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Abstract: This paper addresses the problem of estimating non measured quantities in rigid
body motion control applications resorting to Kalman filter theory. These quantities include the
linear velocity of the rigid body, and external force and torque disturbances applied to its center
of mass. The set of sensor measurements (pose and angular velocity readings) is noise-filtered
as well. The overall framework consists of a linear time-varying system, shown to be uniformly
completely observable, and an exponentially stable nonlinear controller. Simulation results are
presented to validate and showcase the attainable performance of the proposed methodology.

Keywords: Rigid body motion control, Kalman filter, Observability, Exogenous disturbances

1. INTRODUCTION

The celebrated Kalman filter (KF) remains as arguably
one of the most important tools for state estimation and
for measurement noise filtering since its inception Kalman
(1960). Indeed, for the past six decades, the KF and its
variants have found applications across virtually all fields
of science, as extensively reported in Urrea and Agramonte
(2021), where it is emphasized that the main advantages of
the KF and its variants are their simplicity and capability
to provide accurate estimations and prediction results. In
the 1980s, the KF was already recognized as a fundamental
tool for aerospace systems Schmidt (1981); Shuster (1989),
where attitude filtering and estimation is a critical mission
aspect. Interestingly, despite its long-established history,
researchers continue to improve on KF-based method-
ologies, and to develop new applications. Among a vast
literature, we find in Markley and Sedlak (2008) a seven-
parameter angular-momentum-based representation that
is shown to be advantageous for attitude estimation of
spinning spacecraft, while the work in Aravkin et al. (2017)
presents a tutorial on convex optimization techniques ap-
plied to state estimation using KF. More recently, the work
in Vouch et al. (2024) proposes a customized trajectory-
aware extended KF architecture to overcome issues of
reduced GNSS signal availability and poor geometry by
leveraging external aiding data.

We note that state estimation in general, and estimation
of unknown quantities in particular, is not only motivated
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by the lack of sensors that can directly measure state vari-
ables, but also by sensor inaccuracies in the control feed-
back loop, e.g., bias offsets, installation misalignment, and
ongoing changes in accuracy characteristics of measuring
instruments that are not known in advance Afonin et al.
(2020). Besides, filtering of sensor noise is also critical for
an accurate and smooth performance of robust controllers.
Within the scope of KF theory, linear-quadratic-Gaussian
(LQG) controllers have been a staple of optimal control
theory regarding linear systems driven by Gaussian noise,
and, to some extent, nonlinear systems with near-linear
characteristics. LQG controllers may have less popularity
in aircraft/spacecraft applications, but the literature still
offers many contributions to choose from. For instance, an
LQG robust controller is described in Chrif and Kadda
(2014) for the lateral and longitudinal flight dynamics of
an aircraft control system, and in Zarei et al. (2007) two
robust controllers are designed and compared for a vertical
short take-off and landing aircraft system.

LQG controllers are simple to implement and offer a rea-
sonable performance, although they are generally not ro-
bust when the model itself or its parameters contain some
degree of uncertainty. Moreover, to accommodate extra
features like integral action and disturbance rejection, the
system plant must be augmented by taking into account a
model of the disturbance. In robotics, researchers often re-
sort to active disturbance rejection control (ADRC) tech-
niques to deal with the presence of (internal and external)
perturbations. A comprehensive review on the application
of ADRC approaches is presented in Fareh et al. (2021).

The regular KF is often seen as a tool exclusive to linear
systems. Because of that, its variations have drawn a lot
of attention in tackling highly nonlinear problems based
on specific topological constructions. For instance, Man-
giacapra et al. (2022) proposes an integrated stochastic



estimation and tracking control on Lie groups and their
tangent bundles in a precise, asymptotically stable navi-
gation and control system that considers the orbit-attitude
coupling in the presence of stochasticity. Similarly, the
seminal work in Barrau and Bonnabel (2017) analyzes the
convergence aspects of the invariant extended KF when it
is used as a deterministic nonlinear observer on Lie groups.

In this paper, we show that despite the inherent nonlin-
earity associated with the equations describing the general
motion of a rigid body, it is possible, in most practical sce-
narios, to use a linear KF, with no linearization involved,
to obtain estimates of non measured quantities, specifically
linear velocity and exogenous perturbations affecting the
linear and angular dynamics, as well as to obtain noise-
filtered measurements from the available sensors. Our KF
is then combined with a nonlinear controller to demon-
strate a robust and accurate pose tracking performance in
the context of navigation of spacecraft/aircraft systems.

1.1 Notation

The set of real numbers is denoted by R. The n-
dimensional Euclidean space is denoted by Rn. The symbol
0m×n (resp. 0m) denotes an m× n (resp. m×m) matrix
of zeros and Im an m × m identity matrix. The super-
script (•)T denotes the transpose operator. The set of unit
vectors on R3 is denoted by S2. The special orthogonal
group of order three is denoted by SO(3) := {M ∈ R3×3 :
MMT = MTM = I3 , det(M) = +1}. We define (the
skew-symmetric operator) S(•) such that a × b = S(a)b,
for a,b ∈ R3. The inverse map associated with S(•) is
denoted by vex, e.g., vex(S(a)) = a. For M ∈ Rm×n,
we let vec(M) return an mn-dimensional column vector
obtained by stacking the columns of M. For x ∈ Rn, the

Euclidean norm is given by ∥x∥ :=
√
xTx. The Kronecker

product is denoted by ⊗. The multiple-input operator
blkdiag(•, •, . . . , •) returns a block diagonal matrix, with
input matrices aligned along the main diagonal.

2. EQUATIONS OF MOTION FOR A RIGID-BODY

Consider two reference frames: a fixed inertial one, denoted
by I; and a body-fixed one, denoted by B, whose origin is
located at the center of mass of the rigid body. We define
the rotation matrix from B to I asR ∈ SO(3). The angular
kinematics of the rigid body follows, for all t ≥ t0 ≥ 0, as

Ṙ(t) = R(t)S(Ω(t)), R(t0) ∈ SO(3), (1)

where Ω ∈ R3 represents the angular velocity of B with
respect to I, expressed in B. Let p ∈ R3 and v ∈ R3

denote the inertial position and velocity, respectively, of
a rigid-body. With (1) standing for the angular kinetics
of the rigid-body, the linear counterpart is given, for all
t ≥ t0, by ṗ(t) = v(t), with initial condition p(t0) ∈ R3.

The kinetics of a rigid-body undergoing translational and
rotational motion are typically written, for all t ≥ t0, as

v̇(t) = R(t)f(t) + bv, v(t0) ∈ R3,

JΩ̇(t)=−S(Ω(t))JΩ(t)+τ (t)+bτ , Ω(t0) ∈ R3,

(2a)

(2b)

where f ∈ R3, expressed in B, is a vector comprised of
known forces applied to the rigid body’s center of mass,
bv ∈ R3, expressed in I, represents unknown constant

external forces, J ∈ R3×3 is the rigid body inertia matrix,
τ ∈ R3, expressed in B, is a vector comprised of known
torques applied to the rigid body’s center of mass, and,
finally, bτ ∈ R3 represents unknown constant external
torques acting on the center of mass of the rigid-body.

Assumption 1. The system input (comprising force f(t)
and torque τ (t)) is uniformly bounded for all t ≥ t0.

2.1 Problem Statement

Our goal in this work is threefold: i) to obtain estimates of
v, bv and bτ ; ii) to obtain noise-filtered measurements of
pose (p and R) and angular velocity Ω; and iii) to achieve
pose tracking based on desired reference curves pd ∈ R3

and Rd ∈ SO(3), such that Ṙd(t) = Rd(t)S(Ωd(t)) for all
t ≥ t0, with Rd(t0) ∈ SO(3), and where Ωd(t) ∈ R3.

3. LTV SYSTEM DESIGN

Consider the following rotation matrix decomposition:

R(t)T = [r1(t) r2(t) r3(t)] , (3)

where r1, r2, r3 ∈ S2 are orthonormal vectors correspond-
ing to the rows of R. Using (3), we proceed by defining

χ(t) := vec(R(t)T) =
[
rT1 (t) rT2 (t) rT3 (t)

]T ∈ R9, (4)

such that, according to (1) we have

χ̇(t) = − (I3 ⊗ S(Ω(t)))χ(t), χ(t0) := vec(R(t0)). (5)

Let us now define a system state vector x ∈ R24 as

x(t) :=
[
p(t)T v(t)T bT

v χ(t)T ω(t)T bT
τ

]T
. (6)

where, for simplicity of notation, we have defined ω(t) :=
JΩ(t) ∈ R3. According to (1), (2) and (6), we are able to
synthesize an LTV system (in a noise-free setting) as{

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = Cx(t),

(7a)

(7b)

where A(t) ∈ R24×24 is defined as

A(t) := blkdiag(Ap,Aχ(t),Aω(t)), (8)

with

Ap :=

[
0 1 0
0 0 1
0 0 0

]
⊗ I3 ∈ R9×9, (9)

Aχ(t) := −I3 ⊗ S(Ω(t)) ∈ R9×9 (10)

and

Aω(t) :=

[
−S(Ω(t)) I3

03 03

]
∈ R6×6, (11)

where B(t) ∈ R24×6 is the input matrix defined as

B(t) :=


03 03

R(t) 03

03 03

09×3 09×3

03 I3
03 03



}
Bp(t) ∈ R9×6

}Bχ ∈ R9×6}
Bω ∈ R6×6

, (12)

u(t) :=
[
f(t)T τ (t)T

]T ∈ R6, (13)

C := blkdiag(Cp,Cχ,Cω) ∈ R15×24, (14)

where Cp := [I3 03 03] ∈ R3×9, Cχ := I9 and Cω :=[
J−1 03

]
∈ R3×6, and, finally, where

y(t) :=
[
p(t)T χ(t)T Ω(t)T

]T ∈ R15. (15)



3.1 Observability Analysis

The observability of the LTV system (7) is examined here.
We begin by noticing that, on account of the structures of
A(t) and C given in (8) and (14), respectively, the system
(7) actually comprises three uncoupled linear sub-systems
whose observability we could analyze separately.

Definition 2. (Brockett (2015)). A transformation z(t) :=
T(t)x(t) is a Lyapunov transformation if, for all t ≥ t0:

(i) T(t) has a continuous derivative.
(ii) T(t) and its derivative are bounded for all t ≥ t0.
(iii) there exists c > 0 such that c ≤ |det(T(t))|.

Let us consider the following Lyapunov transformation:

z(t) := blkdiag(I3, I3, I3, I3 ⊗R(t),R(t), I3)︸ ︷︷ ︸
T(t)∈R24×24

x(t). (16)

The resulting transformed LTV system can be written as{
ż(t) = A(t)z(t)+blkdiag(I18,R(t), I3)B(t)u(t),

y(t) = C(t)z(t),
where A(t) ∈ R9×9 is given by

A(t) := blkdiag

(
Ap,09,

[
03 R(t)
03 03

])
, (18)

and where C(t) ∈ R15×24 is given by

C(t) := blkdiag
(
[I3 03×6] , I3 ⊗R(t)T,

[
J−1R(t)T 03

])
.

(19)
The transformation suggested in (16) not only renders the
subsystem concerning the evolution of χ time-invariant,
but also renders the new state transition matrix associated
with (11) a nilpotent matrix of degree 2. Moreover, since
Lyapunov transformations preserve stability properties,
any property derived in the sequel for the transformed
system (17) also applies to the original LTV system (7).

The transition matrices associated with (9), (10) and
(11), following the Lyapunov transformation in (16), are
computed via the Peano-Baker series, and denoted here by
Φp(t, t0) ∈ R9×9, Φχ(t, t0) ∈ R9×9 and Φω(t, t0) ∈ R6×6,
respectively. According to (18), they follow as

Φp(t, t0) =

1 t− t0 (t− t0)
2/2

0 1 t− t0
0 0 1

⊗ I3, (20)

Φχ(t, t0) = I9, and (21)

Φω(t, t0) =

I3 ∫ t

t0

R(σ)dσ

03 I3

 . (22)

The results in (20), (21) and (22) are easily verified by re-

calling properties of transition matrices, namely Φ̇(t, t0) =
A(t)Φ(t, t0) and Φ(t0, t0) = I24, with Φ(t, t0) :=
blkdiag(Φp(t, t0),Φχ(t, t0),Φω(t, t0))∈R24×24.

The observability Gramian associated with (A(t),C(t)),
denoted here by W(t0, tf ) ∈ R24×24, is defined as

W(t0, tf ) :=

∫ tf

t0

Φ(t, t0)
TC(t)TC(t)Φ(t, t0)dt. (23)

Definition 3. Jazwinski (1970) Given positive constants
α1, α2 and β, the continuous-time LTV system (17) is
uniformly completely observable (u.c.o.) if and only if

α1I24 ≺ W(t, t+ β) ≺ α2I24, ∀t ≥ t0. (24)

Proposition 4. (Batista et al. (2011)). Let g(τ) : [t, t +
β] ⊂ R → R3 be a continuous and i-times continuously
differentiable function on ϕ := [t, t + β], where β > 0,
and such that g(t) = dg(t)/dt = . . . = di−1g(t)/dti−1 =
0. Further assume that there exists C > 0 such that
∥di+1g(τ)/dτ i+1∥ ≤ C for all τ ∈ ϕ. If there exist ρ > 0
and τ1 ∈ ϕ such that ∥dig(t)/dti|t=τ1∥ ≥ ρ, then there
exist 0 < τ2 ≤ β and θ > 0 such that ∥g(t+ τ2)∥ ≥ θ.

Theorem 5. The continuous-time LTV system (17) is uni-
formly completely observable on ϕ := [t, t+ β], for β > 0.

Proof. Based on (24), by setting t0 = t and t = t + β in
(23), we obtain the following result:

W(t, t+ β) =

∫ t+β

t

Φ(σ, t)TC(t)TC(t)Φ(σ, t)dσ

= blkdiag(Wp(β)︸ ︷︷ ︸
∈R9×9

,Wχ(β)︸ ︷︷ ︸
∈R9×9

,Wω(t, t+ β)︸ ︷︷ ︸
∈R6×6

),

(25)
where, according to (19), (20) and (21) we have obtained

Wp(β) := β[1 β
2

β2

6 ; β
2

β2

3
β3

8 ; β2

6
β3

8
β4

20 ]⊗I3 andWχ(β) :=

βI9. Next, let us define a constant vector d := [dT
1 dT

2 ]
T,

with d1,d2,∈ R3 such that ∥d∥ = 1. Based on (19) and
(22), left and right multiplying Wω(t, t + β) by d gives

dTWω(t, t + β)d =
∫ t+β

t
∥g(τ, t)∥2dτ with g(τ, t) ∈ R3

defined, for all τ ∈ ϕ, and t ≥ t0, as

g(τ, t) := J−1R(τ)

(
d1 +

∫ τ

t

R(σ)d2dσ

)
. (26)

Recall that J is a positive definite matrix, meaning that
λI3 ⪯ J ⪯ λI3, where 0 ≤ λ ≤ λ represent the smallest
and largest eigenvalues of J, respectively. Furthermore,
since R is a norm-preserving matrix, we note that, for
some ∥d1∥ = δ1 > 0, it must be, according to (26),
∥g(t, t)∥ ≥ δ1/λ for all t ≥ t0. Suppose then that d1 = 0,
meaning that ∥d2∥ = 1. Next, we compute the derivative
of (26) with respect to τ , which results in

dg(τ, t)

dτ
= J−1R(τ)S(Ω(τ))

∫ τ

t

R(σ)d2dσ + J−1d2.

Note that ∥dg(τ, t)/dτ |τ=t∥ = ∥J−1d2∥ ≥ λ for all
t ≥ t0. Furthermore, according to Assumption 1, and
based on (2b), there exists a constant c1 > 0 such that
∥d2g(τ, t)/dτ2∥ ≤ c1 for all τ ∈ ϕ. Hence, and based on
Proposition 4, we conclude from the previous analysis that
there always exist positive constants α1 and α2, function of
β, such that α1(β)I6 ⪯ Wω(t, t+ β) ⪯ α2I6, for all t ≥ t0
and β > 0. With Wp(β) and Wχ(β) already established
as positive definite constant matrices whose smallest and
largest eigenvalues are only function of β, we conclude,
based on (25), that there always exist positive constants
α1 and α2, function of β, such that α1(β)I24 ⪯ W(t, t +
β) ⪯ α2(β)I24, for all t ≥ t0 and β > 0. In view of
Definition 3, the LTV system (17) must be u.c.o..

4. KALMAN FILTER AS ESTIMATOR

In this section, we will consider the system dynamics
(originally expressed by (7)) in the presence of sensor
noise. More specifically, the true output (15) is given by

ym(t) =

pm(t)
χm(t)
Ωm(t)

 :=

p(t)χ(t)
Ω(t)

+

np(t)
nχ(t)
nΩ(t)

 } ∈ R3

} ∈ R9

} ∈ R3
, (27)



where np(t) ∼ N (0, σ2
p), nχ(t) ∼ N (0, σ2

χ) and nΩ(t) ∼
N (0, σ2

Ω) are extracted from zero mean multivariate nor-
mal distributions with standard deviations σp, σχ, σΩ > 0.
All sources of noise are assumed uncorrelated.

Then, similarly to (6), let the corresponding system state
estimate be denoted by

x̂(t) :=
[
p̂(t)T v̂(t)T b̂v(t)

T χ̂(t)T ω̂(t)T b̂τ (t)
T
]T ∈ R24.

(28)
Based on (7a) and (7b), we put forward a Kalman-Bucy
filter whose state update is computed as (cf. Simon (2006))

˙̂x(t) := A(t)x̂(t) +B(t)u(t) +K(t)(ym(t)−Cx̂(t)), (29)

with A, B, C as given in (8), (12) and (14), respectively,
and where K ∈ R24×15 is the Kalman gain computed as

K(t) := P(t)CTR−1, (30)

with P ∈ R24×24 denoting the (positive-definite) covari-
ance matrix of the state estimate that satisfies the matrix
Riccati differential equation governed by

Ṗ(t) := A(t)P(t)+P(t)A(t)T +Q−K(t)RK(t)T, (31)

with P(t0) ≻ 0, and with Q ∈ R24×24 and R ∈
R15×15 being the positive-definite covariance matrices of
the process and observation noises, respectively. We note
that these two matrices characterize different additive
white Gaussian noise distributions; they can be seen as
tuning knobs for adjusting performance.

Remark 6. Given that the LTV system (7) is comprised of
three decoupled LTV subsystems, the 24-dimensional KF
given by (29), (30) and (31) may actually be implemented
as three separate KFs.

Based on the previous remark, let us consider hencefor-
ward P(t) = blkdiag(Pp(t),Pχ(t),Pω(t)), with Pp,Pχ ∈
R9×9, Pω ∈ R6×6, Q = blkdiag(Qp,Qχ,Qω), with
Qp,Qχ ∈ R9×9,Qω ∈ R6×6,R = blkdiag(Rp,Rχ,RΩ),
with Rp ∈ R3×3, Rχ ∈ R9×9, RΩ ∈ R3. Therefore, we
may also define Kp(t) := Pp(t)C

T
pR−1

p ∈ R9×3, Kχ(t) :=

Pχ(t)C
T
χR−1

χ ∈ R9×9, Kω(t) := Pω(t)C
T
ωR−1

Ω ∈ R3×3.

Remark 7. The KF ignores topological constructions. To
project χ̂ back onto SO(3) one can resort, for instance,
to the technique described in (Moakher, 2002, Proposition
3.5), which is based in the singular value decomposition.

With R(t) := vec−1(χ̂(t)) ∈ R3×3, it follows that R̂(t) :=

R(t)U(t)diag(Λ
−1/2
1 (t),Λ

−1/2
2 (t), s(t)Λ

−1/2
3 (t))U(t), with

R(t)TR(t) = U(t)Tdiag(Λ1(t),Λ2(t),Λ3(t))U(t) and s(t) =
1 if det(R(t) > 0 or, else, s(t) = −1, if det(R(t) < 0.

4.1 State Transition Matrix: On the Robustness to Noise

We must stress that, upon implementing the KF, two of
the LTV subsystems incorporate noise-corrupted measure-
ments of angular velocity, i.e., Ωm, in their state transition
matrices, namely (10) and (11). Consequently, noise is also
present in the dynamics of the Riccati equation (31). Based
on (5) and (27), we may thus write

χ̇(t) = −Aχ(t)χ(t)

= − (I3 ⊗ S(Ωm(t)))χ(t) + (I3 ⊗ S(nΩ(t)))χ(t).
(32)

Consider now the Lyapunov function

Vχ(t) := χ̃(t)TP−1
χ (t)χ̃(t), (33)

where we have defined the error χ̃(t) := χ(t) − χ̂(t) ∈
R9, such that its derivative, according to (27), (29)

and (32), can be computed as follows: ˙̃χ(t) = χ̇(t) −
˙̂χ(t) = − (I3 ⊗ S(Ωm(t))) χ̃(t) + (I3 ⊗ S(nΩ(t)))χ(t) −
Pχ(t)

TR−1
χ (Cχ̃(t) + nΩ(t)). According to (29) and (32),

the time derivative of Vχ(t) in (33) can be written as

V̇χ(t) = − χ̃(t)T(P−1
χ (t)QχP−1

χ (t) +R−1
χ )χ̃

− χ(t)T (I3 ⊗ S(nΩ(t)))P−1
χ (t)χ̃(t)

+ χ̃(t)TP−1
χ (t) (I3 ⊗ S(nΩ(t)))χ(t)

− 2nχ(t)
TR−1

χ χ̃(t).

(34)

Finding explicit solutions for (31) is generally impractical.
However, let us set Pχ(t0) = r1I9, Qχ = r2I9 and
Rχ = r3I9 for some r1, r2, r3 > 0, which is reasonable for
this specific LTV subsystem. Based on (10) and (31), and
employing the fact that I3⊗S(nΩ(t)) is a skew-symmetric
matrix, straightforward algebraic manipulations allow us
then to infer that Pχ(t) = γ(t)I, for all t ≥ t0, where
γ̇(t) = −γ(t)2/r3+r2, with γ(t0) = r1, whose solution, for
all t ≥ t0, can be written as

γ(t) =
√
r2r3

γ1 exp
(√

r2
r3
t
)
− γ2 exp

(
−
√

r2
r3
t
)

γ1 exp
(√

r2
r3
t
)
+ γ2 exp

(
−
√

r2
r3
t
) , (35)

where γ1, γ2 ∈ R\{0} are any constants that satisfy the
identity γ1(

√
r2r3−r1) = γ2(

√
r2r3+r1). This means that

we can simplify (34) as

V̇χ(t) ≤ − ∥χ̃(t)∥2
(

r2
γ(t)2

+
1

r3

)
+

2∥nχ(t)∥
r3

∥χ̃(t)∥

+
2∥nΩ(t)∥χ(t)∥

γ(t)
∥χ̃(t)∥.

It follows that V̇χ(t) < 0 for ∥χ̃(t)∥ > Bχ(t), with

Bχ(t) := 2

(
∥nχ(t)∥
r3

+
∥nΩ(t)

√
3

γ(t)

)
r3γ(t)

2

γ(t)2 + r2r3
,

where we took into consideration the fact that, based on
the properties of rotation matrices, and in view of (4), it

must be ∥χ(t)∥ =
√
3 for all t ≥ t0. Then, according to

(35), we have lim
t→∞

γ(t) =
√
r2r3, which, in turn, implies

the existence of an ultimate bound for ∥χ̃(t)∥ given by

lim
t→∞

Bχ(t) = ∥nχ(t)∥+
√

3r3/r2∥nΩ(t)∥. (36)

The results in (35) and (36) are interesting since they es-
tablish a (slightly conservative) performance threshold for
the estimation accuracy of χ̂ in function of the gyroscope
noise nΩ, the attitude measurement noise nχ and the KF
parameters Qχ = r2I9 and Rχ = r3I9. We note that the
convergence of the estimation error is exponential.

A similar analysis can be carried out for the subsystem
concerning the state components ω and bτ , but it is
omitted here due to the lack of space.

5. KALMAN FILTER AIDED CONTROLLER DESIGN

In this section, we will sketch an illustrative nonlinear
controller that takes into account the entire KF output
given by (28). Consider then the error definitions:

ep(t) := pd(t)− p̂(t) + ṗd(t)− v̂(t) ∈ R3 and

eΩ(t) := R̃(t)TΩd(t)− Ω̂(t)− vex(P(R̃(t))) ∈ R3,
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Figure 1. Position smoothing. Top: evolution of pm vs. p̂.
Bottom: evolution of p̃ = p − p̂. Notice the different
scales. Dashed lines depict the 1-Sigma.

where R̃(t) := Rd(t)
TR̂(t) ∈ SO(3) and P(R̃(t)) :=

(R̃(t) − R̃(t)T)/2. Based on (2a), and (2b), let us set the
laws for u in (13), i.e., f(t) and τ (t), for all t ≥ t0, as

R(t)f(t) = ep(t)− v̂(t)− b̂v(t) + p̈d(t) + ṗd(t)

− [I3 I3 03]Kp(t)(pm(t)− p̂(t))

J−1τ (t) = J−1S(Ωm(t))JΩ̂(t)− J−1b̂τ (t) + eΩ(t)

− J−1 [I3 03]Kω(t)(Ωm(t)− Ω̂(t))

+
˙̃
R(t)TΩd(t) + R̃(t)TΩ̇d(t)− vex(P( ˙̃R(t))).

By choosing the Lyapunov function V (t) := 1/2∥ep(t)∥2+
1/2∥eΩ(t)∥2, straightforward algebraic manipulations al-

low us to conclude that V̇ (t) = −∥ep(t)∥2−∥eΩ(t)∥2 < 0.

6. SIMULATION RESULTS

Consider position and angular velocity references given
by pd(t) = [2 cos(2π/5t) 2 sin(2π/5t) 0.5 sin(2π/10t)]T

and Ωd(t) = [cos(t/15) sin(t/16) cos(t/17)]T, for initial
conditions p(t0) = [2 2 2]T, v(t0) = [0.5 − 0.3 0.1]T,
Ω(t0) = 0, R(t0) = Rz(40

◦)Ry(−10◦)Rx(80
◦), and

Rd(t0) = I3. Let J = [2.5 0.5 0.7; 0.5 1.8 1.1; 0.7 1.1 1.7]
and let the system disturbances be given by bv = [0.5 −
0.3 0.8]T and bτ = [0.5 − 0.2 0.25]T. We set χ̂(t0) =
vec(I3); all remaining initial KF estimates are set to zero.
Regarding the KF parameters, we chooseP(t0) = 10−2I24,
Qp(t0) = 10−6I9, Qχ(t0) = 10−4I9, Qω(t0) = 10−4I3,
Rp(t0) = σ2

pI3, Rχ(t0) = σ2
χI9, and RΩ(t0) = σ2

ΩI3,
with σp = 0.05 (m), σχ = 0.015 and σΩ = 0.0175 (rad/s).

In Figs. 1 through 6, we showcase the results associated
with the KF implementation. Notice, in particular, the
effective smoothing of noisy measurements, as well as the
accurate estimates of linear velocity and external force and
torque disturbances. In Fig. 7, we display the results asso-
ciated with the controller. Notice the expected convergence
to zero, as well as the reasonable control inputs, which
become increasingly smoother over the transient phase.

7. CONCLUSIONS

We solved the problem of estimating the linear velocity
of a rigid-body, in addition to terms of external force
and torque disturbances, using noise-filtered pose mea-
surements combined with information about the wrench
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Figure 2. Linear velocity estimation. Top: evolution of v
vs. v̂. Bottom: evolution of ṽ = v − v̂. Notice the
different scales. Dashed lines depict the 1-Sigma.
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Figure 3. Force disturbance estimation. Top: evolution of

bv vs. b̂v. Bottom: evolution of b̃v = bv− b̂v. Notice
the different scales. Dashed lines depict the 1-Sigma.
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Figure 4. Attitude smoothing. Top: evolution of measured
vs. estimated Euler angles (yaw ψ, pitch θ and roll ϕ).
Bottom: evolution of χ̃ = χ− χ̂. Notice the different
scales. Dashed lines depict the 1-Sigma.

applied to the center of mass of a rigid-body. By designing
an LTV system, with no linearizations involved, a Kalman
filter (KF) was employed which, on account of the system
being uniformly completely observable, renders the total
estimation error globally exponentially stable. Realistic
simulation results using a KF-aided nonlinear pose track-
ing controller were presented to validate and showcase the
performance of the proposed methodology.



Time (s)

A
m

p
li

tu
d

e 
(r

a
d

/s
)

0 5 10 15 20 25 30
-1

0

1

0 1 2 3 4 5
-0.1

0

0.1

25 26 27 28 29 30
-0.04

-0.02

0

0.02

Figure 5. Angular velocity smoothing. Top: evolution of

Ωm vs. Ω̂. Bottom: evolution of Ω̃ = Ω − Ω̂. Notice
the different scales. Dashed lines depict the 1-Sigma.
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Figure 6. Torque disturbance estimation. Top: evolution of

bτ vs. b̂τ . Bottom: evolution of b̃τ = bτ −b̂τ . Notice
the different scales. Dashed lines depict the 1-Sigma.
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Figure 7. Top: evolution of control errors. Center: evolution
of force input f . Bottom: evolution of torque input τ .
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