrk+l . (25)

Proof From (10) and (24), Ṫ{k,l}(p, q) can be represented in the index form, that is,

Ṫ{k,l}(p, q) = Ṫ (i1, i2, . . . , iN ) = Tr{Ż1(i1) ·L Ż2(i2) ·L . . . ·L ŻN (iN )}. (26)

Based on Definition 8 and Theorem 1, (26) can be rewritten as

Ṫ{k,l}(p, q) = Tr{(Żk(ik) ·L . . . ·L ŻN (iN )
) ·R

(
Ż1(i1) ·L . . . ·L Żk−1(ik−1)

)}. (27)

since l = N − k + 1, (27) can be further rewritten as

Ṫ{k,l}(p, q) = Tr{(Żk(ik) ·L . . . ·L Żk+l−1(ik+l−1)
) ·R

(
Ż1(i1) ·L . . . ·L Żk−1(ik−1)

)}
= Tr{Ẇ(:, p, :) ·R Ḣ(:, q, :)}

=
rk∑

α1=1

rl+k∑
α2=1

Ẇ(α1, p, α2) ·R Ḣ(α2, q, α1)

=
rkrl+k∑
β=1

Ẇ(2)(p, β) ·R ḢT[2](β, q)

=
rkrl+k∑
β=1

ḢT[2](β, q)Ẇ(2)(p, β),

(28)

where Ẇ ∈ H
rk×∏N

n=k In×rl+k = Żk ·L . . .·L Żk+l−1, Ḣ ∈ H
r1×∏k−1

n=1 In×rk = Ż1 ·L . . .·L Żk−1.
According to (28), we can get that Ṫ{k,l} = Ẇ(2) ·R ḢT[2], which combining Lemma 1 means

rank(Ṫ{k,l}) ≤ min(rank(Ẇ(2), rank(ḢT[2])) ≤ min(rkrk+l ,
∏N

n=k In,
∏k−1

n=1 In). Note that
rk+l = rN+1 = r1. 
�
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4.1.1 The Proposed Model

From Theorem 3, we can observe that for an arbitrary N -th order quaternion tensor with
QTLR-rank r = [r1, r2, . . . , rN ], the rank of each circular unfolding quaternion matrix Ṫ{k,l}
with l = N − k +1 is bounded by rkrk+l . This indicates that the low QTLR-rank property of
quaternion tensor Ṫ is maintained in a small subspace of Ṫ{k,l} for k = 1, 2, . . . , N . In other
words, if Ṫ has a low QTLR-rank, meaning that all the components of r = [r1, r2, . . . , rN ]
are small, then the rank of Ṫ{k,l} will also be small, indicating that Ṫ{k,l} is also of low rank.
Hence, to minimize QTLR-rank, a natural option is to consider the sum of rank of circular
unfolding quaternion matrices:

min
Ṫ

N∑
k=2

αkrank(Ṫ{k,l}), (29)

where αk for k = 2, 3, . . . , N are positive parameters satisfying
∑N

k=2 αk = 1. Note that k
starts from 2, because when k = 1, there is no permutation for Ṫ . Nevertheless, the general
computational complexity of problem (29) makes it intractable. To address the solvability of
(29), a convex surrogate, the sum of weighted nuclear norm, has been adopted. The definition
of this surrogate is provided as follows.

Definition 11 (QTLR Weighted Nuclear Norm) Assume the quaternion tensor Ṫ with QTLR
decomposition, its QTLR weighted nuclear norm is defined as

N∑
k=2

αk‖Ṫ{k,l}‖w,∗, (30)

where l = N − k + 1.

Folowing Theorem 3, we constrain l = N − k + 1 in our defined QTLR weighted nuclear
norm, and we perform permutations on Ṫ for k = 2 to k = N . Therefore, these N − 1
differently sized and permuted quaternion matrices allow for a more comprehensive capture
of the low-rank structure of Ṫ and the global information of the quaternion data.

Based on the defined QTLR weighted nuclear norm (30), we propose the following
LRQTC model:

min
Ṫ

N∑
k=2

αk‖Ṫ{k,l}‖w,∗

s.t. P�(Ṫ ) = P�(Ẋ ),

(31)

where Ṫ ∈ H
I1×I2×...×IN is a completed output N -th order quaternion tensor, Ẋ ∈

H
I1×I2×...×IN is the observed N -th order quaternion tensor, and P�(·) is the projection

operator on � which is the index of observed elements. Specifically,

P�(Ṫ ) =
{
Ṫ (i1, i2, . . . , iN ), (i1, i2, . . . , iN ) ∈ �,

0, otherwise.

4.1.2 Numercial Scheme to Solve the LRQTCModel

To enable the solution of (31), we use the variable-splitting technique and introduce aux-
iliary quaternion tensors {Ṁ(k)}Nk=2 ∈ H

I1×I2×...×IN in (31). Consequently, (31) is finally
transformed into the following solvable model:
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min
Ṫ ,{Ṁ(k)}

N∑
k=2

αk‖Ṁ(k)
{k,l}‖w,∗

s.t. Ṫ = Ṁ(k), k = 2, 3, . . . , N ,

P�(Ṫ ) = P�(Ẋ ).

(32)

Based on the ADMM framework in the quaternion domain [21], the augmented Lagrangian
function of (32) is defined as

Lμ(Ẋ , {Ṁ(k)}Nk=2, {Ẏ(k)}Nk=2) =
N∑

k=2

αk‖Ṁ(k)
{k,l}‖w,∗ + R(〈Ẏ(k), Ṫ − Ṁ(k)〉)

+ μk

2
‖Ṫ − Ṁ(k)‖2F

s.t. P�(Ṫ ) =P�(Ẋ ),

(33)

where Ẏ(k) ∈ H
I1×I2×...×IN for k = 2, 3, . . . , N are Lagrange Multipliers, μk > 0 for

k = 2, 3, . . . , N are penalty parameters. Then, we use an iterative scheme to solve the
problem (33).

Update Ṁ(k): To optimize Ṁ(k) is equivalent to solve the subproblem:

Ṁ(k) = argmin
Ṁ(k)

αk‖Ṁ(k)
{k,l}‖w,∗ + R(〈Ẏ(k), Ṫ − Ṁ(k)〉) + μk

2
‖Ṫ − Ṁ(k)‖2F

= argmin
Ṁ(k)

αk

μk
‖Ṁ(k)

{k,l}‖w,∗ + 1

2
‖Ṁ(k) − (Ṫ + Ẏ(k)

μk
)‖2F .

(34)

Denote 	̇= Ṫ + Ẏ(k)

μk
and let 	̇ = U̇�V̇H be the QSVD of 	̇, where

� =
[
diag

(
σ1(	̇), . . . , σs(	̇)

)
0

]
,

and σn(	̇) is the n-th singular value of 	̇, s denotes the number of nonzero singular values
of 	̇. From [37], the problem (34) has the following closed-form solution:

Ṁ(k) = fold{k,l}(U̇�̂V̇H ), (35)

where

�̂ =
[
diag

(
σ1(Ṁ

(k)
{k,l}), . . . , σs(Ṁ

(k)
{k,l})

)
0

]
,

and σn(Ṁ
(k)
{k,l}) =

{
0, if c2 < 0
c1+√

c2
2 , if c2 ≥ 0

, with c1 = σn(	̇) − ε, c2 = (σn(	̇) + ε)2 − 4C , and

C is a compromising constant.
Update Ṫ : To optimize Ṫ is equivalent to solve the subproblem:

Ṫ = argmin
P�(Ṫ )=P�(Ẋ )

N∑
k=2

R(〈Ẏk, Ṫ − Ṁ(k)〉) + μk

2
‖Ṫ − Ṁ(k)‖2F

= argmin
P�(Ẋ )=P�(Ṫ )

N∑
k=2

μk

2
‖Ṫ − Ṁ(k) + Ẏ(k)

μk
‖2F

(36)
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Fig. 2 The entire process of color image inpainting

It is easy to check that the solution of (36) is given by:

Ṫ = P�c

(∑N
k=2

(
Ṁ(k) − Ẏ(k)

μk

)
N − 1

)
+ P�(Ẋ ), (37)

where �c is the complement of �.
Update Ẏ(k): The Lagrange multiplier Ẏ(k) is updated by:

Ẏ(k) = Ẏ(k) + μk(Ṫ − Ṁ(k)). (38)

To speed up convergence, each iteration we also update μk by: μk = min(μmax , ρμk),
where μmax is the default maximum of μk , ρ > 1 is a constant parameter.

Finally, the proposed LRQTC algorithm is summarized in Algorithm 2.

Algorithm 2 Our proposed LRQTC algorithm.

Input: The observed N -th order quaternion tensor Ṫ ∈ H
I1×I2×...×IN with � (the index of observed

elements), {αk }Nk=2, μmax and ρ.

Initialize {Ṁ(k)}Nk=2, {Ẏ(k)}Nk=2, and {μk }Nk=2.
Repeat
for k = 2 to N do
Update Ṁ(k) via (35);

end for
Update Ṫ via (37) (the updated one is labled by ˜̇T ).
for k = 2 to N do
Update Ẏ(k) via (38);
Update μk via μk = min(μmax , ρμk ).

end for

Until ‖Ṫ −˜̇T ‖F
‖˜̇T ‖F

< 10−5 or reach the preset maximum number of iterations.

Output: The recovered quaternion tensor ˜̇T .
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Fig. 3 The tested natural color images (the first row), color medical images (the second row), and color face
images (the third row)

Table 1 Average PSNR and SSIM values (PSNR, SSIM) on the five natural color images with five levels of
sampling rates (SRs) (bold fonts denote the best performance)

Methods SRs

SR=10% SR=20% SR=30% SR=40% SR=50%

t-SVD [41] 17.266, 0.638 20.206, 0.766 22.639, 0.840 24.854, 0.891 27.176, 0.929

TMac-TT [1] 20.480, 0.778 22.415, 0.847 24.651, 0.903 26.229, 0.931 28.277, 0.956

TRLRF [38] 17.374, 0.633 20.324, 0.761 23.217, 0.851 25.609, 0.903 27.997, 0.940

TRNNM [11] 19.683, 0.801 22.743, 0.880 24.938, 0.920 26.841, 0.945 28.778, 0.963

LRQA-2 [5] 18.063, 0.663 20.950, 0.781 23.241, 0.848 25.337, 0.894 27.545, 0.928

LRQMC [22] 17.738, 0.677 20.838, 0.797 23.367, 0.863 25.589, 0.908 27.976, 0.942

TQLNA [35] 17.819, 0.658 21.124, 0.788 23.632, 0.859 25.870, 0.905 28.252, 0.939

Ours 23.276, 0.881 25.933, 0.929 27.948, 0.953 29.679, 0.968 31.310, 0.977

5 Experiments and Results

In this section, we will first elaborate on how to utilize the proposed LRQTCmodel for color
image inpainting and then present the experimental results.

5.1 Color Image Inpainting

Because a color image is essentially a quaternion matrix (a second-order quaternion tensor),
it is necessary to increase the order of the quaternion matrix in order to effectively utilize the
proposed LRQTC method. Recently, the overlapping ket augmentation (OKA) as a tensor
augmentation technique was developed in [40] for increasing the order of tensors. OKA
is an improvement upon KA [1] as it overcomes the visual flaws caused by reshaping and
eliminates the blocking artifacts introduced by KA. Therefore, in order to increase the order
of quaternion matrices used for representing color images, we apply OKA to quaternion
matrices. Due to the similarity in the process of applying OKA to tensors [40] and quaternion
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Table 2 Average PSNR and SSIM values (PSNR, SSIM) on the five color medical images with five levels
of sampling rates (SRs) (bold fonts denote the best performance)

Methods SRs

SR=10% SR=20% SR=30% SR=40% SR=50%

t-SVD [41] 17.568, 0.575 19.816, 0.688 21.684, 0.761 23.383, 0.814 25.013, 0.856

TMac-TT [1] 20.139, 0.714 21.980, 0.806 23.937, 0.869 25.668, 0.910 27.192, 0.934

TRLRF [38] 17.142, 0.233 19.720, 0.420 21.686, 0.560 23.221, 0.638 24.771, 0.712

TRNNM [11] 17.982, 0.639 21.340, 0.797 23.884, 0.875 26.142, 0.922 28.610, 0.957

LRQA-2 [5] 18.099, 0.590 20.366, 0.695 22.063, 0.760 23.662, 0.811 25.271, 0.851

LRQMC [22] 17.687, 0.591 20.025, 0.702 21.932, 0.775 23.586, 0.826 25.449, 0.871

TQLNA [35] 17.899, 0.597 20.589, 0.714 22.350, 0.776 23.937, 0.824 25.527, 0.863

Ours 22.339, 0.836 24.553, 0.894 26.111, 0.923 27.608, 0.944 29.160, 0.960

Table 3 Average PSNR and SSIM values (PSNR, SSIM) on the five color face images with five levels of
sampling rates (SRs) (bold fonts denote the best performance)

Methods SRs

SR=10% SR=20% SR=30% SR=40% SR=50%

t-SVD [41] 18.416, 0.789 22.761, 0.885 25.984, 0.932 28.515, 0.955 31.317, 0.972

TMac-TT [1] 22.862, 0.890 28.633, 0.964 31.093, 0.978 32.952, 0.984 34.534, 0.988

TRLRF [38] 18.424, 0.784 22.422, 0.867 25.248, 0.919 27.554, 0.945 29.689, 0.962

TRNNM [11] 22.452, 0.916 26.878, 0.958 29.508, 0.974 31.729, 0.982 33.940, 0.989

LRQA-2 [5] 20.021, 0.817 24.148, 0.901 26.908, 0.940 29.323, 0.960 31.674, 0.973

LRQMC [22] 19.172, 0.819 23.216, 0.897 26.516, 0.938 28.423, 0.956 31.132, 0.971

TQLNA [35] 19.585, 0.809 24.160, 0.900 27.347, 0.943 29.902, 0.965 32.901, 0.979

Ours 26.708, 0.953 30.050, 0.976 32.332, 0.984 34.288, 0.989 35.990, 0.992

Table 4 The average running time (seconds) of different algorithms when achieving their respective highest
PSNR values, for two levels of sampling rates (SRs)

Color images SRs

SR=10% SR=50%

Methods Natural Medical Face Natural Medical Face

t-SVD [41] 157.70 141.91 120.46 178.86 175.02 121.62

TMac-TT [1] 4.36 20.89 7.21 4.99 15.80 14.58

TRLRF [38] 298.14 330.09 29.76 323.99 272.36 34.90

TRNNM [11] 304.42 270.83 30.31 273.07 266.56 30.28

LRQA-2 [5] 202.21 225.97 91.49 111.51 162.85 52.67

LRQMC [22] 50.32 44.08 9.90 73.09 62.56 11.43

TQLNA [35] 48.40 45.02 8.23 72.90 62.34 11.09

Ours 341.86 329.02 62.16 342.44 334.31 63.36
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Fig. 4 Recovered natural color images for random missing with SR = 10%. From the top row to the bottom
row: the original color images, the observed color images, the results recovered by t-SVD, TMac-TT, TRLRF,
TRNNM, LRQA-2, LRQMC, TQLNA, and our method, respectively. The figure is viewed better in zoomed
PDF

matrices, we will not reiterate it here. Finally, we summarize the proposed entire process of
color image inpainting in Fig. 2.

5.2 Experimental Results

To validate the effectiveness of our color image inpainting method, we conducted extensive
experiments using a diverse range of images, including natural color images, color medical
images, and color face images. We compare our proposed method with several classic and
state-of-the-art quaternion matrix and tensor completion methods, including t-SVD [41],
TMac-TT [1], TRLRF [38], TRNNM [11], LRQA-2 [5], LRQMC [22], and TQLNA [35].
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Fig. 5 Recovered color medical images for random missing with SR = 10%. From the top row to the bottom
row: the original color images, the observed color images, the results recovered by t-SVD, TMac-TT, TRLRF,
TRNNM, LRQA-2, LRQMC, TQLNA, and our method, respectively. The figure is viewed better in zoomed
PDF

In order to assess the performance of the proposed method, we considered not only visual
quality but also utilized two commonly used quantitative quality metrics: Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [33]. All the experiments are
run in MATLAB 2014b under Windows 10 on a personal computer with a 1.60GHz CPU
and 8GB memory.

Natural color image inpainting: Five natural color images (shown in the first row
of Fig. 3) with a spatial resolution of 256 × 256 are utilized for the evaluation. For
our proposed method, the natural color images are transformed into ninth-order quater-
nion tensors of size 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 using OKA. We set αk =

ωk∑N
k=2 ωk

with ωk = min(
∏k−1

n=1 In,
∏N

n=k In) for k = 2, 3, . . . , N , μmax = 106, and
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Fig. 6 Recovered color face images for random missing with SR = 10%. From the top row to the bottom
row: the original color images, the observed color images, the results recovered by t-SVD, TMac-TT, TRLRF,
TRNNM, LRQA-2, LRQMC, TQLNA, and our method, respectively. The figure is viewed better in zoomed
PDF

ρ = 1.03. We initialize Ṁ(k) = Ṫ , Ẏ(k) = 0 for k = 2, 3, . . . , N , and μ =
{0.5, 0.5, 0.001, 10−4.1, 10−4.1, 0.001, 0.5, 0.5}. Furthermore, all the compared methods
were implemented using their source codes, and the parameter configurations were set
according to the recommendations provided in the original papers, with adjustments made
to optimize performance as closely as possible.

Colormedical image inpainting: Five color medical images (shown in the second row of
Fig. 3) with a spatial resolution of 256×256 are utilized for the evaluation. The experimental
settings are the same as those for natural color image inpainting.

Color face image inpainting: Five color face images (shown in the third row of Fig. 3)
with a spatial resolution of 120 × 165 are utilized for the evaluation. For our proposed
method, the color face images are transformed into eighth-order quaternion tensors of size
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Fig. 7 Recovery of structurally missing natural color image: a comparison of various methods in terms of
visual and quantitative metrics. The figure is viewed better in zoomed PDF

4× 4× 4× 4× 4× 4× 5× 4 using OKA. The other experimental settings are the same as
those for natural color image inpainting.

For random missing, we set five levels of sampling rates (SRs) which are SR = 10%,
SR = 20%, SR = 30%, SR = 40%, and SR = 50%. The average PSNR and SSIM values
are reported in Tables 1, 2, and 3 for the five natural color images, color medical images,
and color face images at five different levels of SRs. Table 4 presents the average running
time of different algorithms when achieving their respective highest PSNR values (i.e., the
PSNR values in Tables 1, 2 and 3). Figs. 4, 5 and 6 visually demonstrate the recovered
results obtained by various methods for natural color images, color medical images, and
color face images at SR = 10%. Furthermore, we also validated the performance of these
methods in recovering color images with structural missing. We conducted experiments on
randomly selected one color image from each of the three categories, and the visual and
quantitative results are shown in Figs. 7, 8 and 9. From these extensive experiments, it is
evident that our proposed method exhibits significant advantages both visually and in terms
of quantitative metrics when compared to both quaternion-based methods and TR-based
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Fig. 8 Recovery of structurally missing color medical image: a comparison of various methods in terms of
visual and quantitative metrics. The figure is viewed better in zoomed PDF

methods. This aligns with our expectation of complementary strengths between quaternions
and TR. Additionally, we observed that these methods perform poorly when recovering
color images with large areas of complete loss, as illustrated in Fig. 9. While our proposed
method is relatively acceptable visually, the recovery of edges remains less than ideal. Hence,
for inpainting tasks involving color images with large areas of complete loss, there is a
requirement for specific model improvements in forthcoming research. Lastly, it should be
noted that, as evident from Table 4, our method does not have an advantage in terms of
running time. Therefore, our method may be better suited for handling offline color image
inpainting tasks that do not have strict time constraints but require high recovery quality.

6 Conclusions

In this paper, we have defined the QTLR decomposition of quaternion tensors and introduced
the relevant theory. The QTLR decomposition combines the advantages of both quater-
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Fig. 9 Recovery of structurally missing color face image: a comparison of various methods in terms of visual
and quantitative metrics. The figure is viewed better in zoomed PDF

nions and TR decomposition, providing a new theoretical foundation for the field of color
image processing. This constitutes the core research focus of this paper. Furthermore, as an
example of the application of the QTLR decomposition, we have proposed a method for
color image inpainting. Specifically, we define the circular unfolding of quaternion tensors,
establish a correlation between the rank of circular unfolding quaternionmatrices andQTLR-
rank, and leverage this connection to propose an LRQTC model for color image inpainting.
The experiments provide evidence that the LRQTC method we introduce showcases excep-
tional performance across a spectrum of color image inpainting tasks. Regardless of whether
compared to existing quaternion matrix-based methods or TR-based methods, our approach
exhibits significant advantages both visually and in terms of quantitative metrics. This under-
scores the substantial potential inherent in the fusion of tensor TR with quaternions.

Nevertheless, owing to the non-commutative nature of quaternion multiplication, QTLR
has yet to attain the same degree of theoretical robustness as TR. For instance, concerning the
learning algorithm for the QTLR format, we have put forth solely a QTLR-QSVD approach.
Ensuring the validity of Theorem 3, in which (25) holds, entails the imposition of constraints
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such as l = N − k + 1, among others. These aspects underscore the need for additional
refinement and enhancement in our forthcoming research endeavors. Furthermore, in order
to better cater to time-sensitive color image inpainting tasks, it is possible to further develop
online algorithms based on the proposed theory to reduce the running time.

Funding The work of the first author was supported by Yunnan Fundamental Research Projects
(202401AU070203). The work of the second author was supported by the University of Macau (MYRG2022-
00108-FST,MYRG-CRG2022-00010-ICMS), The Science andTechnologyDevelopment Fund,Macau S.A.R
(0036/2021/AGJ). The work of the third author was supported in part by the National Key Research and
Development Program of China (2022YFE0112200), the National Natural Science Foundation of China
(U21A20520, 62325204), Science and Technology Project of Guangdong Province (2022A0505050014),
the Key-Area Research and Development Program of Guangzhou City (202206030009). The work of the
fourth author was supported by the Science and Technology Planning Project of Guangzhou City, China
(201907010043).

Data Availability Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video
recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

2. Chen, J., Ng, M.K.: Color image inpainting via robust pure quaternion matrix completion: error bound
and weighted loss. SIAM J. Imag. Sci. 15(3), 1469–1498 (2022)

3. Chen, J.F.,Wang, Q.W., Song, G.J., Li, T.: Quaternionmatrix factorization for low-rank quaternionmatrix
completion. Mathematics 11(9), 2144 (2023)

4. Chen, Y., Qi, L., Zhang, X., Xu, Y.: A low rank quaternion decomposition algorithm and its application
in color image inpainting. arXiv preprint arXiv:2009.12203 (2020)

5. Chen, Y., Xiao, X., Zhou, Y.: Low-rank quaternion approximation for color image processing. IEEE
Trans. Image Process. 29, 1426–1439 (2019)

6. Chen, Z., Li, Y., Lu, J.: Tensor ring decomposition: optimization landscape and one-loop convergence of
alternating least squares. SIAM J. Matrix Anal. Appl. 41(3), 1416–1442 (2020)

7. Cichocki, A.: Era of big data processing: A new approach via tensor networks and tensor decompositions.
arXiv preprint arXiv:1403.2048 (2014)

8. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21(4), 1253–1278 (2000)

9. Hamilton, W.R.: Elements of quaternions. Green, & Company, Longmans (1866)
10. He, Z.H., Wang, X.X., Zhao, Y.F.: Eigenvalues of quaternion tensors with applications to color video

processing. J. Sci. Comput. 94(1), 1 (2023)
11. Huang, H., Liu, Y., Liu, J., Zhu, C.: Provable tensor ring completion. Signal Process. 171, 107486 (2020)
12. Huang, H., Liu, Y., Long, Z., Zhu, C.: Robust low-rank tensor ring completion. IEEE Trans. Comput.

Imag. 6, 1117–1126 (2020)
13. Jia, Z., Jin, Q., Ng, M.K., Zhao, X.L.: Non-local robust quaternion matrix completion for large-scale

color image and video inpainting. IEEE Trans. Image Process. 31, 3868–3883 (2022)
14. Jia, Z., Ng, M.K.: Structure preserving quaternion generalized minimal residual method. SIAM J. Matrix

Anal. Appl. 42(2), 616–634 (2021)
15. Jia, Z., Ng, M.K., Song, G.J.: Robust quaternion matrix completion with applications to image inpainting.

Numer. Linear Algebra Appl. 26(4), e2245 (2019)
16. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3),

641–658 (2011)
17. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
18. Li, H., Liu, Z., Huang, Y., Shi, Y.: Quaternion generic fourier descriptor for color object recognition.

Pattern Recogn. 48(12), 3895–3903 (2015)

123

http://arxiv.org/abs/2009.12203
http://arxiv.org/abs/1403.2048


Journal of Scientific Computing            (2024) 101:1 Page 25 of 26     1 

19. Li, X.T., Zhao, X.L., Jiang, T.X., Zheng, Y.B., Ji, T.Y., Huang, T.Z.: Low-rank tensor completion via
combined non-local self-similarity and low-rank regularization. Neurocomputing 367, 1–12 (2019)

20. Liu, Q., Ling, S., Jia, Z.: Randomized quaternion singular value decomposition for low-rank matrix
approximation. SIAM J. Sci. Comput. 44(2), A870–A900 (2022)

21. Miao, J., Kou,K.I.: Quaternion-based bilinear factormatrix normminimization for color image inpainting.
IEEE Trans. Signal Process. 68, 5617–5631 (2020)

22. Miao, J., Kou, K.I.: Color image recovery using low-rank quaternion matrix completion algorithm. IEEE
Trans. Image Process. 31, 190–201 (2021)

23. Miao, J., Kou, K.I.: Quaternion tensor singular value decomposition using a flexible transform-based
approach. Signal Process. 206, 108910 (2023)

24. Miao, J., Kou, K.I., Liu, W.: Low-rank quaternion tensor completion for recovering color videos and
images. Pattern Recogn. 107, 107505 (2020)

25. Miao, J., Kou, K.I., Yang, L., Cheng, D.: Quaternion tensor train rank minimization with sparse regu-
larization in a transformed domain for quaternion tensor completion. Knowl.-Based Syst. 284, 111222
(2024)

26. Miao, J., Kou, K.I., Yang, Y., Yang, L., Han, J.: Quaternion matrix completion using untrained quaternion
convolutional neural network for color image inpainting. Signal Process. (2024). https://doi.org/10.1016/
j.sigpro.2024.109504

27. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
28. Qin, Z., Ming, Z., Zhang, L.: Singular value decomposition of third order quaternion tensors. Appl. Math.

Lett. 123, 107597 (2022)
29. Qiu, Y., Zhou, G., Zhao, Q., Xie, S.: Noisy tensor completion via low-rank tensor ring. IEEE Trans.

Neural Netw. Learn. Syst. 35(1), 1127–1141 (2022)
30. Schulz, D., Seitz, J., da Costa, J.P.C.L.: Widely linear simo filtering for hypercomplex numbers. In: 2011

IEEE Information Theory Workshop, pp. 390–395. IEEE (2011)
31. Schulz, D., Thomä, R.S.: Using quaternion-valued linear algebra. arXiv preprint arXiv:1311.7488 (2013)
32. Wang, W., Aggarwal, V., Aeron, S.: Efficient low rank tensor ring completion. In: Proceedings of the

IEEE international conference on computer vision, pp. 5697–5705 (2017)
33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to

structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
34. Wu, P.L., Zhao, X.L., Ding, M., Zheng, Y.B., Cui, L.B., Huang, T.Z.: Tensor ring decomposition-based

model with interpretable gradient factors regularization for tensor completion. Knowl.-Based Syst. 259,
110094 (2023)

35. Yang, L., Miao, J., Kou, K.I.: Quaternion-based color image completion via logarithmic approximation.
Inf. Sci. 588, 82–105 (2022)

36. Yu, J., Li, C., Zhao, Q., Zhao, G.: Tensor-ring nuclear norm minimization and application for visual:
Data completion. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp. 3142–3146. IEEE (2019)

37. Yu, Y., Zhang, Y., Yuan, S.: Quaternion-based weighted nuclear norm minimization for color image
denoising. Neurocomputing 332, 283–297 (2019)

38. Yuan, L., Li, C., Mandic, D., Cao, J., Zhao, Q.: Tensor ring decomposition with rank minimization on
latent space: An efficient approach for tensor completion. In: Proceedings of the AAAI conference on
artificial intelligence, vol. 33, pp. 9151–9158 (2019)

39. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
40. Zhang, Y., Wang, Y., Han, Z., Tang, Y., et al.: Effective tensor completion via element-wise weighted low-

rank tensor train with overlapping ket augmentation. IEEE Trans. Circuits Syst. Video Technol. 32(11),
7286–7300 (2022)

41. Zhang, Z., Aeron, S.: Exact tensor completion using t-svd. IEEE Trans. Signal Process. 65(6), 1511–1526
(2016)

42. Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. arXiv preprint
arXiv:1606.05535 (2016)

43. Zheng, J., Qin, M., Xu, H., Feng, Y., Chen, P., Chen, S.: Tensor completion using patch-wise high order
hankelization and randomized tensor ring initialization. Eng. Appl. Artif. Intell. 106, 104472 (2021)

44. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Zhao, Q., Jiang, T.X.: Fully-connected tensor network decompo-
sition and its application to higher-order tensor completion. In: Proceedings of the AAAI conference on
artificial intelligence, vol. 35, pp. 11071–11078 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.sigpro.2024.109504
https://doi.org/10.1016/j.sigpro.2024.109504
http://arxiv.org/abs/1311.7488
http://arxiv.org/abs/1606.05535


    1 Page 26 of 26 Journal of Scientific Computing            (2024) 101:1 

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Quaternion Tensor Left Ring Decomposition and Application for Color Image Inpainting
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Introduction to Quaternions

	3 Quaternion Tensor Left Ring Decomposition
	3.1 The Definition of QTLR Decomposition
	3.2 QTLR-QSVD Algorithm

	4 Low-Rank Quaternion Tensor Completion
	4.1 LRQTC Model Based on QTLR Weighted Nuclear Norm Minimization
	4.1.1 The Proposed Model
	4.1.2 Numercial Scheme to Solve the LRQTC Model


	5 Experiments and Results
	5.1 Color Image Inpainting
	5.2 Experimental Results

	6 Conclusions
	References


