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A B S T R A C T   

Internet gaming disorder (IGD) prompts inquiry into how feedback from prior gaming rounds influences sub
sequent risk-taking behavior and potential neural mechanisms. Forty-two participants, including 15 with IGD 
and 27 health controls (HCs), underwent a sequential risk-taking task. Hierarchy Bayesian modeling was adopted 
to measure risky propensity, behavioral consistence, and affection by emotion ratings from last trial. Concurrent 
electroencephalogram and functional near-infrared spectroscopy (EEG-fNIRS) recordings were performed to 
demonstrate when, where and how the previous-round feedback affects the decision making to the next round. 
We discovered that the IGD illustrated heightened risk-taking propensity as compared to the HCs, indicating by 
the computational modeling (p = 0.028). EEG results also showed significant time window differences in uni
variate and multivariate pattern analysis between the IGD and HCs after the loss of the game. Further, reduced 
brain activation in the prefrontal cortex during the task was detected in IGD as compared to that of the control 
group. The findings underscore the importance of understanding the aberrant decision-making processes in IGD 
and suggest potential implications for future interventions and treatments aimed at addressing this behavioral 
addiction.   

1. Introduction 

Internet Gaming Disorder (IGD) is one kind of representative 
behavioral addiction, which is characterized as repetitively and 
compulsively involving internet gaming without considering the 
adverse consequences (Derevensky et al., 2019). Due to its high preva
lence rates (Stevens et al., 2021), IGD is now included in both the 11th 
revision of the International Classification of Diseases (ICD-11) and the 
5th edition of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5) (Luo et al., 2021). Similar to the substance use disorder, IGD is 
due to the dysfunction in dopaminergic neural circuitry engaging in 
compulsive seeking sensation, the disruption in prefrontal cortex (PFC) 
involving the executive functions like controlling behaviors, and the 
deficits in amygdala functions associated with negative emotional re
action (Weinstein and Lejoyeux, 2020). Furthermore, it has been 

discovered that IGD also exhibits similar impairments in emotion 
regulation and executive function seen in other psychiatric disorders, 
such as major depression disorder, anxiety, attention deficit hyperac
tivity disorder, and etc. (Ko et al., 2012; Ostinelli et al., 2021). The 
abovementioned disrupted executive function and emotion regulation 
were widely examined in IGD (Argyriou et al., 2017; Shin et al., 2021; 
Zhou et al., 2016). However, the decision-making process, a complex 
cognitive function, remains underexplored in IGD. 

Decision making is a high-level and dynamic cognitive process in 
humans, involving weighing the desirability and probabilities of alter
native outcomes (Rilling and Sanfey, 2011). According to the criteria for 
assessing whether the probability of each outcome is predictable, deci
sion making can be classified into two categories: ambiguity and risky 
decision making (Li et al., 2019). More importantly, even if the outcome 
is predictable for risky decision making, the decision-making behaviors 
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are still influenced by a bunch of cognitive components such as valence 
of outcomes (win/lose), amplitude and probability of cost-benefit, 
characteristics of participants (e.g., risky propensity and inverse tem
perature), emotional regulation, and etc. (Kusev et al., 2017). Besides, 
the instantaneous outcome from the previous round of gaming might 
have a feedback impact on the decision-making patterns of the following 
round (Figner et al., 2009; Oskarsson et al., 2009). For example, par
ticipants displayed increased risk-seeking behavior following a loss in 
risk decision-making paradigms (Liu et al., 2020; Xue et al., 2011). 
Conversely, Pedroni et al. (2017) found that participants exhibited 
greater risk-taking tendencies after experiencing wins, a phenomenon 
known as positive recency in sequential decision-making paradigms. To 
date, it is yet unclear whether the win/loss outcome in feedback from 
the previous round of gaming will promote or inhibit the risk-taking 
behaviors during the next round. 

Considering various factors influencing decision-making behaviors, 
conventional behavioral data analysis may not capture these nuanced 
characteristics. Hence, computational modeling of cognitive tasks has 
been widely employed in clinical populations to overcome the limita
tions of traditional behavioral tasks. Previous studies have constructed 
computational models to reflect individual learning ability, sensitivity to 
wins and losses, inverse temperature, and risk-taking propensity in 
sequential risky decision-making tasks, such as the Balloon Analogue 
Risk Task (BART) (Park et al., 2021; van Ravenzwaaij et al., 2011; Zhou 
et al., 2021). 

Existing findings on the behaviors of individuals with IGD in risky 
decision making were rather mixed (Yao et al., 2022). Some studies 
reported no group difference of risky propensity between individuals 
with IGD and health controls (HCs) (Deleuze et al., 2017; Yao, Chen, 
et al., 2015). By contrast, individuals with IGD were also found to 
exhibit reduced loss aversion and make riskier choices in the loss 
domain (Yao, Chen, et al., 2015), while participants with IGD made 
riskier choices in the gain domain (Ko et al., 2017). These findings 
suggested that the risky propensity of individuals with IGD may be 
modulated by certain confounding factors. Specifically, no studies have 
explored whether IGD manifests different behavioral patterns influ
enced by the valence of the previous trial (win or loss outcome). Thus, to 
better evaluate the affecting factors in risky propensity, this study aims 
to examine the effects of outcome valence on subsequent 
decision-making performance in individuals with IGD using a sequential 
risk-taking paradigm (Brassen et al., 2012). 

Furthermore, to investigate the potential neural mechanisms of IGD 
in sequential risky decision making, we will employ functional near- 
infrared spectroscopy (fNIRS) neuroimaging and electrophysiology 
(EEG) simultaneously. The combination of EEG and fNIRS would pro
vide valuable insights into the neural dynamics underlying decision 
making, as they capture event-related potentials (ERPs), brain oscilla
tion characteristics, and oxygenated hemoglobin (HbO) concentration 
changes of perceiving outcomes, during decision-making process (Gao 
et al., 2023, 2022; Li et al., 2022). Previous studies have reported 
abnormal activation in the PFC of individuals with IGD using functional 
Magnetic Resonance Imaging and the BART (Liu et al., 2017; Qi et al., 
2015), Thus, fNIRS will be used to measure changes in HbO concen
tration in the PFC during sequential risky decision making. In addition, 
studies utilizing brain electrophysiological activities have found higher 
brain oscillations in slow-wave activity (theta, beta) among individuals 
with IGD (Kim et al., 2017) and observed differences in feedback-related 
negativity (FRN) and P300 amplitudes in risk decision-making tasks (Li 
et al., 2020; Yau et al., 2015; Zhao et al., 2017). Especially, compared to 
univariate pattern analysis (ERPs), the multi-variates pattern analysis 
(MVPA) can decode neural activities across multiple EEG channels, with 
enhanced sensitivity, integrated information, reduced the noise influ
ence, etc. (Grootswagers et al., 2017). In light of the MVPA strength and 
no previous studies have adopted this technique to decode the neural 
activity of perceiving feedback, we wish to explore the different time 
course of potential neural activity perceiving the valence of feedback 

among IGD and HCs. 
In particular, the behaviors and potential neural mechanism on how 

the win or loss outcomes affect further decision-making performance 
during prolonged continuous gaming is also unclear. Therefore, this aim 
of this study is to inspect the underlying cognitive neural mechanism of 
risky decision making in IGD, demonstrating the impact of previous 
gaming outcomes (feedback) on further decision-making performance. 
It is hypothesized that IGD patients who lose the previous round of 
gaming tend to take riskier behaviors in performing the following 
decision-making task as compared to HCs. To test the hypothesis, con
current behavioral modeling and electroencephalogram-functional 
near-infrared spectroscopy (EEG-fNIRS) multimodal neuroimaging 
were carried out to systematically characterize the specific impairments 
in IGD with a sequential risk-taking task. By using the computational 
model, nuanced cognitive processes during the task were able to be 
detected, revealing the aberrant risky decision-making performance. In 
particular, the developed model was able to describe to what extent the 
adjustment of behaviors in further decision making is affected by the 
outcomes of previous trial. Meanwhile, EEG-fNIRS multimodal re
cordings aid in revealing when and where decision was made in the 
cortex under the influence of previous gaming results. It is expected that 
the present study provides new insights for understanding the cognitive 
neural mechanism associated with risky decision-making in IGD. 

2. Method 

2.1. Participants 

Forty-two right-handed participants, including 15 individuals with 
IGD (mean age: mean age: 21.46, 6 females) and 27 health controls (HC, 
mean age: 21.67, 17 females), were recruited from the University of 
Macau. The inclusion criteria for IGD were as follows: 1) aged between 
20 and 30 years with more than 12 years of education; 2) played internet 
games for at least 4 h per day on weekdays and 8 h per day on weekends, 
or a total of 40 h per week, for a minimum duration of 2 years, as 
confirmed by total game time records. Participants in the control group 
were gender-, age-, and education-level matched with those in the IGD 
group and had nonessential internet use of less than 4 h per day in their 
daily lives. A semi-structured interview was conducted to assess the 
DSM-5 criteria for IGD, and participants needed to fulfill at least five out 
of nine items as defined by the DSM-5 definition (Luo et al., 2021). All 
individuals with IGD completed the Chen Internet Addiction Scale 
(CIAS) (Chen et al., 2003). Together, CIAS and DSM-5 were used to 
indicate the severity of internet addiction. The Barratt Impulsiveness 
Scale (BIS-11), a widely used assessment of impulsiveness, was admin
istered to all participants (Li et al., 2011). All participants signed 
informed consent forms prior to the experiment. The protocol and all 
procedures of this study were approved by the Institutional Review 
Board with the University of Macau. 

2.2. Procedure 

Participants were seated in a quiet room, where both behavioral and 
EEG-fNIRS data were collected concurrently during the task. Before the 
formal experiment, participants were informed to try to receive the re
wards as more as possible during the task because their payments were 
decided by their rewards. Initially participants were required to take the 
practice test with 16 trials to ensure they were familiar with the 
experimental procedure. And then participants performed the formal 
test with 200 trials, which took about 30–40 min. 

Each trial started with a fixation in the center of the monitor ranged 
from 1 to 3 s, followed by a decision-making task with 1.5–5.5 s, a 
feedback task of 3 s, and a rating period of 3 s (Fig. 1). At the beginning 
of the decision-making task, eight closed boxes were presented on the PC 
screen, with 7 boxes containing gains (gold) and 1 containing a loss 
(devil) randomly assigned to one of the eight boxes. And then the boxes 
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were opened from the left to the right sequentially. When one box was 
opened, participants needed decide either opening the next box or 
stopping to collect all the gains acquired so far in that trial by pressing 
the keyboard in 2000 ms, or the next boxes would be opened auto
matically. The decision-making period task was over when the devil box 
was opened (defined as loss condition) or when participants decided 
stopping to collect all the gains (defined as gain condition) before the 
next box was opened. The feedback task lasted 3000 ms, demonstrating 
that participants either won or lost the game with different colors of box. 
The screen also displayed the actual position of the devil, thus informing 
participants how many points they’d collected or how many chances 
they’d missed at the same time. Finally, participants were required to 
rate the feelings about their choice of this trial within 3000 ms by using a 
9-point scale from extreme regret (defined as − 4) to extreme relief 
(defined as 4). 

2.3. Behavioral modeling 

2.3.1. Model details 
As the procedure mentioned earlier, the probability of meeting devils 

(losing the coins of that trial) plose
k is 1/8. Thus, according to van Rav

enzwaaij et al. (2011), the expected utility after l boxes on trial k, Ukl can 
be presented as: 

Ukl =
(
1 − ploss

k
)l
∗ lγwith γ ≥ 0 (1)  

the optimal boxes opened (νk) can be calculated by setting the first de
rivative of Eq. (4) for l equals zero. Here we can get the optimal boxes 
opened: 

vk =
− γ

ln
(
1 − ploss

k

) with γ ≥ 0 (2) 

Considering the randomness trait of decision making, here we use the 

parameter τ, to present inverse temperature of participants, in which 
higher τ value indicates more deterministic behavior of the decision 
making. So, we could calculate the probability popen

kl if the participants 
opened the boxes l on trial k. 

popen
kl =

1
1 + eτ(l− vk)

with τ ≥ 0 (3) 

Considering that the behaviors in the next trial would be influenced 
by the emotional response of previous trial, here we proposed a revised 
model (parameter-3 model). In this model, we used a parameter a to 
present the degree of the participants being influenced by emotional 
response of last trial. Thus, the probability popen

kl , can be rewritten as: 

popen
kl =

1
1 + eτ∗(l− vk)∗a∗erk− 1

with τ ≥ 0 (4) 

The erk− 1is the emotional rating scores in last trial. 

2.3.2. Parameter estimation 
The parameters of the two computational models were estimated 

through a hierarchical Bayesian analysis framework, as outlined by Lee 
(2011). This approach enables the simultaneous estimation of both in
dividual and group-level data in a mutually constraining manner. The 
implementation of hierarchical Bayesian analysis utilized the Stan 
software package (https://mc-stan.org/) and the hBayesDM package 
(Ahn et al., 2017) within the R programming environment (http://www. 
r-project.org/). We employed the Hamiltonian Monte Carlo method to 
facilitate the estimation process. To ensure convergence to the desired 
distributions, a substantial sample size of 4000 was employed. Addi
tionally, we ran four independent chains to assess whether the posterior 
distributions remained independent of the initial starting points. This 
rigorous approach was designed to enhance the robustness and reli
ability of our parameter estimates. 

Fig. 1. Schematic of the sequential risk-taking task. The trial of sequential risk-taking task was composed of fixation period, decision-making period, feedback 
presentation period and rating period. 
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2.3.3. Model comparison 
The performance of the two models was compared using the leave- 

one-out information criterion (LOOIC) (Vehtari et al., 2017). LOOIC 
was calculated based on leave-one-out cross-validation, estimating 
out-of-sample prediction accuracy from the log-likelihood derived from 
the posterior distributions. A lower LOOIC score indicates a better model 
performance. LOOIC weights, defined by Akaike weights (Wagenmakers 
and Farrell, 2004) based on LOOIC values, were used to compare the 
models. 

wi(LOOIC) =
exp

{

− 1
2Δi(LOOICi − LOOICmin)

}

∑N
n=1exp

{

− 1
2Δn(LOOICi − LOOICmin)

} (5)  

2.4. Concurrent fNIRS and EEG recordings 

The fNIRS-EEG data acquisition cap (EasyCap, Herrsching, Ger
many) with reference to the international 10–20 system was used for 
concurrent fNIRS and EEG recordings. The fNIRS data were collected by 
NIRScout system (NIRx Medizintechinik GmbH, Berlin, Germany) with 
8 LED sources and 8 optical detectors, yielding 20 measurement chan
nels with an inter-optode distance of 30 mm placed along the frontal 
regions. The light attenuation was measured at the wavelength of 760 
nm and 850 nm with the sampling rate of 7.81 Hz. In addition, the 
Montreal Neurological Institute (MNI) coordinates of each fNIRS chan
nel were quantified using ICBM-152 head model (Singh et al., 2005) and 
the NIRSite 2.0 toolbox (NIRx Medizintechnik GmbH, Berlin, Germany). 
The coordinates were then imported into the NIRS-SPM software 
toolbox for spatial registration (Ye et al., 2009). The spatial configura
tions (MNI coordinates, Brodmann area, anatomical label, and per
centage of overlap) of the 20 channels were provided in Fig. 2 and 
Table 1. 

EEG data were recorded with 32 Ag/AgC1 active electrodes (Brain 
Products, Munich, Germany) attached to the EEG cap (sampling rate: 
500 Hz, bandpass: 0.03–70 Hz; reference: Cz). Five EEG electrodes were 
re-located to their neighboring channels due to the pre-emption of fNIRS 
probes (Fig. 2A). The electrical impedance of each channel was 

maintained below 25 kΩ before concurrent data acquisition. 

2.5. EEG data processing 

2.5.1. Data pre-processing 
The EEG data were preprocessed using MATLAB R2016a (Math

Works, Natick, USA) and EEGLAB, with a re-reference to grand average 
and a bandpass filter of 1–30 Hz. Independent Component Analysis 
(ICA) was applied to correct artifacts due to eye movements (blinks and 
shifts), muscle activity, and cardiac interference. Channels with high 
impedance were interpolated using the spherical interpolation method. 
Subsequently, the clean EEG data were segmented from 100 ms before 
the onset of the outcome to 1000 ms after the onset. Baseline correction 
was applied to all epochs, using the mean voltage over the 100 ms 
preceding the outcome onset as the reference. Epochs with EEG voltages 
exceeding a threshold of ±75 μV were excluded from further analysis. 
Two participants from the HC group were excluded due to the large 
noise of EEG signals. 

2.5.2. Global field power (GFP) and event-related potential (ERP) analysis 
GFP was used to assess the strength of the electric field at the scalp. 

GFP is computed as the square root of the average of the squared voltage 
values recorded at each electrode, serving as an index for the spatial 
standard deviation of the electric field at the scalp (Murray et al., 2008). 
A larger GFP value signifies a stronger electric field. Differences in GFP 
waveform data were examined in relation to time, particularly when the 
post-stimulus data were significantly deviated from the baseline across 
various conditions. The significance of GFP amplitude was determined 
by its consecutive exceedance of a 95% confidence interval for at least 
20 ms relative to the 100-ms pre-stimulus baseline (Hua et al., 2023). 
Subsequently, GFP peaks were identified based on the averaged GFP 
waveform across participants. 

To identify the topographic modulations, global map dissimilarity 
measures (GMD) were carried out by using randomization statistics. 
GMD is calculated as the root mean square of the difference between 
strength-normalized vectors (Murray et al., 2008). Differences in GMD 
values were also analyzed with respect to time. The statistical signifi
cance of GMD was demonstrated by using a topographic analysis of 

Fig. 2. The fNIRS-EEG device and location. A) The fNIRS channel and EEG location; B) The fNIRS-EEG device setup; C) fNIRS channels reconstructed by NIRS-SPM.  
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variance (ANOVA) with 10,000 permutations (p < 0.05). Importantly, 
GMD is independent of field strength, whereas the significant GMD re
sults indicate the differences in neural generators across various con
ditions. Significance levels of GMD results were adjusted by using a 
duration threshold of 20 ms. 

For the present study, electrodes located in the central regions were 
selected for analysis: FC1, FC2, C3, C4, CP1, and CP2. All the trials for 
each participant were averaged and then paired two-sided t-tests and 
independent two-sided t-tests were performed to detect the significant 
differences in relation to feedback outcomes and group. The p values 
were corrected using the false discovery rate (FDR) with a significance 
level of p = 0.05. 

2.5.3. Time-frequency analysis 
To inspect the potential brain oscillations of ERPs, MNE Python 

software 1.2 was utilized to compute event -related oscillations (EROs). 
Morlet wavelets were applied to extract the time–frequency represen
tation of induced power for a given time point (550 data points, ranged 
from − 100 ms to 1000 ms, relative to feedback onset) and frequency 
(4–30 Hz with a resolution of 2 Hz) (Morales and Bowers, 2022). The 
Morlet wavelet transform is generally used to generate EEG spectral 
components as it strikes a favorable balance between temporal and 
frequency resolution. More specifically, Morlet wavelet transform 
demonstrates its exceptional efficiency when applied to non-stationary 
signals, making it an excellent candidate to analyze the present data 
(Vecchio et al., 2022). Statistical analysis of EROs was performed with a 
non-parametric procedure based on permutations (1000 times) and 
cluster-level statistics (p = 0.001, cluster-level p = 0.01). 

2.5.4. Multivariate pattern analysis 
MVPA (MNE Python software version 1.2) was used to examine the 

topographic weighting of EEG signals that was able to effectively 
differentiate the win and loss feedback within specific time intervals. A 
linear classifier based on L2-regularized logistic regression was used to 
identify optimal projections of the sensor space, enabling the discrimi
nation between win and loss feedback in individuals at specific time 
points. This approach allowed for the investigation of feedback 
perception availability in IGD and HC groups based on stimulus-locked 
EEG data, and the temporal dynamics of this availability were accessed 

Table 1 
3D MNI coordinates, anatomical labels, and coverage percentage of fNIRS 
channels.  

Channel 
Numbers 

MNI Anatomical label Percentage of 
Overlap 

X Y Z   

1 − 58.40 52.67 23.70 45 - pars 
triangularis 
Broca’s area; 
46 - Dorsolateral 
prefrontal cortex; 

0.70556 
0.29434 

2 − 40.65 58.09 47.26 9 - Dorsolateral 
prefrontal cortex; 
46 - Dorsolateral 
prefrontal cortex; 

0.47964 
0.52036 

3 − 59.74 59.19 − 4.02 10 - Frontopolar 
area; 
45 - pars 
triangularis 
Broca’s area; 
46 - Dorsolateral 
prefrontal cortex; 
47 - Inferior 
prefrontal gyrus; 

0.0074074 
0.018519 
0.95556 
0.018519 

4 − 41.86 76.99 − 16.24 10 - Frontopolar 
area; 
11 - Orbitofrontal 
area; 
46 - Dorsolateral 
prefrontal cortex; 
47 - Inferior 
prefrontal gyrus; 

0.25385 
0.42692 
0.088462 
0.23077 

5 − 32.54 69.63 36.72 9 - Dorsolateral 
prefrontal cortex; 
10 - Frontopolar 
area; 
46 - Dorsolateral 
prefrontal cortex; 

0.0875 
0.23333 
0.67917 

6 − 32.42 82.00 0.95 10 - Frontopolar 
area; 
11 - Orbitofrontal 
area; 

0.52333 
0.47667 

7 − 17.82 81.10 23.89 10 - Frontopolar 
area; 

1 

8 − 14.86 61.44 64.43 8 - Includes 
Frontal eye fields; 
9 - Dorsolateral 
prefrontal cortex; 

0.020661 
0.97934 

9 − 0.14 72.91 48.60 9 - Dorsolateral 
prefrontal cortex; 
10 - Frontopolar 
area; 

0.71654 
0.28346 

10 14.30 61.60 61.49 8 - Includes frontal 
eye fields; 
9 - Dorsolateral 
prefrontal cortex; 

0.020921 
0.97908 

11 − 14.52 87.21 − 11.00 10 - Frontopolar 
area; 
11 - Orbitofrontal 
area; 

0.29505 
0.70395 

12 0.07 86.32 11.93 10 - Frontopolar 
area; 

1 

13 14.68 87.20 − 10.81 10 - Frontopolar 
area; 
11 - Orbitofrontal 
area; 

0.21429 
0.78571 

14 17.62 81.18 24.04 10 - Frontopolar 
area; 

1 

15 32.06 69.85 36.94 9 - Dorsolateral 
prefrontal cortex; 
10 - Frontopolar 
area; 
46 - Dorsolateral 
prefrontal cortex; 

0.22041 
0.31837 
0.46122 

16 32.23 82.06 1.31 10 - Frontopolar 
area; 

0.47697 
0.52303  

Table 1 (continued ) 

Channel 
Numbers 

MNI Anatomical label Percentage of 
Overlap 

X Y Z   

11 - Orbitofrontal 
area; 

17 40.01 58.56 47.48 9 - Dorsolateral 
prefrontal cortex; 
46 - Dorsolateral 
prefrontal cortex; 

0.63761 
0.36239 

18 57.77 53.36 24.15 45 - pars 
triangularis Broca 
s area; 
46 - Dorsolateral 
prefrontal cortex; 

0.57087 
0.42913 

19 41.60 77.12 − 16.69 10 - Frontopolar 
area; 
11 - Orbitofrontal 
area; 
46 - Dorsolateral 
prefrontal cortex; 
47 - Inferior 
prefrontal gyrus; 

0.14449 
0.55554 
0.053232 
0.23574 

20 59.20 59.73 − 3.39 10 - Frontopolar 
area; 
46 - Dorsolateral 
prefrontal cortex; 
47 - Inferior 
prefrontal gyrus; 

0.051852 
0.91481 
0.033333  
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by using time-resolved decoding. 
The accuracy of the linear L2-regularized logistic regression classi

fier, trained on multi-electrode single-trial EEG signals, was indepen
dently assessed for each time point. A Monte Carlo cross-validation 
procedure (n = 100) was repeated for 10 times, with the entire dataset 
randomly partitioned into 10 subsets consisting of a training set (90% of 
the trials) and a test set (the remaining 10%). These time windows 
corresponded to the ERP and ERO analyses, spanning from 100 ms 
before the stimulus onset to 1000 ms after the stimulus onset. Individual 
classification accuracy was considered statistically above chance when it 
exceeded the classification accuracy obtained from permuted labels 
(paired t-test, α = 0.05). Group-level analysis followed the same pro
cedure, with group averages computing the across individual averages. 
Correction for multiple comparisons was achieved by using a time- 
cluster-based approach, in which a time point was considered signifi
cant only if it belonged to a cluster comprising at least twenty consec
utive significant time points. 

2.6. fNIRS data analysis 

fNIRS signals from five participants (three in IGD and two in HC 
groups) were not correctly recorded due to machine malfunction, and 
data from one HC was excluded for further analysis due to the large 
noise. fNIRS data were preprocessed by using the nirsLAB toolbox (NIRx 
Medizintechnik GmbH, Berlin, Germany). Motion artifacts were 
removed and detrending was applied to the raw data by using the built- 
in algorithm. To achieve the best signal-to-noise ratio, the data were 
further band-pass filtered with a low cutoff frequency of 0.1 Hz and a 
high cutoff frequency of 0.01 Hz to minimize physiological noise asso
ciated with heart pulsation (1–1.5 Hz), respiration (0.2–0.5 Hz), and 
blood pressure waves (~0.1 Hz) (Xu et al., 2020). The HbO changes 
were modeled by using statistical parametric mapping with the canon
ical hemodynamic response function, resulting in general linear model 
coefficients (beta values) across all conditions for each participant. In 
this study, only HbO signals were analyzed as they provide a more 
sensitive indicator of changes associated with regional cerebral blood 
flow (Xu et al., 2020). Subsequently, the beta values of feedback 
perception in each channel were compared using a two-way ANOVA and 
corrected using FDR. 

2.7. Statistics analysis 

Following a case-control study protocol, the statistical analyses were 
conducted using R software 3.6 and MATLAB 2016. Risk-taking 
behavior was defined as the number of opened win boxes in the gain 
condition, which reflects a standard measure in sequential risk-taking 
tasks (Liu et al., 2020). Two-way ANOVA analysis was used to explore 
the factors (participants and outcome of the last trial) that affected risk 
behaviors in the subsequent trial. Continuous normal distributed de
mographic data (age, DSM-V, CIAS, BIS-11) were compared using in
dependent t-tests, and non-normal distributed data (education of years) 
was compared by Mann-Whitney U Test. Gender distribution between 
the two groups was compared using a chi-squared test. The statistics for 
EEG and fNIRS analyses are described in each respective section. The 
parameters of computational models were compared using independent 
t-tests. Potential correlations between demographic data (CIAS, BIS-11) 
and modeling parameters, as well as the number of boxes opened in the 
gain condition, were explored using Pearson correlation. 

3. Results 

3.1. Demographic data 

There were no significant differences in age, gender, and education 
of years between the IGD and HC groups (Table 2). However, significant 
differences were detected in DSM-V scores, CIAS score, and BIS-11 

scores between the IGD and HC groups. 

3.2. Behavioral results 

Behavioral results demonstrated that individuals with IGD tended to 
open more boxes as compared to the HC group (F (2, 40) = 12.397, p =
0.0007, Fig 3 Panel A). Interestingly, both the IGD and HC groups 
showed a greater likelihood of opening more boxes after loss outcomes 
as compared to that of win outcomes, as indicated by paired t-tests (IGD: 
boxes opened Gain = 3.914 ± 0.763, boxes opened Lose = 4.111 ± 0.737, 
t = − 2.550, p = 0.03, Cohen’s d = 0.263; HC: boxes opened Gain = 3.402 
± 0.574, boxes opened Lose = 3.620 ± 0.519, t = − 3.135, p = 0.004, 
Cohen’s d = 0.398). 

3.3. Modeling results 

The results comparison using the leave-one-out information criterion 
(LOOIC) demonstrated that the Par-3 model involving the impact of 
emotional influence, provided a better fit to the data as compared to the 
Par-2 model (Fig 3 Panel B). 

The posterior distributions of fitted Par-3 model parameters were 
calculated to quantify the underlying cognitive processes during the 
sequential risk-taking task. The IGD group exhibited a significantly 
higher risk-taking propensity (λ IGD = 0.697 ± 0.058) as compared to the 
HC group (λ HC = 0.644 ± 0.077, t = 2.339, p = 0.0284, Cohen’s d =
0.777, Fig 3 Panel C). However, no significant differences were detected 
between the two groups in terms of behavioral consistency (τ IGD =

1.295, τ HC = 1.165, t = 0.374, p = 0.7117, Fig 3 Panel D) or emotional 
affection (a IGD = 0.484, a HC = 0.481, t = 0.631, p = 0.533, Fig 3 Panel 
E). 

3.4. GFP and ERP results 

Both the IGD and HC groups exhibited significantly different neural 
responses to loss and win feedback from 50 ms to 460 ms. Interestingly, 
three GFP peaks with time periods between 50–86 ms, 114–164 ms and 
280–460 ms showed significant difference between the four conditions, 
corresponding to ERP component P1, feedback-related negativity (FRN), 
and P3, respectively. In particular, for both the HC and IGD groups, the 
win feedback induced higher electric field strength in the 50–86 ms time 
window (higher positive potential in the central region and higher 
negative potential in the occipital region), and lower electric field 
strength in the 280–460 ms time window (lower positive potential in the 
central region), as compared to loss feedback. In addition, the loss 
feedback in IGD group induced significant differences in electric field 
strength (lower positive potential in the prefrontal region and lower 
negative potential in the occipital region) during the time period 
114–164 ms time as compared to that in HC group. Further, no signifi
cant differences in the topographical distribution of electric field, in
dependent of the electric field strength, were detected after win 
feedback between the IGD and HC groups. 

Table 2 
Demographic and personality characteristics of the included participants.   

IGD (15) 
Mean (std) 

HC (27) 
Mean (std) 

Test Statistic p value 

Age 21.4667 
(1.993) 

21.667 (2.019) T =
− 0.3252 

0.7472 

Gender 6 female / 9 
male 

17 female /10 
male 

X2 = 1.23 0.2674 

Education 
(years) 

14.4667 
(1.1254) 

15.481 (1.889) Z = − 1.645 0.100 

DSM-V 6.6 (0.8281) 1.926 (0.8738) T = 17.183 <0.001 
BIS-11 61.533 

(5.0124) 
47.481 (5.366) T = 8.4867 <0.001 

CIAS 77.20 (7.013) 40.037 (6.531) T = 16.861 <0.001  
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Interestingly, for both IGD and HC groups, the loss feedback elicited 
a higher P1 amplitude, lower FRN amplitude, and higher P300 ampli
tude as compared to win ones. Besides, the IGD group demonstrated a 
shorter P300 latency compared to the HC group (Fig. 4). 

3.5. ERO results 

Significant differences in frequency spectra between the win and loss 
feedback were detected for both the IGD and HC groups. In HC group, 
delta power of EROs after loss feedback was significantly higher in the 
174–532 ms time window compared to those of win feedback. Likewise, 
for the IGD group, higher delta power of EROs was identified in the 
192–456 ms time window. More importantly, no significant differences 
in frequency spectra after win or loss feedback were detected in either 
the IGD or HC group (Fig. 5). 

3.6. One-vs-one decoding results 

To further inspect how the global perceived orientation varied across 
the four conditions, one-vs-one classification was performed for all 
paired comparisons. Pairwise classifications yielded significant accu
racies above chance level at specific time points across the trials (p <
0.05, lasting for > 20 ms). In the HC group, pronounced decoding per
formance was detected between win and loss feedback, roughly from 
140 to 570 ms, indicating a long-lasting neural response difference. In 
the IGD group, the decoding performance between the win and loss 
feedback was identified between the 190 to 380 ms. Notably, the time 
window between 330 and 520 ms illustrated a highly significant 
discrimination effect between IGD and HC groups by using the neural 
response to loss feedback. In addition, a short-lived group difference 
between the IGD and HC groups was revealed after perceiving win 
feedback in the time window 330–380 ms (Fig. 6). 

3.7. fNIRS results 

To explore where the abnormal corresponding neural response to 
feedback occurred in the IGD group as compared to HCs, the brain 
activation regions in PFC were identified by using fNIRS neuroimaging. 
Pairwise t-tests demonstrated significantly lower activation after win 
feedbacks in the IGD group was detected as compared to that of the HC 
group in channel 4 (t = − 3.003, p = 0.0051, Cohen’s d = 1.89, covering 
36.09% frontopolar area, 42.692% orbitofrontal area, 23.087% inferior 
prefrontal gyrus), 11 (t = − 2.94, p = 0.0063, Cohen’s d = 1.87, covering 

29.605% frontopolar area, 70.395% orbitofrontal area), and 13 (t =
− 2.89, p = 0.0072, Cohen’s d = 1.85, covering 21.429% frontopolar 
area, 78.571% orbitofrontal area). Meanwhile, significantly lower acti
vation after loss feedback was identified in the IGD group as compared 
to that of the HC group in channel 7 (t = − 3.22, p = 0.0031, Cohen’s d =
1.95, covering 100% frontopolar area) and 14 (t = − 3.19, p = 0.0033, 
Cohen’s d = 1.93, covering 100% frontopolar area) (Fig. 7). 

3.8. Correlation results 

Our correlation results demonstrated that the risk propensity (λ) was 
positively correlated with BIS-11 scores for both the HC (r = 0.47, p =
0.013) and IGD groups (r = 0.61, p = 0.016), whereas BIS-11 was also 
positively correlated with the number of boxes opened in the IGD group 
(r = 0.54, p = 0.036) (Fig. 8). No other correlational relations were 
detected. 

4. Discussion 

Through the implementation of a sequential risk-taking task and 
computational modeling, our study revealed that individuals with IGD 
exhibited a higher propensity for engaging in risky decision making 
compared to HCs. Neuroimaging data, including neurophysiological 
responses P300 and fNIRS assessment of PFC activation, demonstrated 
distinct neural responses of perceiving outcomes among individuals 
with IGD compared to HCs. Additionally, our findings have highlighted 
the impact of outcome valence on subsequent decision-making perfor
mance via behavioral results and neuroimaging findings Interestingly, 
loss outcomes tend to exert a stronger influence on risk-taking pro
pensity compared to win outcomes. Leveraging the power of neuro
imaging techniques, we have identified noteworthy variations in neural 
responses during the P100 and P300 time windows following feedback 
processing. Furthermore, alterations of theta power brain oscillations in 
both IGDs and HCs have been observed, particularly in relation to loss 
outcomes, compared to win outcomes. 

First, our behavioral results and modeling parameter findings indi
cate that individuals with IGD exhibit a heightened inclination towards 
risk-taking behaviors compared to HCs, which is consistent with previ
ous research on risky propensity of IGD in both ambiguity decision 
making (Jiang et al., 2020; Kim and Kang, 2018) and risky decision 
making (Ko et al., 2017; Li et al., 2020; Liu et al., 2017). The increased 
risk propensity observed in individuals with IGD can be attributed to 
dysregulated reward processing, imbalanced cost-benefit weighting, and 

Fig. 3. The behavioral and modeling results. A). The significant differences in the opened box number between the gain and lose conditions and between the HC and 
IGD groups; B). The LOOIC values calculated from the two models; C). The computational modeling parameter rho, indicating risk taking propensity; D). The 
computational modeling parameter tau, indicating inverse temperature; and E). The computational modeling parameter alpha, indicating emotional affection. *** 
indicates p < 0.001; ** indicates p < 0.01; while * indicates p < 0.05. 

X. Zeng et al.                                                                                                                                                                                                                                    



NeuroImage 297 (2024) 120726

8

poor impulse control (Kornev et al., 2022). Reward processing refers to 
the way the brain evaluates and responds to rewarding stimuli, such as 
pleasurable experiences or outcomes (Meyer et al., 2021). Previous 
studies have characterized IGD as an impairment in the reward circuit, 
with individuals excessively pursuing rewards (Wang et al., 2021). This 
heightened response to rewards can lead individuals with IGD to be 
more willing to take risks in pursuit of immediate rewards, often dis
regarding potential negative consequences or losses (Weinstein and 
Lejoyeux, 2020). Delay discounting tasks have shown that individuals 
with IGD are more likely to prioritize immediate rewards (Weinsztok 

et al., 2021). Additionally, imbalanced cost-benefit weighting, where 
the expected effect of risky behaviors outweighs the potential loss con
sequences, contributes to a higher propensity for harmful risk-taking 
behaviors in individuals with IGD (Hong et al., 2023). While in
dividuals with IGD and HCs may demonstrate similar risk propensities 
when risky behaviors are favorable, individuals with IGD exhibit 
significantly higher risk propensities when faced with unfavorable out
comes (Yao, Chen, et al., 2015). Lastly, in addition to dysregulated 
reward processing and imbalanced cost-benefit weighting, poor impulse 
control might be associated with risky decision making among IGDs. 

Fig. 4. Neural responses to loss/win feedback exhibited significant difference in GFP and ERP between the IGD and HC groups. A). GFP to loss/win feedback for both 
the IGD and HC groups; B). The time segments of significant GMD were indicated in black bars. The top row depicts the significant main difference of the four 
conditions, whereas the other rows depict the pairwise comparison (HCGain vs HCLose, IGDGain vs IGDLose, HCGain vs IGDGain, HCLose vs IGDLose); C). Topography of the 
four conditions regarding the three time windows (50–86 ms, 114–164 ms, and 280–460 ms). For each topography, EEG signals were averaged across all time points 
within a specific time window. Color bar denotes the voltage value (μV).; D-F). The ERP pair wise comparison to loss/win feedback for both the IGD and HC groups. 
Colored shaded areas: mean± error bar; light gray shaded areas: the period of significant decoding at the group level (pFDR<0.05). 
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Inhibition control plays a crucial role in decision making to maximize 
advantages (Sakagami et al., 2006). Consequently, previous studies have 
found that impaired inhibitory control predicted higher addiction de
grees and more impulsive in decision making among IGDs (Kräplin et al., 
2020; Yao, Wang, et al., 2015). The impaired response inhibition and 
salience attribution (iRISA) model suggests that deficits in inhibition 
control are core impairments in addiction (Zilverstand et al., 2018). Our 
findings are consistent to this model, as our correlational findings 
revealed a significantly positive correlation between impulsivity (BIS-11 
scores) and risk-taking propensity. As such, impaired inhibition control 
may be associated with riskier behaviors in sequential risk-taking tasks. 

In addition, our study demonstrated significantly different neural 
responses to feedback among individuals with IGD compared to HCs, as 
measured by the combined EEG-fNIRS fusion technique. We consistently 
observed a significant neural response in the P300 time window 
(300–500 ms) towards loss outcomes in both IGD and HCs using GMD, 
ERP, and MVPA. The P300 component is a positive-going waveform 
recorded at centro-parietal sites occurring approximately 300–600 ms 
after stimulus onset (Yu et al., 2020), which has been found been 
associated with processing capacity, mental workload, and also thought 
to be related to cost-benefit evaluation and decision-making computa
tions (Gui et al., 2016; Kok, 2001). The lower GMD and shorter P300 
latency suggested that individuals with IGD made more intuitive de
cisions in response to feedback. Previous ERP studies have shown that 
individuals with IGD exhibited reduced P300 amplitudes during audi
tory information processing, compared to HCs (Park et al., 2016). Also, 
Zhou et al. (2022) investigated P300 effects in decision-making pro
cesses among individuals with IGD and recreational gaming users but 
did not find differences between the two groups. There are two possible 

explanations for this discrepancy. Firstly, our study compared neural 
responses between individuals with IGD and non-gaming users. Recre
ational gaming users share more similarity with IGDs in behaviors and 
brain compared to non-gaming users (Infanti et al., 2023). Secondly, our 
study specifically examined neural responses following loss feedback, 
not the neural response during decision making. 

Consistent with previous research, we found reduced activation in 
the PFC among individuals with IGD after feedback perception, a region 
known to play important roles in decision making (St. Onge and Flor
esco, 2009). Adopting risky decision-making paradigms and neuro
imaging tools, Dong and Potenza (2016) observed lower activations in 
the inferior frontal gyrus while Liu et al. (2017) found increased re
sponses in the ventral striatum among individuals with IGD when pre
sented with rewarding outcomes. Higher activation in the reward system 
may impair the executive control system (Goldstein and Volkow, 2011). 
Thus, the heightened neural response to feedback among individuals 
with IGD suggested an enhanced sensitivity to rewards and punish
ments, indicating dysregulation in the neural circuits involved in rein
forcement learning and decision-making processes (Zhang et al., 2020). 

Our study found that loss outcomes in decision-making have a sig
nificant impact on subsequent decision-making behaviors and elicit 
distinct neural responses, compared to win outcomes. The influence of 
feedback on decision-making patterns can be categorized into two 
distinct patterns: "cold" cognitive patterns and "hot" emotional responses 
(Zhou et al., 2022). The "cold" cognitive patterns are associated with the 
central executive network, which evaluates and optimizes 
decision-making strategies to maximize profit (Salehinejad et al., 2021). 
On the other hand, the feedbacks also trigger emotional and involuntary 
responses in the body, such as increased heart rate, visceral reactions, 

Fig. 5. EROs to feedback exhibited significant difference. A) EROs to lose feedback, contrasting to gain feedback of EROs in the HC groups; B) EROs to lose feedback, 
contrasting to gain feedback of EROs in the IGD group. 

Fig. 6. One-vs-one decoding results and neural template analysis (testing for the generalization of decoding across time). A-D). Paired wise decoding between the 
four conditions. Colored curves denoted the decoding accuracy averaged across participants [colored shaded areas: bootstrapped 95% confidence interval; light gray 
shaded areas: the period of significant decoding at the group level (p 〈 0.05 lasting for 〉 20 ms)]. 
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perspiration, relief, and regret emotions, which are mediated by the 
affective network (Weinstein and Lejoyeux, 2020). Our modeling data 
showed that considering the emotional rating from the previous trial 
improved the performance of the models, demonstrating that behaviors 
can be influenced by emotional responses. Loss outcomes tend to elicit 
stronger emotional responses, which may restrict the involvement of the 
central executive network (Hsu et al., 2005; Tom et al., 2007). Addi
tionally, we observed higher theta oscillations between win and loss 
feedback. This finding is consistent with previous studies indicating that 
theta oscillations are feedback-related signals and are commonly elicited 
by incorrect outcomes in these tasks (Wang et al., 2020). 

While our study sheds light on the relationship between risky deci
sion making, neural responses to feedback, and IGD, several limitations 
should be considered. Firstly, the sample size of IGD in our study was 

relatively small, which may limit the generalizability of the findings. 
Future research with larger and more diverse samples is necessary to 
validate and further explore these findings. Additionally, although we 
excluded patients diagnosed with psychiatric disorders such as anxiety 
and depression, we did not specifically measure the degree of anxiety 
and depression among the included participants. Thirdly, other basic 
cognitive functions, like inhibition control, might influence decision- 
making patterns. Future studies can explore the quantitative associa
tions between decision-making and other cognitive functions to provide 
a more comprehensive understanding of the cognitive and neural defi
cits in IGD. Lastly, we have restricted the gaming use in control group, 
while the daily gaming use might cause cognition and potential brain 
changes (He et al., 2021), it is valuable to explore the decision-making 
patterns and potential neural mechanism of recreational gaming users. 

Fig. 7. Brain activation difference in PFC between the IGD and HC groups. A). The activation difference after win feedback in the IGD group as compared to that of 
HCs; B) The activation difference after loss feedback in the IGD group compared to that of HCs; The color bar denoted the t value of contrast. 

Fig. 8. The correlations between demographic data and behavioral data (modeling data for both the IGD and HC groups).  
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This could be taken into consideration in future investigations. 

5. Conclusions 

In summary, our study uncovered that individuals with IGDs exhibit 
a significant propensity for risk-taking behaviors compared to HCs. This 
inclination is linked to dysregulated reward processing, poor impulse 
control, and inhibited inhibitory mechanisms. Neuroimaging results 
support these findings, showing a heightened sensitivity to rewards and 
a dearth of cognitive control in IGD. Our insights provide a foundation 
for future research and potential interventions in the domain of risky 
decision making among individuals with IGD. 
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