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Abstract. Shoeprints are a common type of evidence found at crime
scenes and are used regularly in forensic investigations. However, exist-
ing methods cannot effectively employ deep learning techniques to match
noisy and occluded crime-scene shoeprints to a shoe database due to a
lack of training data. Moreover, all existing methods match crime-scene
shoeprints to clean reference prints, yet our analysis shows matching to
more informative tread depth maps yields better retrieval results. The
matching task is further complicated by the necessity to identify simi-
larities only in corresponding regions (heels, toes, etc) of prints and shoe
treads. To overcome these challenges, we leverage shoe tread images from
online retailers and utilize an off-the-shelf predictor to estimate depth
maps and clean prints. Our method, named CriSp, matches crime-scene
shoeprints to tread depth maps by training on this data. CriSp incorpo-
rates data augmentation to simulate crime-scene shoeprints, an encoder
to learn spatially-aware features, and a masking module to ensure only
visible regions of crime-scene prints affect retrieval results. To validate
our approach, we introduce two validation sets by reprocessing existing
datasets of crime-scene shoeprints and establish a benchmarking proto-
col for comparison. On this benchmark, CriSp significantly outperforms
state-of-the-art methods in both automated shoeprint matching and im-
age retrieval tailored to this task.
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1 Introduction

Examining the evidence found at a crime scene assists investigators in iden-
tifying suspects. Shoeprints are likely to be found at crime scenes, despite their
fewer distinct identifying features than other biometric samples like blood or
hair [13]. Hence, analyzing shoeprints can help criminal justice and forensics.

Examining shoeprints forensically offers insights into the class attributes and
the acquired attributes of the suspect’s footwear. Class attributes pertain to the
general features of the shoe, e.g., brand, model, and size. Acquired attributes
encompass the unique traits delivered by the shoe with wear and tear, e.g.,
holes, cuts, and scratches. Our focus lies in facilitating the investigation of the
class attributes of shoeprints.
⋆ Authors share senior authorship.
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Fig. 1: Our method CriSp compares crime-scene shoeprints against a database of tread
depth maps (predicted from tread images available at online retailers) and retrieves a
ranked list of matches. We train CriSp using tread depth maps and clean prints (Sec. 4).
We use a data augmentation module Aug to address the domain gap between clean
and crime-scene prints, and a spatial feature masking strategy (via spatial encoder Enc
and masking module M) to match shoeprint patterns to corresponding locations on
tread depth maps (Sec. 5). CriSp significantly outperforms previous methods (Sec. 6).

Status quo. Traditional automated shoeprint matching methods [3, 5, 6,
14, 18, 24, 30, 31, 54] typically use handcrafted features to match crime-scene
shoeprints with clean, reference impressions. Recent ones [29, 36, 60] use more
generalizable features extracted by deep Convolutional Neural Networks (CNNs),
which are usually pretrained on ImageNet [19] as available shoeprint datasets [32]
are too small to train deep features. This solicits large-scale shoeprint datasets for
better solving the shoeprint matching problem. Moreover, while existing methods
match crime-scene shoeprints to clean reference shoeprints, we find that match-
ing to tread depth maps leads to significantly better performance (cf. Tab. 4).

Motivation. To address the need for a large-scale training dataset, we lever-
age the extensive collection of tread images of various shoe products available at
online retailers. We generate tread depth maps and clearly visible prints using
the method propsoed in [47]. Fig. 2 shows some examples in our dataset. Note
that matching directly to RGB tread images causes models to overfit to irrelevant
details such as albedo and lighting (Sec. 6.3). Therefore, we formulate our prob-
lem as the retrieval of tread depth maps that best match crime-scene shoerpints
by learning a representation from tread depth maps and clean shoeprints.

Technical insights. We develop a method termed CriSp to address this
problem using three key components (Fig. 1). First, a data augmentation module
Aug simulates crime-scene shoeprints from the clearly visible prints and depth
maps of the training set. This helps mitigate domain gaps between our training
set and real-world crime-scene testing images. Second, a spatial encoder Enc
ensures that our model learns to match patterns in corresponding regions of shoe
treads. For instance, if a crime-scene shoeprint exhibits stripes on the heels, the
model must retrieve shoes with stripes in the heel region rather than other areas
like the toe region. Third, a feature masking module M ensures using only the
visible parts of crime-scene shoeprints for retrieval. Our extensive experiments
show that combining these components facilitates feature learning and yields
significantly improved retrieval performance over prior arts.
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Contributions. We make three major contributions:

– We introduce the concept of matching crime-scene shoeprints to tread depth
maps, aiming to facilitate forensic investigation and criminal justice.

– We propose a new benchmark consisting of a new dataset and retrieval-based
evaluation protocols, allowing fair comparisons against previous methods.

– We develop a spatially-aware matching method CriSp, yielding superior per-
formance over existing methods.

2 Related Work

Automated shoeprint matching. The success of automated fingerprint
identification systems [17] has inspired the study of automated shoeprint match-
ing [33, 56, 57]. Current literature aims to extract features from crime-scene
shoeprints and match them to a database of laboratory footwear impressions to
identify the shoe make and model [45]. Holistic methods process the shoeprint im-
age as a whole, e.g., reconstructing the shoeprint [26], and representing shoeprints
using Hu’s moment [3], Zernike moment [54], and Gabor and Zernike features [30].
In contrast, local methods extract discriminative features from local regions of
the shoeprint [4], making them more adept at handling partial prints. For in-
stance, [31] exploits Wavelet-Fourier transform features, [5] introduces a block
sparse representation technique, and [6] combines the Harris and the Hessian
point of interest detectors with SIFT descriptors. Recent works [29, 36, 60] use
features from networks pretrained on ImageNet [19]. However, the lack of large-
scale shoeprint datasets hampers their effectiveness. To address this, we create a
large-scale training dataset by leveraging tread images from online retailers and
utilizing an off-the-shelf predictor [47] to estimate their depth maps and prints.

Image retrieval. Image retrieval techniques have been a popular research
problem for several decades [61]. Traditional methods use handcrafted local fea-
tures [10, 35], often coupled with approximate nearest-neighbor search meth-
ods using KD trees or vocabulary trees [11, 25, 38, 41]. More recently, the suc-
cess of CNNs in classification tasks encourages their use in image retrieval
tasks [9,48]. Global features can be generated by aggregating CNN features [7,8,
23,39,43,44,52,53,55], while local features can also be used for spatial verifica-
tion [15,28,39,41,55] which ensure better performance by using geometric infor-
mation of objects. Our problem differs from this category of work since our query
and database data come from different domains - crime-scene shoeprints and
depth maps of shoe treads. Even within our query set of crime-scene shoeprints,
images can be from various sources such as blood, dust, and sand impressions.

Cross-domain image retrieval. More closely related to our work is cross-
domain image retrieval (CDIR), where the query and database images come from
different domains. The fundamental idea is to map both domains into a shared
semantic feature space to alleviate the cross-domain gap. Learning a distinct
representation for each shoe model can be categorized as fine-grained cross-
domain image retrieval (FG-CDIR) as we aim to retrieve one instance from a
gallery of same-category images. It is harder than category-level classification [20,
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tread image predicted depth predicted print

Fig. 2: Examples from train-set. We create training data from online retailers and
prepare their annotations by predicting their depth maps and prints [47], although the
depth and print predictions are sometimes inaccurate (2nd and 3rd shoe).

21,58] tasks since the differences between shoe treads are often subtle. A popular
problem of this category, fine-grained sketch-based image retrieval (FG-SBIR),
was introduced as a deep triplet-ranking based siamese network [42] for learning
a joint sketch-photo manifold. FG-SBIR adopts attention-based modules with
a higher order retrieval loss [50], textual tags [16, 49], and hybrid cross-domain
generation [40]. The recent work [46] leverages a foundation model (CLIP) and
[34] explicitly learns local visual correspondence between sketch and photo to
offer explainability. These works differ from ours in that we do not have any
ground-truth training data from our query domain, and thus have to simulate it
as best as we can. Additionally, our aligned query and database images enable
us to use spatially-aware techniques like spatial feature masking.

3 Problem Setup and Evaluation Protocol

Our goal is to retrieve shoe models that best match crime-scene impressions
by comparing against a comprehensive shoe collection. We propose using tread
images from online retailers to build our reference database. The problem for-
mulation and evaluation protocol is outlined below.

3.1 Problem setup

Given an input shoeprint image (Fig. 4), our goal is to retrieve the most rel-
evant shoe tread models from a reference database (Fig. 2). A method should
retrieve a ranked list [r1, r2, ..., rn] of shoe models from this database,
where ri is more likely to leave a crime-scene shoeprint similar to
the input shoeprint than rj for i < j. Ranking might involve comparing
learned features to represent both shoeprint images and shoe tread examples of
the database. With the retrieved short-list of ranked examples, a crime-scene
investigator will then examine them for further judgement.

In our work, we organize the database by storing shoe tread images and their
depth maps, as prior work [47] demonstrates that using depth allows synthesiz-
ing shoeprint images as training data (cf. Sec. 4.1). Hence, we create such a
database. Consequently, methods should (1) address the domain gap between
crime-scene shoeprints and clean shoe tread depth maps, and (2) match partly
visible shoeprints to corresponding regions of shoe tread depth maps.
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Fig. 3: Dataset statistics. We have a reference database (ref-db) and two validation sets
(val-FID and val-ShoeCase) with crime-scene impressions to query against ref-db. We
use a section of ref-db for training (train-set) and leave the rest to study generalization.
Ground-truth labels from our validation sets connect our query crime-scene shoeprints
to shoes in ref-db. See details in Sec. 4 and visual examples in Fig. 2 and 4.

3.2 Evaluation Protocol

To benchmark methods, we introduce two validation sets of crime-scene
shoeprints with ground-truth shoe model labels, which are linked to a large-
scale reference database (see details in Sec. 4.2). Note that the ground-truth for
a shoeprint may contain multiple shoe models since tread patterns can be shared
by different shoe models. In practice, we expect a human-in-the-loop approach:
crime-scene investigators will look through the top K retrieved shoe models.
Such a practice will greatly mitigate an open-set issue, i.e., finding that an input
shoeprint does not have similar shoe models in the current database. We set K
to be a realistically small value of 100, representing the top 0.4% shoe models in
our reference database. We use two metrics to compare models based on their
top K retrievals. Our first metric, mean average precision at K (mAP@K), is a
standard metric to compare ranking performance. It considers both the number
of positive matches and their positions in the ranking list. The second metric,
hit ratio at K (hit@K), is more intuitive and represents the fraction of times
we get at least one positive match in the top K retrievals. This metric is useful
because a positive match can be used in a query expansion step to retrieve other
good matches much more effectively [22]. Both metrics have values between 0
and 1, with higher numbers representing better performance. The supplement
has further details.

4 Dataset Preparation

We train our model on a dataset (train-set) of aligned shoe tread depth maps
and clean shoeprints. To study the effectiveness of models, we introduce a large-
scale reference database (ref-db) of tread depth maps, along with two validation
sets (val-FID and val-ShoeCase) created by reprocessing existing datasets of
crime-scene shoeprints [32, 51]. We match shoeprints from the validation sets
to ref-db and add labels connecting shoeprints in val-FID and val-ShoeCase to
ref-db to enable quantitative analysis. An overview of the datasets is provided
in Fig. 3, while Fig. 2 and Fig. 4 present example depth maps, clean prints, and
crime-scene prints. In this section, we elaborate on our training dataset (train-
set), reference database (ref-db), and validation sets (val-FID and val-ShoeCase).
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FID-crime FID-clean ShoeCase-blood ShoeCase-dust

FID-cleanFID-crime ShoeCase blood ShoeCase dustFig. 4: Examples from val-FID and val-ShoeCase. Val-FID contains real crime-scene
prints (FID-crime) and clean, fully visible lab impressions (FID-clean). We show FID-
crime and FID-clean shoeprints corresponding to the same shoe models for easier com-
parison. Note that we show a yellow shoe outline on the FID-crime prints for visualiza-
tion purposes and the outline does not exist in FID-crime images. Val-ShoeCase con-
tains simulated crime-scene shoeprints on blood (ShoeCase-blood) and dust (ShoeCase-
dust). All val-ShoeCase prints are full-sized, as opposed to val-FID.

4.1 Online Shoe Tread Depth Maps and Prints for Training

Train-set. Online retailers [1, 2] showcase images of shoe treads for adver-
tisement. Our training set (train-set) contains depth maps and clean, fully visible
prints from such tread images as predicted by [47]. We also apply segmentation
masks as suggested by [47] to the predictions. To ensure consistency across all
images, we employ a global alignment method to minimize variations in scale,
orientation, and center using a simple model. Fig. 2 displays some sample shoe-
tread images along with their corresponding depth and print predictions. Online
retailers categorize shoe styles using stock keeping units (SKUs), which we use
as shoe model labels. Shoes with the same SKUs can have different colors and
sizes. Different shoe models may share the similar tread pattern, making them
appear to be duplicates; we do not remove such likely duplicates as investigators
will still examine them from the retrieved examples for the final judgement.

Statistics. Train-set contains 21,699 shoe instances from 4,932 different shoe
models. Each shoe model in our database can have shoe-tread images from mul-
tiple shoe instances, possibly with variations in size, color, and lighting. The
tread images in train-set have a resolution of 384×192.

Inaccuracies. It is important to note that the training dataset can have some
inaccuracies since it comes from raw data downloaded from online retailers. Some
tread images might have incorrect model labels, and some images may not depict
shoe treads. Other inaccuracies come from imperfect depth and print prediction
(cf. Fig. 2), segmentation errors, and alignment failures. We hope to mitigate
the errors by including multiple instances per shoe model in train-set.

4.2 Reference Database and Crime-scene Shoeprints for Validation

Ref-db. We introduce a reference database (ref-db) by extending train-set
to include more shoe models. The added shoe models are used to study general-
ization to unseen shoe models. Ref-db contains a total of 56,847 shoe instances
from 24,766 different shoe models. The inclusion of multiple instances per shoe
model in ref-db allows the depth predictor some margin for error (cf. Fig. 2),
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occlusion erasure noise simulated crime-scene shoeprints Ŝ

example simulated crime printsFig. 5: Examples of data augmentation. Our data augmentation module Aug simulates
crime-scene shoeprints (cf. Fig. 4) from clean, fully visible prints in our training set (cf.
Fig. 2). Aug optionally (1) introduces occlusion such as overlapping prints and random
shapes, (2) erases parts of the print to create a grainy appearance, and (3) adds noise
to mimic background clutter.

ensuring minimal impact on the overall matching algorithm performance since
it has multiple chances to match a query print to a shoe model. The supplement
has details on the distribution of shoe models from our validation sets in ref-db.

Val-FID. We reprocess the widely used FID300 [32] to create our primary
validation set (val-FID). Val-FID contains real crime-scene shoeprints (FID-
crime) and a corresponding set of clean, fully visible lab impressions (FID-clean).
Examples of these prints are shown in Fig. 4. The FID-crime prints are noisy
and often only partially visible. It contains impressions made by blood, dust, etc
on various kinds of surfaces including hard floors and soft sand. To ensure align-
ment with ref-db, we preprocess FID-crime prints by placing the partial prints
in the appropriate position on a shoe “outline” (cf. Fig. 4), a common practice
in shoeprint matching during crime investigations.

We manually found matches to 41 FID-clean prints in ref-db by visual in-
spection. These are all unique tread patterns and correspond to 106 FID-crime
prints. Given that multiple shoe models in ref-db can share the same tread pat-
tern, we store a list of target labels for each shoeprint in FID-crime. These labels
correspond to 1,152 shoe models and 2,770 shoe instances in ref-db (cf. Fig. 3).

Val-ShoeCase. We introduce a second validation set (val-ShoeCase) by
reprocessing ShoeCase [51] which consists of simulated crime-scene shoeprints
made by blood (ShoeCase-blood) or dust (ShoeCase-dust) as shown in Fig. 4.
These impressions are created by stepping on blood spatter or graphite powder
and then walking on the floor. The prints in this dataset are full-sized, and we
manually align them to match ref-db.

ShoeCase uses two shoe models (Adidas Seeley and Nike Zoom Winflow 4),
both of which are included in ref-db. The ground-truth labels we prepare for val-
ShoeCase include all shoe models in ref-db with visually similar tread patterns
as these two shoe models since we do not penalize models for retrieving shoes
with matching tread patterns but different shoe models. Val-ShoeCase labels
correspond to 16 shoe models and 52 shoe instances in ref-db (cf. Fig. 3).

5 Methodology

In this section, we introduce CriSp, our representation learning framework to
match crime-scene shoeprint images S to tread depth maps d. An overview of our
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training pipeline is shown in Fig. 1. CriSp is trained using a dataset of globally
aligned tread depth maps d and clean, fully-visible shoeprints s (see details in
Sec. 4.1). The main components of our pipeline are (1) a data augmentation
module Aug that simulates crime-scene shoeprints, (2) an encoder network Enc
that maps depths and shoeprints to a spatial feature representation, and (3)
a spatial masking module M that masks out irrelevant portions from partially
visible shoeprints.

Data augmentation. Our data augmentation module Aug simulates noisy
and occluded crime-scene shoeprints (cf. Fig. 4) from clean, fully-visible prints
(cf. Fig. 2), denoted as Ŝ = Aug(s). Aug uses three kinds of degradations (oc-
clusion, erasure, and noise) as visualized in Fig. 5. Occlusion can be in the form
of overlapping prints or random shapes. Erasures achieve the grainy texture of
crime-scene prints and noise adds background clutter to the images. Further
details are provided in the supplement.

Encoder for spatial features. Our encoder Enc maps tread depths d
and simulated crime-scene shoeprints Ŝ to a feature representation z, denoted
as z = Enc(x) where x ∈ [d, Ŝ]. Enc consists of a modified ResNet50 [27]
with the final pooling and flattening operation removed followed by a couple
of convolution layers. Enc produces features of shape [C,H,W ] where C is the
feature length (C = 128 in our work), and H and W are the encoded height and
width, respectively. As our training data and query prints are globally aligned
(cf. Sec. 4), Enc allows access to features at each (course) spatial location of the
image, facilitating comparisons in corresponding locations of shoe treads. Enc
has two input channels for depth and print, respectively. It processes only one
input at a time and pads the other input channel with zeros.

Spatial feature masking. During training, we simulate partially visible
crime-scene shoeprints by applying a random rectangular mask m to query
prints. Our feature masking module M applies a corresponding mask to spa-
tial features z to obtain z̄ = M(z,m). M resizes mask m to a dimension of
[H,W ], uses it to zero out spatial features outside the mask, and normalizes the
masked features. This allows our model to focus on the visible portion of the
prints. While it would make sense to apply mask m to tread depth images as
well, we opt not to do this as it would necessitate recomputing all the database
depth features for each query print image at inference time, which is not scalable.

Training loss and similarity metric. We train our model using super-
vised contrastive learning [28], which extends self-supervised contrastive learn-
ing to a fully supervised setting to learn from data using labels. For a set
of N depth/print pairs {dk, sk}k=1...N from shoe models {lk}k=1...N within a
batch, and a randomly generated mask m per batch, we compute masked spa-
tial features {z̄i}i=1...2N and corresponding shoe labels {l̄i}i=1...2N where z̄2k =
M(Enc(dk),m), z̄2k+1 = M(Enc(Aug(sk)),m), and l̄2k = l̄2k+1 = lk. We treat
z̄ as a vector of size CHW and apply the following loss.

L =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(z̄i · z̄p/τ)∑

a∈A(i)

exp(z̄i · z̄a/τ)
(1)
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Here, i ∈ I ≡ {1 . . . 2N}, A(i) ≡ I \ {i}, and P (i) ≡ {p ∈ A(i) : l̄p = l̄i}
is the set of indices of all positives in the batch distinct from i. |P (i)| is the
cardinality of P (i). The · symbol denotes the inner product, and τ ∈ R+ is a
scalar temperature parameter. This loss corresponds to using cosine similarity
to measure similarity between images.

Sampling. For the above loss to be effective, we must have (enough) pos-
itive examples within a batch. However, if we uniformly sample shoe models
from the large-scale dataset of a large number of shoe models, a training batch
might contain unique shoe models that does not have pairs of positive examples.
Therefore, we sample training data in pairs, i.e. we choose N/2 shoe models
randomly and select two random instances from each shoe model.

6 Experiments

We evaluate our CriSp and compare it with state-of-the-art methods on
automated shoeprint matching [29] and image retrieval [28,34,46,55]. We begin
with visual comparison and quantitative evaluation, followed by an ablation
study and analysis of our design choices. We release our dataset and make our
code publicly available at https://github.com/Samia067/CriSp.

6.1 Qualitative Results of CriSp

Fig. 6 shows the top 10 retrievals of our method CriSp on the val-FID and
val-ShoeCase datasets. Notable, CriSp can retrieve a positive match very early
even when the shoeprint has significantly limited visibility or is severely de-
graded. These retrievals show how CriSp effectively matches distinctive patterns
from corresponding regions of the tread. Fig. 7 shows a comparison with related
methods fine-tuned on our dataset. Clearly, CriSp performs significantly better
at retrieving positive matches early. See more visualizations in the supplement.

6.2 Comparison with State-of-the-art

CriSp consistently outperforms previous methods across most validation ex-
amples (details in the supplement). Table 1 and 2 list comparisons on our two
evaluation metrics introduced in Sec. 3.2. We analyze these results below.

Comparison with shoeprint matching. MCNCC [29] employs features
from pretrained networks on ImageNet for automated shoeprint matching. How-
ever, leveraging learning on shoeprint-specific data, CriSp exhibits superior per-
formance on both val-FID (see Tab. 1) and val-ShoeCase (see Tab. 2). Although
MCNCC proposes to use clean shoeprint impressions as the reference database
to match with, we use tread depth maps to be consistent with other methods
and to achieve enhanced results. More details are in the supplement.

Comparison with image retrieval. Table 1 and 2 demonstrate how our
CriSp consistently outperforms state-of-the-art methods in image retrieval (Sup-
Con [28], FIRe [55], SketchLVM [46], ZSE-SBIR [34]). We fine-tune these meth-
ods on our training data containing tread depth maps and clean, fully-visible

https://github.com/Samia067/CriSp
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query CriSp top-10 retrievals

query CriSp top 10 retrievals

Fig. 6: Visualization of the top 10 retrievals by CriSp on val-FID (rows 1-4) and val-
ShoeCase (row 5). CriSp retrieves positive matches (highlighted by orange frames)
even when crime-scene shoeprints have very limited visibility or severe degradation.
Additionally, corresponding locations on the retrieved shoes share similar patterns to
the query print, even in negative matches (marked by red boxes).

shoeprints. Additionally, we use our data augmentation module Aug to simu-
late crime-scene shoeprints while training prior methods as the wide domain
gap between crime-scene prints and the training data causes them to perform
poorly otherwise (Tab. 1). Even when prior methods use our data augmentation,
CriSp significantly outperforms them on both val-FID (Tab. 1) and val-ShoeCase
(Tab. 2). The ablation study (Tab. 5) shows that our spatial feature masking
technique greatly improves the performance. Qualitative comparison on both val-
idation sets in Fig. 7 also confirm that CriSp is better able to match shoeprint
patterns to corresponding locations on tread depth maps, thus making positive
retrievals early. This is reflected by our mAP@100 values when compared to
prior methods on both validation sets (Tab. 1 and 2).

Scalability. In practice, when dealing with a large reference database, scal-
ability becomes crucial. Unlike our closest competitor ZSE-SBIR [34], which
necessitates the recomputation of all database features for each query, CriSp
offers a scalable solution. It can precompute spatial database features and effi-
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query CriSp ZSE-SBIR SketchLVM FIRe

query CriSp retrievals ZSE-SBIR retrievals SketchLVM retrievals FIRe retrievals

Fig. 7: Qualitative comparison with state-of-the-art methods on val-FID (rows 1-3),
val-ShoeCase (rows 4-5). We show the top 4 retrieved results. CriSp demonstrates the
ability to localize patterns, allowing it to achieve more precise retrievals (highlighted by
orange frames) than previous methods. While prior methods identify similar patterns
to the query print (cf. blue regions on query images), they cannot determine if they
are from corresponding locations, as indicated by the red boxes in retrieved images.

ciently perform feature masking and cosine similarity calculations for each query,
enabling rapid retrieval even with extensive reference databases.

Simulating partial print. Retrievals by prior methods on partial shoeprints
in Fig. 7 reveal instances of poorly segmented tread depth maps, where signif-
icant portions of the tread pattern have been erased. This raises the question
of whether prior methods would exhibit improved performance if trained with
masks simulating partial prints. However, it is worth noting that prior methods
perform better when trained without such masks, as detailed in the supplement.

Val-FID versus val-ShoeCase. Methods show a wider variation in perfor-
mance on Val-ShoeCase than val-FID. This discrepancy arises from the fact that
val-FID contains the diversity of real crime-scene shoeprints, while val-ShoeCase
systematically simulates crime-scene prints. Additionally, val-ShoeCase contains
prints from shoe models with only two unique tread patterns while val-FID con-
tains prints from 41 unique tread patterns (cf. Sec. 4.2).

6.3 Design Choices and Ablation Study

We conduct a study of our design choices by training a ResNet50 with a
supervised contrastive loss and then sequentially adding modules to investigate
their performance impact. Specifically, we analyze database image configura-
tions, data augmentation techniques, and spatial feature masking.
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Table 1: Benchmarking results on real crime-scene prints from val-FID. We
use hit@100 and mAP@100 as the metrics and compare previous methods trained on
our dataset with / without data augmentation (cf. Sec. 5). Recall that our proposed
data augmentation simulates crime-scene shoeprints from clean, fully-visible prints for
the training examples. Clearly, all other prior methods benefit greatly from using our
data augmentation technique. MCNCC achieves low mAP because it (1) uses off-the-
shelf features from an ImageNet-pretrained model, which is not tailored to shoeprint
matching, and (2) works on a more challenging and larger database (56,847 images)
in our work, compared to the small-scale one (1,175 images) in its original paper [29].
SupCon also performs poorly as it samples data uniformly from the large training
set that fails to guarantee enough positive pairs in training batches. Our modification
(which is row-1 in Tab. 5) ensures enough positive pairs in batches through careful data
sampling, yielding significant improvements. Lastly, CriSp significantly outperforms all
the compared methods.

method w/o our data aug w/ our data aug
hit@100 mAP@100 hit@100 mAP@100

IJCV’19 MCNCC [29] 0.0849 0.0018 - -
NeurIPS’20 SupCon [28] 0.0472 0.0020 0.0755 0.0096

ICLR’21 FIRe [55] 0.1132 0.0014 0.2075 0.0398
CVPR’23 SketchLVM [46] 0.0849 0.0066 0.1981 0.0384
CVPR’23 ZSE-SBIR [34] 0.0943 0.0065 0.4528 0.1412

CriSp 0.0754 0.0174 0.5472 0.2071

Table 2: Benchmarking results on simulated crime-scene prints from val-
ShoeCase, which includes shoeprints made by blood and dust. We use hit@100 and
mAP@100 as the metrics. CriSp performs the best across print categories. All prior
methods have been fine-tuned on our dataset using our data augmentation technique,
as they perform poorly otherwise (cf. Tab. 1). Note that both ZSE-SBIR and CriSp
coincidentally achieve positive matches on 62 blood prints (62/77 = 0.8052) and 68 dust
prints (68/72 = 0.9444), resulting in the same hit@100, which measures the fraction of
times a method gets at least one positive match within the top 100 retrievals.

method ShoeCase-blood ShoeCase-dust
hit@100 mAP@100 hit@100 mAP@100

MCNCC [29] 0.0000 0.0000 0.0000 0.0000
SupCon [28] 0.0000 0.0000 0.0000 0.0000
FIRe [55] 0.3896 0.0275 0.8194 0.3779
SketchLVM [46] 0.6623 0.1058 0.5972 0.2696
ZSE-SBIR [34] 0.8052 0.1849 0.9444 0.4063
CriSp 0.8052 0.4355 0.9444 0.6792

Database image configuration. We start by testing the effectiveness
of different types of database image configurations (RGB tread images, depth,
and print). Our analysis shows that depth is the most relevant and informative
modality, yielding the best results when used alone (Tab. 3). Print can be derived
from depth by thresholding [47] and the extra information in rgb tread images
(lighting and albedo) can be distracting.
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Table 3: Testing database im-
age configurations. The hit@100
and mAP@100 values for FID-clean
shoeprints indicate that using only
tread depth as the database image con-
figuration yields the best performance.
Results for FID-crime are not reported
in this experiment as we do not simu-
late crime-scene prints.

Database config. FID-clean

RGB depth print hit@100 mAP@100

✓ 0.195 0.066
✓ 0.512 0.203

✓ 0.171 0.015
✓ ✓ ✓ 0.293 0.057

Table 4: Ablation of data augmenta-
tion techniques. We train ResNet50 net-
works using techniques of our data augmen-
tation and report hit@100 and mAP@100
on FID-crime shoerpints. Results confirm
that each technique (visualized in Fig. 5)
individually improves retrieval results and
performs best when used together.

Data augmentation FID-crime

occlusion erasure noise hit@100 mAP@100

0.009 0.0000
✓ 0.019 0.0003

✓ 0.075 0.0098
✓ 0.170 0.0241

✓ ✓ ✓ 0.226 0.0520

Data augmentation. Next, we test the effectiveness of each component of
our data augmentation technique. Table 4 shows that all 3 components con-
tribute to improved performance and work best when used together, bringing
our hit@100 and mAP@100 on FID-crime to (0.226, 0.0520) from (0.009, 0.000).

Spatial features and feature masking. With our data augmentation in
place, we study the effect of spatial feature masking, which helps CriSp match
query print patterns to the relevant spatial locations of the database tread depth
maps. Table 5 shows the influence of using spatial features and feature masking.
Our findings indicate that spatial features, feature masking, and query image
masking during training all contribute greatly to improving performance.

7 Discussions and Conclusions

Ethics and societal impacts. Our work is motivated by the larger goal
of understanding the informational value that shoe tread pattern evidence pro-
vides in criminal investigations and forensic examination. We believe that a large
dataset of tread patterns and retrieval methods will provide a positive impact
as a useful resource for further studies on the human factors and uncertainty
involved in making footwear-match likelihood determinations.

Court systems and footwear examiners do not generally consider matching of
shoe make and model as personally identifying information (many people own
the same brand of shoe) and rely on further detailed examination of acquired
characteristics in conjunction with other evidence to limit false-positives. Never-
theless, there are serious broader concerns about the perils of applying artificial
intelligence-based tools in the criminal justice system [37]. Similar to image re-
trieval in other domains, we have shown high accuracy in matching shoe tread
patterns to query crime-scene evidence, but our research does not address chal-
lenging trade-offs that exist between accuracy and fairness in criminal justice
risk assessments [12].
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Table 5: Ablation of spatial features and feature masking. We validate the
effect of using spatial features and applying feature masking on either our encoder
Enc, which incorporates spatial features during training, or a pretrained ResNet50
which is trained with our data augmentation (cf. Tab. 4). With ResNet50 that does not
utilize spatial features during training, we obtain spatial features by removing the last
pooling operation. We report hit@100 and mAP@100 metrics for FID-crime shoeprints
from val-FID using. Using spatial features from a pretrained ResNet50 boosts retrieval
performance. Moreover, masking the spatial features improves performance further for
both the ResNet50 and our Enc. Lastly, adding query print masking during training
performs the best, yielding hit@100=0.5472 and mAP@100=0.2071.

encoder train w/
spatial feat.

spatial
features

mask
features

mask query
print

FID-crime

hit@100 mAP@100

ResNet50 0.2264 0.0520
ResNet50 ✓ 0.3585 0.0863
ResNet50 ✓ ✓ 0.4245 0.1212

Enc ✓ ✓ 0.3774 0.1137
Enc ✓ ✓ ✓ 0.4528 0.1765
Enc ✓ ✓ ✓ ✓ 0.5472 0.2071

We thus believe that directly applying automated shoe print retrieval meth-
ods in the real world without rigorous justification raises critical ethical issues.
Ameliorating such risks in the criminal justice domain requires joint efforts from
multiple communities including artificial intelligence, forensic science, criminal
justice, legislative science, etc. [59]. We hope our work solicits more attention
from these communities and helps foster careful application of AI-based tools
(e.g., shoe print matching techniques developed in our work).

Limitations. While CriSp significantly outperforms prior methods on this
problem, it still has some limitations. We use CNNs in our work as it is straight-
forward to apply the proposed spatial feature masking, yet transformer networks
might perform better but it is non-trivial to mask out spatial regions in feature
maps. Our work assumes that the crime-scene shoeprints are manually aligned
ahead of time; methods that do not require this might be desired in the future.

Conclusion. In this paper, we propose a method to retrieve and rank the
closest matches to crime-scene shoeprints from a database of shoe tread images.
This is a socially important problem and helps forensic investigations. We intro-
duce a way to learn from large-scale data and propose a spatial feature masking
method to localize the search for patterns over the shoe tread. Our method
consistently outperforms the state-of-the-art on both image retrieval and crime-
scene shoeprint matching methods on our two validation sets that we reprocess
from the widely used FID and more recent ShoeCase datasets.

Acknowledgements. This work was funded by the Center for Statistics and
Applications in Forensic Evidence (CSAFE) through Cooperative Agreements,
70NANB15H176 and 70NANB20H019. Shu Kong is partially supported by the
University of Macau (SRG2023-00044-FST).



CriSp: Leveraging Tread Depth Maps for Crime-Scene Shoeprint Matching 15

References

1. 6pm, http://www.6pm.com 6
2. Zappos, http://www.zappos.com 6
3. AlGarni, G., Hamiane, M.: A novel technique for automatic shoeprint image re-

trieval. Forensic science international 181(1-3), 10–14 (2008) 2, 3
4. Alizadeh, S., Jond, H.B., Nabiyev, V.V., Kose, C.: Automatic retrieval of shoeprints

using modified multi-block local binary pattern. Symmetry 13(2), 296 (2021) 3
5. Alizadeh, S., Kose, C.: Automatic retrieval of shoeprint images using blocked sparse

representation. Forensic science international 277, 103–114 (2017) 2, 3
6. Almaadeed, S., Bouridane, A., Crookes, D., Nibouche, O.: Partial shoeprint re-

trieval using multiple point-of-interest detectors and sift descriptors. Integrated
Computer-Aided Engineering 22(1), 41–58 (2015) 2, 3

7. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn ar-
chitecture for weakly supervised place recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5297–5307 (2016) 3

8. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval.
In: Proceedings of the IEEE international conference on computer vision. pp. 1269–
1277 (2015) 3

9. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: European Conference on Computer Vision (ECCV). pp. 584–599.
Springer (2014) 3

10. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Computer vision and image understanding 110(3), 346–359 (2008) 3

11. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In: Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (1997) 3

12. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal justice
risk assessments: The state of the art. Sociological Methods & Research 50(1), 3–44
(2021) 13

13. Bodziak, W.J.: Footwear impression evidence: detection, recovery, and examina-
tion. CRC Press (2017) 1

14. Bouridane, A., Alexander, A., Nibouche, M., Crookes, D.: Application of fractals
to the detection and classification of shoeprints. In: Proceedings of International
Conference on Image Processing. vol. 1, pp. 474–477 (2000) 2

15. Cao, B., Araujo, A., Sim, J.: Unifying deep local and global features for im-
age search. In: European Conference on Computer Vision (ECCV). pp. 726–743.
Springer (2020) 3

16. Chowdhury, P.N., Bhunia, A.K., Sain, A., Koley, S., Xiang, T., Song, Y.Z.:
Scenetrilogy: On human scene-sketch and its complementarity with photo and text.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2023) 4

17. Datta, A.K., Lee, H.C., Ramotowski, R., Gaensslen, R.: Advances in fingerprint
technology. CRC press (2001) 3

18. De Chazal, P., Flynn, J., Reilly, R.B.: Automated processing of shoeprint images
based on the fourier transform for use in forensic science. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27(3), 341–350 (2005) 2

19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 248–255 (2009) 2, 3



16 S. Shafique et al.

20. Dey, S., Riba, P., Dutta, A., Llados, J., Song, Y.Z.: Doodle to search: Practical zero-
shot sketch-based image retrieval. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2019) 3

21. Dutta, A., Akata, Z.: Semantically tied paired cycle consistency for zero-shot
sketch-based image retrieval. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5089–5098 (2019) 3

22. Efthimiadis, E.N.: Query expansion. Annual review of information science and
technology (ARIST) 31, 121–87 (1996) 5

23. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: Learning
global representations for image search. In: European Conference on Computer
Vision (ECCV). pp. 241–257. Springer (2016) 3

24. Gueham, M., Bouridane, A., Crookes, D.: Automatic recognition of partial
shoeprints based on phase-only correlation. In: IEEE International Conference on
Image Processing. vol. 4, pp. IV–441 (2007) 2

25. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: Unifying fea-
ture and metric learning for patch-based matching. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3279–3286
(2015) 3

26. Hassan, M., Wang, Y., Wang, D., Pang, W., Li, D., Zhou, Y., Xu, D., ur Rahman,
A., Fateh, A.A., Qin, P., et al.: Deep learning model for human-intuitive shoeprint
reconstruction. Expert Systems with Applications 249, 123704 (2024) 3

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 770–778 (2016) 8

28. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot,
A., Liu, C., Krishnan, D.: Supervised contrastive learning. Advances in Neural
Information Processing Systems 33, 18661–18673 (2020) 3, 8, 9, 12

29. Kong, B., Supancic III, J., Ramanan, D., Fowlkes, C.C.: Cross-domain image
matching with deep feature maps. International Journal of Computer Vision
127(11), 1738–1750 (2019) 2, 3, 9, 12

30. Kong, X., Yang, C., Zheng, F.: A novel method for shoeprint recognition in crime
scenes. In: Biometric Recognition: 9th Chinese Conference, CCBR 2014, Shenyang,
China, November 7-9, 2014. Proceedings 9. pp. 498–505. Springer (2014) 2, 3

31. Kortylewski, A., Albrecht, T., Vetter, T.: Unsupervised footwear impression anal-
ysis and retrieval from crime scene data. In: Computer Vision-ACCV 2014 Work-
shops: Singapore, Singapore, November 1-2, 2014, Revised Selected Papers, Part I
12. pp. 644–658. Springer (2015) 2, 3

32. Kortylewski, A., Albrecht, T., Vetter, T.: Unsupervised footwear impression anal-
ysis and retrieval from crime scene data. In: Computer Vision-ACCV 2014 Work-
shops: Singapore, Singapore, November 1-2, 2014, Revised Selected Papers, Part I
12. pp. 644–658. Springer (2015) 2, 5, 7

33. Li, D., Li, Y., Liu, Y.: Shoeprint image retrieval based on dual attention light hash
network. In: Proceedings of the 2021 4th International Conference on Artificial
Intelligence and Pattern Recognition. pp. 354–359 (2021) 3

34. Lin, F., Li, M., Li, D., Hospedales, T., Song, Y.Z., Qi, Y.: Zero-shot everything
sketch-based image retrieval, and in explainable style. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 23349–23358 (2023) 4, 9, 10, 12

35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60, 91–110 (2004) 3



CriSp: Leveraging Tread Depth Maps for Crime-Scene Shoeprint Matching 17

36. Ma, Z., Ding, Y., Wen, S., Xie, J., Jin, Y., Si, Z., Wang, H.: Shoe-print image
retrieval with multi-part weighted cnn. IEEE Access 7, 59728–59736 (2019) 2, 3

37. Malek, M.A.: Criminal courts’ artificial intelligence: the way it reinforces bias and
discrimination. AI and Ethics 2(1), 233–245 (2022) 13

38. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). vol. 2, pp.
2161–2168 (2006) 3

39. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with
attentive deep local features. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV). pp. 3456–3465 (2017) 3

40. Pang, K., Song, Y.Z., Xiang, T., Hospedales, T.M.: Cross-domain generative learn-
ing for fine-grained sketch-based image retrieval. In: BMVC. pp. 1–12 (2017) 4

41. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1–8 (2007) 3

42. Qian, Y., Feng, L., Song, Y., Tao, X., Chen, C.L.: Sketch me that shoe. In: IEEE
Conf. Comput. Vision and Pattern Recognit.(CVPR). pp. 799–807 (2016) 4

43. Radenović, F., Tolias, G., Chum, O.: Cnn image retrieval learns from bow: Unsu-
pervised fine-tuning with hard examples. In: European Conference on Computer
Vision (ECCV). pp. 3–20 (2016) 3

44. Radenović, F., Tolias, G., Chum, O.: Fine-tuning cnn image retrieval with no hu-
man annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence
41(7), 1655–1668 (2018) 3

45. Rida, I., Fei, L., Proencca, H., Nait-Ali, A., Hadid, A.: Forensic shoe-print identi-
fication: a brief survey. arXiv preprint arXiv:1901.01431 (2019) 3

46. Sain, A., Bhunia, A.K., Chowdhury, P.N., Koley, S., Xiang, T., Song, Y.Z.: Clip for
all things zero-shot sketch-based image retrieval, fine-grained or not. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2765–2775 (2023) 4, 9, 12

47. Shafique, S., Kong, B., Kong, S., Fowlkes, C.: Creating a forensic database of
shoeprints from online shoe-tread photos. In: Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV). pp. 858–868 (2023)
2, 3, 4, 6, 12

48. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-
shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops. pp. 806–813 (2014)
3

49. Song, J., Song, Y.Z., Xiang, T., Hospedales, T.M.: Fine-grained image retrieval:
the text/sketch input dilemma. In: BMVC. vol. 2, p. 7 (2017) 4

50. Song, J., Yu, Q., Song, Y.Z., Xiang, T., Hospedales, T.M.: Deep spatial-semantic
attention for fine-grained sketch-based image retrieval. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). pp. 5551–5560 (2017) 4

51. Tibben, A., McGuire, M., Renfro, S., Carriquiry, A.: Shoecase: A data set of mock
crime scene footwear impressions. Data in Brief 50, 109546 (2023) 5, 7

52. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels:
aggregation across single and multiple images. International Journal of Computer
Vision 116, 247–261 (2016) 3

53. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-
pooling of cnn activations. arXiv preprint arXiv:1511.05879 (2015) 3



18 S. Shafique et al.

54. Wei, C.H., Gwo, C.Y.: Alignment of core point for shoeprint analysis and retrieval.
In: International Conference on Information Science, Electronics and Electrical
Engineering. vol. 2, pp. 1069–1072. IEEE (2014) 2, 3

55. Weinzaepfel, P., Lucas, T., Larlus, D., Kalantidis, Y.: Learning super-features for
image retrieval. In: International Conference on Learning Representations (2021)
3, 9, 12

56. Wen, Z., Curran, J., Wevers, G.: Shoeprint image retrieval and crime scene
shoeprint image linking by using convolutional neural network and normalized
cross correlation. Science & Justice 63(4), 439–450 (2023) 3

57. Wu, Y., Dong, X., Shi, G., Zhang, X., Chen, C.: Crime scene shoeprint image
retrieval: A review. Electronics 11(16), 2487 (2022) 3

58. Yelamarthi, S.K., Reddy, S.K., Mishra, A., Mittal, A.: A zero-shot framework
for sketch based image retrieval. In: European Conference on Computer Vision
(ECCV). pp. 300–317 (2018) 3

59. Zavrvsnik, A.: Criminal justice, artificial intelligence systems, and human rights.
In: ERA forum. vol. 20, pp. 567–583. Springer (2020) 14

60. Zhang, Y., Fu, H., Dellandréa, E., Chen, L.: Adapting convolutional neural net-
works on the shoeprint retrieval for forensic use. In: Chinese Conference on Bio-
metric Recognition. pp. 520–527. Springer (2017) 2, 3

61. Zheng, L., Yang, Y., Tian, Q.: Sift meets cnn: A decade survey of instance retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelligence 40(5), 1224–1244
(2017) 3


	 CriSp: Leveraging Tread Depth Maps for Enhanced Crime-Scene Shoeprint Matching -3mm 

