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A B S T R A C T

Insomnia is the second most prevalent psychiatric disorder worldwide, but the understanding of the patho-
physiology of insomnia remains fragmented. In this study, we calculated the connectome gradient in 50 chronic
insomnia disorder (CID) patients and 38 healthy controls (HC) to assess changes due to insomnia and utilized
these gradients in a connectome-based predictive modeling (CPM) to predict clinical symptoms associated with
insomnia. The results suggested that insomnia led to significant alterations in the functional gradients of some
brain areas. Specifically, the gradient scores in the middle frontal gyrus, superior anterior cingulate gyrus, and
right nucleus accumbens were significantly higher in the CID patients than in the HC group, whereas the scores in
the middle occipital gyrus, right fusiform gyrus, and right postcentral gyrus were significantly lower than in the
HC group. Further correlation analysis revealed that the right middle frontal gyrus is positively correlated with
the self-rating anxiety scale (r = 0.3702). Additionally, the prediction model built with functional gradients
could well predict the sleep quality (r = 0.5858), anxiety (r = 0.6150), and depression (r = 0.4022) levels of
insomnia patients. This offers an objective depiction of the clinical diagnosis of insomnia, yielding a beneficial
impact on the identification of effective biomarkers and the comprehension of insomnia.

1. Introduction

Insomnia is a common sleep disorder characterized by difficulty
falling asleep, maintaining sleep, or waking up too early in the morning,
often accompanied by significant daytime impairment. It affects millions
of individuals globally(Morin et al., 2015), with approximately half
experiencing a chronic form known as chronic insomnia disorder(CID)
(Buysse, 2013). The escalation in the pace and stress of life has led to a
continuous increase in insomnia prevalence. Research indicates that
insomnia is linked not only to physical health issues like compromised
immune system functioning and heightened cardiovascular disease risk,
but also strongly correlated with mental health problems, specifically

symptoms of depression and anxiety(Roth et al., 2006; Baglioni et al.,
2010; Sarsour et al., 2010; Buysse, 2013; Gebara et al., 2018). Apart
from difficulties in initiating and maintaining sleep(Sateia, 2014),
insomnia also detrimentally affects various aspects of the patients’ life
and work, causing daytime fatigue, reduced concentration, emotional
instability (Espie, 2002), and harm to physical and psychological well-
being. Despite extensive research on insomnia, there remains a limited
understanding of the neural mechanisms and intracerebral changes
associated with the condition.

Resting-state functional magnetic resonance imaging (rs-fMRI)
analysis has provided significant tools and methods for neuroscience
research(Dresler et al., 2014). Many previous studies have focused on
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functional connectivity abnormalities associated with CID(Tagliazucchi
and van Someren, 2017; Li et al., 2018a; Kim et al., 2021; Zou et al.,
2021; Guo et al., 2023; Zheng et al., 2023), and our team’s previous
studies based on resting-state functional connectivity have also reported
abnormal Coeruleus-Norepinephrine System functional connectivity in
patients with insomnia with anxiety(Gong et al., 2021), as well as
abnormal functional connectivity density in patients with depression
(Gong et al., 2020). Although there have been many relevant studies,
there is currently no consensus on the location and nature of the con-
nectivity changes. For example, Some studies have concluded that
functional connectivity is increased in patients with CID in the default
mode network (DMN)(Li et al., 2017; Ma et al., 2018; Santarnecchi et al.,
2018; Yan et al., 2018; Leerssen et al., 2019) and others have concluded
the opposite(Nie et al., 2015; Zhou et al., 2016; Pang et al., 2017; Li
et al., 2018b; Liu et al., 2018). This uncertainty may stem from various
factors, including differences in specific insomnia populations studied,
the equipment used for data acquisition, the level of participant coop-
eration during image acquisition, and the subsequent data analysis
methods. Conventional research methods often fall short of fully
capturing the impact of insomnia on brain function, necessitating the
exploration of new and more comprehensive research approaches.

The hierarchical arrangement of the human brain serves as a foun-
dational organizational framework, facilitating the encoding and inte-
gration of information across various cognitive processes, from sensory
perception to higher-order cognition(Mesulam, 1998; Huntenburg et al.,
2018). Both classical neuroanatomy and modern brain imaging tech-
niques have provided consistent evidence supporting the presence of
this hierarchical network architecture throughout neurodevelopment
(van den Heuvel et al., 2016; Burt et al., 2018; Demirtaş et al., 2019).
This architecture is believed to orchestrate the flow of sensory infor-
mation through multiple cortical relays, ultimately converging in
transmodal regions(Mesulam, 2012; Palomero-Gallagher and Zilles,
2019). Such a framework enhances the brain’s ability to integrate ab-
stract concepts, cognitive functions, and behavioral responses. There is
now robust evidence supporting the existence of a global gradient in
human cortical organization, extending from primary sensorimotor to
transmodal regions. This gradient is evident in various aspects,
including cortical morphology and gene expression(Margulies et al.,
2016; Burt et al., 2018; Huntenburg et al., 2018). A collection of gra-
dients captures intricate spatial relationships within connectivity pat-
terns and facilitates the depiction of continuous and smooth transitions
between functional networks. This approachmoves beyond representing
a single dimension or discrete parcellation, offering a more nuanced
understanding of the complex interplay within the brain’s functional
organization(Huntenburg et al., 2018). In addition to describing gradi-
ents in the cerebral cortex, there are also gradients in specific organi-
zations that are of interest, such as Song et al. investigated the
hierarchical structure of the angular gyrus and how it is modulated by
the underlying genetic architecture(Song et al., 2023). Wang et al. found
three main patterns of functional connectivity gradients between the
insula and different brain systems by studying the connectivity gradients
between the insula and different brain systems(Wang et al., 2023). Shen
et al. used the functional connectivity gradients to capture the different
dimensions of the cingulate gyrus’ hierarchical organization(Shen et al.,
2023). Moreover, specific alterations in gradients associated with
neurological and psychiatric disorders have been identified. For
example, altered functional gradients due to cognitive vulnerability in
depression(Wang et al., 2021) and the reduction in unimodal and
transmodal network separation observed in autism(Hong et al., 2019).
This approach offers a novel perspective, providing the potential for a
more comprehensive and in-depth understanding of the impact of
insomnia on brain function by studying the gradients of functional
connectivity in insomnia patients. It aims to uncover the underlying
mechanisms behind insomnia, paving the way for theoretical founda-
tions to develop more effective treatment methods in the future.

The aim of this study was to uncover alterations in the brain

associated with insomnia through gradient analysis. We will use diffu-
sion embedding methods to identify functional connectome gradient
from rs-fMRI(Vos de Wael et al., 2020) and reveal the reorganization of
functional connectome gradient due to insomnia through gradient
analysis. Furthermore, we attempted to build predictive models using a
combination of machine learning and gradient scores. Considering the
co-morbidity between insomnia and depression as well as anxiety(Roth
et al., 2006; Baglioni et al., 2010; Sarsour et al., 2010; Buysse, 2013;
Gebara et al., 2018), we attempted to build predictive models using
these gradient scores as input features to predict clinical symptoms such
as sleep quality, depression, and anxiety levels in insomnia patients
(Shen et al., 2017). We hypothesized that CID would lead to alterations
in the functional connectivity gradient, and that using the functional
connectivity gradient as features could predict some of the clinical
symptoms associated with insomnia.

2. Methods

2.1. Participants

In this study, 42 healthy controls (HC) and 62 subjects with chronic
insomnia disorder (CID) were included. CID subjects met diagnostic
criteria outlined in the International Classification of Sleep Disorders,
Third Edition(Sateia, 2014), with PSQI scores >7(Buysse et al., 1989;
Mollayeva et al., 2016), and were not on hypnotic medications, aged
18–65. HC had similar criteria but PSQI scores <6 and lacked sleep
complaints. Exclusion criteria included neuropsychiatric disorders,
chronic diseases, other sleep disorders, substance addiction, MRI con-
traindications, and cerebral lesions. Participants were recruited from
Chengdu Second People’s Hospital outpatients, underwent neuropsy-
chological tests and MRI scans, and provided informed consent
approved by the Institutional Review Board Ethics Committee (approval
number: 2020021).

2.2. Clinical symptom evaluation

1. Pittsburg Sleep Quality Index (PSQI)(Buysse et al., 1989): Developed
by Prof. Buysse and colleagues at the University of Pittsburgh, the
PSQI assesses sleep quality through 19 items across seven di-
mensions: subjective sleep quality, sleep latency, sleep duration,
sleep efficiency, sleep disturbances, use of sleep medications, and
daytime dysfunction. Higher scores indicate poorer sleep quality.

2. Self-rating depression scale (SDS)(Zung, 1965): Created by psy-
chologist Zung, the SDS measures depression levels with 20 items
assessing depressive symptoms experienced in the past week. Re-
spondents rate their feelings, and the total score determines
depression severity.

3. 3. Self-Rating Anxiety Scale(SAS)(Zung, 1971): Also developed by
Zung, the SAS evaluates anxiety levels through 20 items assessing
anxiety symptoms over the past week. Respondents choose answers
based on their feelings, and the total score indicates anxiety severity.

2.3. Image acquisition

Images in the dataset were acquired at the Chengdu Second People’s
Hospital using a GE 3.0-Tesla scanner (GE Healthcare Discovery
Pioneer, General Electric, Milwaukee, WI). In addition to the fs-MRI data
required for subsequent analysis, T2-FLAIR images of each participant
were acquired to detect clinically asymptomatic lesions. Structural im-
ages were acquired using a high-resolution scrambled-phase gradient
echo sequence with the following parameters: repetition time/echo time
(TR/TE) of 7.06/3.04 ms; flip angle (FA), 12◦; acquisition matrices, 256
× 256; field of view, 240 × 240 mm; thickness, 1.0 mm; gap, 0 mm,
number of slices, 192; and number of excitations, 1.0. An 8-min gradient
echo-planar imaging pulse sequence was used to obtain functional im-
ages with the following parameters: repetition time (TR), 2000 ms; echo
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time (TE), 30 ms; FA, 90◦; acquisition matrix 64 × 64; thickness, 3.5
mm; number of slices, 33; and number of time points, 240. All subjects
were asked to close their eyes, relax, and remain still during the scan-
ning process. After the scan, all subjects confirmed that they were awake
during the scan.

2.4. Image preprocessing

The tool used for pre-processing the image data was DPABI 6.0 (Data
Processing & Analysis of Brain Imaging; http://rfmri.org/dpabi),
implemented using MATLAB 9.0 software (TheMathWorks, Inc., Natick,
MA) (Yan et al., 2016). The rs-fMRI data preprocessing steps were as
follows:(1) removing the first 10 time points; (2) head motion correction
by realigning the first volume; (3) alignment to the EPI template,
resampling to 3 × 3 × 3 mm3, and smoothing with 6 mm half-height
wide Gaussian kernels; (4) Friston 24-parameter modeling of the head
motion, mean white, cerebrospinal fluid, and global signals included in
the nuisance regression; (5) filtering with a bandpass of 0.01–0.1 Hz; To
minimize the impact of head movement, participants with movements
exceeding 2 mm or 2◦ were excluded.

2.5. Functional connectome gradient analysis

Using the preprocessed rs-fMRI images, we calculated the whole-
brain functional connectivity gradient for each participant. Specif-
ically, first, we calculated the Pearson correlation coefficients of the time
series between voxels on the gray matter skeleton, i.e., we obtained the
functional connectivity matrix of the brain. This was then transformed
from nonlinear to linear using the Fisher z-transform with the following
equation:

z =
1
2
ln
(
1+ r
1 − r

)

(1)

with r representing the original Pearson correlation functional connec-
tivity matrix. Then operate on the Fisher z-transformed connectivity
matrix, sparing it so that only 10 % of the connectivity data is retained
and the rest is set to zero. And computed the cosine similarity matrix in
accordance with existing studies(Margulies et al., 2016). This matrix is
downscaled using the diffusion map embedding method to obtain mul-
tiple components that are representative of functional organizational
properties. This algorithm introduces a new operator Pα which is defined
as follows:

Pα = D− 1
α Wα (2)

WhereWα is established by normalizing the affinity matrix based on
diffusion parameters. Dαis the degree matrix derived from Wα. α is the
anisotropic diffusion parameter used by the diffusion operator, this
parameter controls the effect of the density of the sampling point on the
flow shape. Taking values in the range 0 to 1. We set α to 0.5 with
reference to previous studies(Hong et al., 2019; Vos de Wael et al.,
2020), it approximates the Fokker-Planck diffusion.

The principal component resulting from this analysis captures the
main axis of macroscale functional organization of the cerebral cortex,
and additional orthogonal components capture additional functional
organizational properties(Margulies et al., 2016; Bethlehem et al.,
2020).

To ensure that gradients were mapped consistently across in-
dividuals, we used the Procrustes rotation method to align each in-
dividual’s original gradient distribution pattern to a group-level
template. Specifically, we first constructed a group-level gradient tem-
plate using the average functional connectivity matrix obtained for all
patients and normal controls computationally and then aligned each
subject’s gradient to this template. Finally, we ranked the gradients
identified in the aligned gradient distribution templates in descending
order based on the average connection variance in the functional

connectome occupied by each gradient. The gradient computation and
gradient alignment processes described above, were completed using
Brainspace, a data analysis platform(https://github.com/mica-mni/b
rainspace).

Since the main and second gradients explained most of the variance
in the data(Bethlehem et al., 2020; Margulies et al., 2016), in this study,
the first two gradients were compared between the two groups of sub-
jects, and a two-sample t-test was used to identify between-group dif-
ferences in the first two gradients between CID and HC by using age,
gender, and years of education as covariates. Multiple comparisons were
also corrected for multiple comparisons using the false discovery rate
(FDR) method, with the significance level set at p < 0.05. Correlation
analyses were subsequently conducted to explore whether the functional
gradient difference area was associated with insomnia and its comorbid
mental symptoms.

2.6. Prediction analyses

The flow of prediction is shown in Fig. 1, an connectome-based
predictive modeling (CPM) model was trained to predict Clinical
Symptoms of Insomnia Patients based on functional connectivity gra-
dients for each subject(Shen et al., 2017; Cui and Gong, 2018), The
relevance vector regression (RVR) code used is based on Cui et al. The
source code can be found at the following link (https://github.com/
ZaixuCui/Pattern_Regression_Clean/tree/master/RVR). Specifically,
we performed the following analyses:

1. Save the principal components of each subject’s functional gradient,
calculate their Pearson correlation with PSQI scores, and extract
columns corresponding to features with a significance level
(p < 0.05) based on ascending order of p-values.

2. To avoid over-fitting issues in training set, a 10-fold cross validation
was performed: the dataset was randomly divided into 10 subsets,
with one subset used for training and the remaining as the test set.
This procedure was repeated ten times to obtain predicted PSQI
scores for all participants. The correlation between actual and pre-
dicted scores was calculated to assess predictive performance. To
determine the significance of the predictive model, 5000 permuta-
tion tests were performed, disrupting all PSQI scores across all par-
ticipants and obtaining the distribution of permutation correlations
between actual and predicted scores.

3. To compute the contributions of each network in the prediction
process, the extracted features were mapped to eight networks,
including visual network (VIS), motor network (MOT), dordal
attention network (DAN), ventral attention network(VAN), limbic
network (LMB), frontoparietal network (FPN), DMN, and a cere-
bellar network (CR)(Yeo et al., 2011). The sum of feature weights in
each network was calculated to determine their contributions.

4. To further evaluate whether the Individual gradients of functional
connectivity could predict depression and anxiety severity in sub-
jects, the same procedures as predicting PSQI scores were performed
to predict the SDS and SAS scores.

5. To test the robustness of the RVR model based on functional con-
nectome gradient, the data were randomly split into training and test
sets in proportions of 1:1, 2:1, 3:1, and 4:1, and the predictive model
was trained and tested iteratively.

3. Results

3.1. Demographic and clinical features

After image preprocessing, 12 CID and 4 HC were excluded for head
movements of >2 mm or 2◦. As shown in Table 1, There were no sig-
nificant differences in age, gender, and education level between the
remaining 50 participants with CID and the 38 HC participants. The
mean duration of the disease in the CID group was 7.42 years. The CID
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group scored higher than the HC group in terms of sleep, anxiety, and
depression, which implies poorer quality of sleep, and more severe
depression and anxiety.

3.2. Functional connectome gradient results.

Using the diffusion map embedding method, we obtained functional
gradient scores for all subjects, which represent the spatial similarity of
functional connectivity. We focused on the first two gradients with the
highest variance in the representation. The two-sample T results cor-
rected for FDR showed that the main gradient distribution was found to
be abnormal between the two groups, and the second gradient showed
no between-group differences. The differences between the two groups
for the main functional gradient are shown in Fig. 2, Specific areas of
significant difference are shown in Table 2. The gradient scores in the
middle frontal gyrus, superior anterior cingulate gyrus, and right nu-
cleus accumbens were significantly higher in the CID patients than in the
HC group, whereas the scores in the middle occipital gyrus, right fusi-
form gyrus, and right postcentral gyrus were significantly lower than in
the HC group.

Correlation analyses were used to explore whether there was an as-
sociation between gradient difference regions and insomnia-related
scale scores, and the results showed that Frontal_Mid_2_R was posi-
tively correlated with SAS scores (r = 0.3702, p = 0.0081)(Fig. 3), no
significant correlation was observed in other regions.

3.3. Functional connectome gradient predicts clinical symptoms

Based on the functional connectivity, a functional connectome
gradient was calculated for each subject, which represents the spatial
similarity of functional connectivity. The main gradient was used to
predict the clinical presentation of the patients, and the predictions are
shown in Fig. 4, the small plot in the bottom right corner shows the
distribution of the permutated correlations between actual and pre-
dicted scores, based on 5000 permutation tests. The position of the real
correlation coefficient before permutation in the distribution was
recorded. The permutation p value was defined as the [1-(location/
5000)]. The smaller the permutation p value, the more significant the
difference between the observed data and the hypothesis model. Using
permutation p <0.05 as a threshold for significance, less than the level of
significance indicates that the observed differences are not due to
random factors. It was found that a gradient calculated based on func-
tional connectivity successfully predicted PSQI scores

(
r =

0.5858; p = 7.8477× 10− 6;MAE,1.9013; permutation p = 2.0× 10− 4),
SDS scores (r = 0.4022; p = 0.0034;MAE, 8.1195; permutation
p = 0.007), SAS scores

(
r = 0.6150; p = 2.0632× 10− 6;MAE, 9.3949;

permutation p = 0.001). Table 3 presents the prediction outcomes
assessed using R2, adjusted R2, RMSE, and MAE. The projections on the
brain of the features that contributed to the creation of the predictive
model are shown in Fig. 5. The top ten features that contribute most to
predicting PSQI scores belong to the DAN and FPN. The top ten features
that contribute most to predicting the SDS score belong to VAN, VIS,
FPN, DAN and DMN. The top ten features contributing most to the
predicted SAS score belong to FPN and VIS networks. in order to test the
robustness of the model, we randomly divided the data into training and

Fig. 1. Schematic representation of methodology.

Table 1
Demographic and behavioral characteristics of participants.

Variables CID(n = 50) HC(n = 38) p-Value

Age(years) 34.52 ± 11.22 35.11 ± 8.82 0.877
Gender(male/female) 20/30 9/29 0.107a

Education(years) 15.59 ± 2.47 14.71 ± 3.7 0.146
Duration(years) 7.42 ± 6.45 – –
PSQI 13.02 ± 3.19 3.39 ± 1.65 <0.001
SDS 50.24 ± 11.43 38.49 ± 10.5 <0.001
SAS 48.14 ± 12.04 34.7 ± 8.31 <0.001

Abbreviations: CID, chronic insomnia disorder; HC, health control; PSQI, Pitts-
burgh Sleep Quality Index; SAS, Zung’s Self-Rating Anxiety Scale; SDS, Zung’s
self-Rating Depression Scale.

a The p value was obtained by chi-square test; other p values were obtained by
a two-way t-test.

J. Wu et al.
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test sets in the ratio of 1:1, 2:1, 3:1 and 4:1. repeated training and testing
of the predictive model, which still successfully predicted the scores of
each scale (for details, please see Fig. S1-S4 in Supporting Information).

4. Discussion

Combined functional connectome gradient with multivariate pattern
analysis techniques, we were able to further explore the effects of
insomnia disorders on cognitive and functional processes in the brain. In
the current study, we investigated abnormalities within the primary
functional gradients among individuals with CID and HC, aiming to
uncover potential biomarkers based on functional gradients for pre-
dicting clinical scale scores in insomnia patients. This exploration aimed

Fig. 2. Between-group differences in the spatial distribution of functional gradients (pcorrected < 0.05).Top Left: ACC_sup_L, Top Middle: ACC_sup_R, Top Right:
Frontal_Mid_2_L,Middle Left: Frontal_Mid_2_R, Middle: Fusiform_R, Middle Right: N_Acc_R, Bottom Left: Occipttal_Mid_L, Bottom Middle: Occipttal_Mid_R,Bottom
Right: Postcentral_R.

Table 2
Functional gradient score differences between CID and HC groups.

AAL3 atlas Region MNI Coordinates t
values

Cluster
size
(voxels)x y z

CID > HC

Frontal_Mid_2_R Right, Middle
frontal gyrus

39 54 12 − 3.74 34

Frontal_Mid_2_L
Left, Middle
frontal gyrus − 39 48 12 − 3.75 28

ACC_sup_R

Right,
Anterior
cingulate
cortex

6 30 15 − 4.10 26

ACC_sup_L
Left, Anterior
cingulate
cortex

− 6 33 24 − 4.69 24

N_Acc_R
Right, Nucleus
Accumbens 15 12 − 9 − 4.54 20

CID < HC

Occipital_Mid_L
Left, Middle
occipital
gyrus

− 48 − 75 6 4.67 210

Occipital_Mid_R
Right, Middle
occipital
gyrus

45 − 78 15 5.22 134

Fusiform_R
Right,
Fusiform
gyrus

27 − 66 − 15 3.86 39

Postcentral_R
Right,
Postcentral
gyrus

48 − 21 60 3.87 23

Fig. 3. Correlation analysis between Frontal_Mid_2_R gradient score and Self-
Rating Anxiety Scale (SAS)scale.

J. Wu et al.
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to illuminate potential alterations in brain organization linked to
chronic sleep disturbances. The findings indicated that insomnia
precipitated significant alterations in the functional gradients of certain
brain regions. Specifically, gradient scores in the middle frontal gyrus,
superior anterior cingulate gyrus, and right nucleus accumbens were
markedly higher in CID patients compared to the HC group. Conversely,
scores in the middle occipital gyrus, right fusiform gyrus, and right
postcentral gyrus were notably lower in the CID group than in the HC
group. Moreover, predictive models based on connectivity gradients
demonstrated efficacy in forecasting sleep scores in insomnia patients,
along with scale scores related to insomnia, such as depression and
anxiety. These results suggested that abnormalities in functional con-
nectivity gradient networks may represent one of the neuropathological
mechanisms underlying abnormal brain function in patients with CID.
Characteristics of brain functional gradients could potentially serve as

objective biomarkers for assessing clinical symptoms in insomnia
patients.

4.1. Reorganization of functional connectome gradients in CID

Our findings revealed significant differences in gradient scores be-
tween CID patients and the HC group across several key brain regions.
Specifically, CID patients exhibited higher gradient scores in the middle
frontal gyrus, right nucleus accumbens, and superior anterior cingulate
gyrus, indicative of altered cortical connectivity and integration pro-
cesses. In a previous study, Kajimura et al. (1999) proposed three types
of inactivation in non-rapid eye movement sleep, in which the middle
frontal gyrus is inactivated throughout, independent of sleep stage
(Kajimura et al., 1999). The activity of the frontal middle gyrus during
sleep may be related to the processing of sensory information and body
movements, and the activity of the frontal middle gyrus may be
diminished by the weakening of the brain’s response to external stimuli
during sleep, which contributes to the brain’s entry into a state of rest
and recovery(Dang-Vu et al., 2010). Previous studies on insomnia dis-
orders have found that the neuronal assemblage of the nucleus accum-
bens, as well as the integrity of the anterior cingulate cortex, are key to
the mechanisms of co-morbidity between insomnia disorders and
persistent pain(Sardi et al., 2024). In addition to serving as an important
nucleus for behavioral regulation of reward, motivation, and learning,
the nucleus accumbens is also involved in mediating sleep-wakefulness

Fig. 4. Predictive Analysis of Various Scale Scores Utilizing Functional Connectome Gradient Values. Sub-figures (a)-(c) illustrate the predictive outcomes for the
Pittsburgh Sleep Quality Index (PSQI), the Self-Rating Depression Scale (SDS), and the Self-Rating Anxiety Scale (SAS), respectively.

Table 3
Assessment of predictive outcomes of clinical scales.

CIDQ R2 Adjust-R2 RMSE MAE

PSQI 0.3438 0.3301 2.4071 1.9013
SDS 0.1617 0.1443 10.3440 8.1195
SAS 0.3782 0.3653 7.2623 9.3949

Abbreviations: CIDQ, chronic insomnia disorder questionnaire; RMSE, root
mean square error; MAE, mean absolute error.

Fig. 5. Projections on the brain of features that contribute to predictive modeling, Sub-figures (a)-(c) delineate the respective feature contributions in predicting
scores for the Pittsburgh Sleep Quality Index (PSQI), Self-Rating Depression Scale (SDS), and Self-Rating Anxiety Scale (SAS).

J. Wu et al.
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cycles and pain behaviors through the preoptic area and the ventral
tegmental area(Sun et al., 2023). The anterior cingulate cortex is
involved in a variety of higher-order brain functions such as attention
allocation(Pardo et al., 1990), emotion(Jackson et al., 2006),
reward-based decision making(Bush et al., 2002). The activation of
cortical astrocytes within it is thought to play a key role in neuropathic
pain and may have a significant impact on sleep disorders in patients
(Yamashita et al., 2014). A previous study using PET-CT demonstrated
higher glucose metabolism in the anterior cingulate gyrus at sleep onset
in patients with insomnia disorder compared to HC(Nofzinger et al.,
2004). Analysis of functional connectivity suggests that increased con-
nectivity in the anterior cingulate cortex is associated with sleep quality
(Cheng et al., 2018; Guo et al., 2023). We hypothesized that increased
gradient scores in the anterior cingulate gyrus are associated with high
arousal emotional activity in patients with insomnia disorder.

Conversely, lower gradient scores were observed in the middle oc-
cipital gyrus, right fusiform gyrus, and right postcentral gyrus in CID
patients, suggesting potential disruptions in sensory processing and
motor integration. The fusiform gyrus showed strong positive correla-
tions with sleep quality(Dai et al., 2014), it is associated with visual
tasks such as face recognition and object recognition. During sleep, ac-
tivity in the fusiform gyrus may be associated with visual experiences
and dreams (Siclari et al. 2017). The postcentral gyrus is responsible for
processing and interpreting bodily sensory information and activity may
be diminished during sleep, and this diminution may contribute to
reduced perception of external stimuli, Chen et al. found a significant
increase in regional homogeneity in the right postcentral gyrus after
sleep deprivation at the neural level(Chen et al., 2023). The abnormal
activation of the occipital gyrus observed in patients with insomnia
disorder is consistent with the heightened arousal theory, which may be
driven by hyperactivity in the patient’s visual brain regions (Nofzinger
et al., 2004). The occipital lobe is a visual cortical center, and increased
connectivity within visual and other sensory regions may contribute to
ongoing sensory processing of environmental stimuli, ultimately
impeding the ability to initiate or maintain sleep.

The synergistic action of different tissues in the brain is essential for
maintaining basic body perception and for keeping sleep relatively
stable. However, insomnia may lead to imbalances in brain function,
which may be reflected in functional connectome gradients. Our study
revealed spatial variations in brain functional connectivity in patients
with insomnia by comparing functional connectome gradients in CID
and HC. This finding is supported to some extent by previous studies and
further emphasizes the potential impact of insomnia on brain function.

4.2. Correlation of gradient differences and scale scores

The results of the current study show that after correction for mul-
tiple comparisons, there were still changes in gradients in several brain
regions. However, after correlation analysis with scale scores, we found
that only one region, Frontal_Mid_2_R, was positively correlated with
anxiety symptoms, whereas the other regions appeared to be unrelated
to insomnia and co-morbid symptom scales. Such results deserve further
discussion and interpretation.

First, one must note that gradient analysis and scale scores are two
different assessment methods, and certain brain regions show changes in
gradient analysis but not correlations in scale scores, possibly because
scale scores do not fully reflect the complexity of brain function(Buckner
et al., 2008; Biswal et al., 2010; Margulies et al., 2016). Second, gradient
changes may affect other brain regions or the nervous system, thus
indirectly affecting patients with insomnia rather than directly corre-
lating with clinical symptoms(Bullmore and Sporns, 2009; Kelly et al.,
2012; Medaglia, 2017). Such indirect effects may need to be validated
by further functional connectivity analyses. Finally, we also need to
consider the effects of sample size and statistical effects(Ioannidis, 2005;
Poldrack et al., 2017). It is possible that correlations between other
gradient changes and anxiety symptoms were not detected due to small

sample size or insufficient statistical validity.
In conclusion, this result reflects the complex relationship between

brain structure and function, and further research is needed to deepen
the understanding. It also emphasizes the importance of integrating
multiple factors in neuroscience research to better explain and under-
stand insomnia symptoms.

4.3. Functional connectome gradients may help predict clinical symptoms
in patients with CID

The difference in gradients between the CID and HC groups may
indicate that the gradient axis captures insomnia-induced functional
changes. Insights emerging from mapping intrinsic brain connectivity
networks provide a potentially mechanistic framework for an under-
standing of aspects of human behavior(Mo et al., 2024; Zhang et al.,
2024). In the modeling process, different networks contributed differ-
ently in different prediction processes. FPN, as the core network of the
triple network model, is responsible for performing extroverted tasks
such as control(Cheng, 2022b; Marek and Dosenbach, 2018; Wang et al.,
2018) and attention allocation (Liu et al., 2022), and has major contri-
butions in the prediction process of all three scale scores. DAN, a core
functional network in the brain, plays an important role in perceptual
tasks, especially in tasks that require attentional shifting and spatial
orienting tasks(Corbetta and Shulman, 2002), and the stabilization and
concentration of attention are closely related to mood states and sleep
quality. Depressed patients often have difficulty concentrating, and
decreased sleep quality may lead to diminished attention and cognitive
functioning. Therefore, the activity level of the DAN may reflect an in-
dividual’s cognitive state and emotional stability, thus playing an
important role in the prediction of depression and sleep quality. VIS,
which contributes greatly to the prediction process of anxiety and
depression, is one of the core networks in the brain responsible for visual
information processing, which involves visual functions such as visual
perception, visuospatial analysis, and target recognition (Kitada et al.,
2010). The DMN and the VAN are predominantly involved in the pre-
diction process of SDS, with the DMN being involved in mainly
inward-oriented activities, such as introspection, self-assessment, and
memorization (Perkins et al., 2015; Cheng et al., 2022a; Pang et al.,
2022). The VAN is mainly involved in attentional orientation and
emotional processing in the external environment and is closely related
to an individual’s affective response to external stimuli and emotion
regulation(Vossel et al., 2014). Gradient characterization is based on the
static functional connectivity of the brain, the main gradient, although
not representative of all the variance in the data, performed well in
predicting scale scores. Perhaps it’s because certain features of partic-
ular gradient axes may be informative for brain changes in patients with
insomnia. Our results suggest that the treatment of patients with
insomnia only or insomnia with depression or anxiety should be
considered separately, given the different neurobiological effects of
different insomnia co-morbidities.

4.4. Limitations

Several limitations should be noted in this study. The small sample
size may have missed other brain function gradient changes and their
correlations with clinical symptoms in insomnia patients. Although we
used robust validation techniques like ten-fold cross-validation and
5000 permutation tests, we did not use an external dataset for valida-
tion. External validation is crucial for assessing a model’s generaliz-
ability and real-world applicability. Without it, we cannot conclusively
determine the model’s performance on new data.

Future research will expand its scope by incorporating larger and
more diverse datasets. And conduct more detailed gradient analyses of
CID, focusing specifically on changes in gradients such as those in the
cingulate gyrus(Shen et al., 2023) and insula(Wang et al., 2023).

J. Wu et al.
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5. Conclusion

This study established a link between functional connectivity
gradient and insomnia, demonstrating that insomnia disrupts functional
connectome gradients. Combining these gradients with machine
learning effectively predicted clinical symptoms’ severity, such as sleep
quality, anxiety, and depression. This suggests functional gradient are
related to insomnia’s underlying mechanisms and its mental comor-
bidities. By not relying on behavioral data or direct sleep observation,
this method offers a unique opportunity for individual-level clinical
prediction. It provides researchers and clinicians with a comprehensive
view of a person’s condition and could potentially integrate with ge-
nomics, polysomnography, and other methods to develop comprehen-
sive biomarkers, aiding in more precise treatment and intervention
strategies.
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