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Extrinsic contribution to nonlinear current induced spin polarization
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Nonlinear spin polarization occurring in the second order of driving electric current is the dominant source of
nonequilibrium magnetization in centrosymmetric or weakly noncentrosymmetric nonmagnetic materials, and
induces nonlinear spin-orbit torque in magnets. Up to now, only the intrinsic mechanism based on anomalous
spin polarizability dipole, which is the spin counterpart of Berry curvature dipole, has been studied, while
disorder-induced mechanisms are still missing. Here, we derive these contributions, which include not only the
anomalous distribution function due to skew scattering and coordinate shift, but also interband coherence effects
given by disorder-induced spin shift and electric-field-induced anomalous scattering amplitude. We demonstrate
these terms and show their importance in a minimal model. A scaling law for nonlinear current-induced spin
polarization is constructed, which may help analyze experimental data in the future.
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I. INTRODUCTION

Current-induced spin polarization (CISP) is a central effect
in spintronics towards spin-charge conversion and electrical
control of spin [1,2]. In linear response to the driving electric
current, the effect was originally proposed in nonmagnetic
materials [3–5], can only appear in noncentrosymmetric crys-
tals [3,6], and has been observed by magneto-optical means
[7,8]. The physics of this effect falls into the standard Boltz-
mann response framework [9], and is parallel to the Drude
conductivity of charge-current response. Recently, spin re-
sponse to the square of driving current was proposed [10],
which can be the leading effect in nonmagnetic crystals where
the inversion symmetry is maintained or not severely broken.
It stems from an anomalous spin carried by spin-orbit-coupled
Bloch electrons under electric field, which is determined by
the momentum-space dipole of anomalous spin polarizability
(ASP), a geometric quantity intrinsic to the band structure.
This is a Berry-phase effect and is exactly the spin counterpart
of the widely studied nonlinear Hall effect induced by Berry
curvature dipole [11,12].

As the nonlinear Hall effect receives significant disorder-
induced contributions other than the Berry curvature dipole
[13–15], one naturally asks about the role of disorder in non-
linear CISP. Moreover, it is anticipated that the interplay of the
ASP-dipole intrinsic and disorder-induced extrinsic contribu-
tions can be manifested via tuning system parameters such
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as the temperature and gate, thus some scaling law [13–25]
is highly desired for understanding experimental observations
of nonlinear CISP. Despite the above importance, the extrinsic
nonlinear CISP has not been studied.

In this work, we develop the semiclassical theory of extrin-
sic contributions to the nonlinear CISP, and derive systematic
formulas for different terms. The focus is on the time-reversal
(T ) even effect, which is allowed in both nonmagnetic and
magnetic systems [10,26]. We find that skew scattering and
coordinate shift, which play basic roles in anomalous Hall
effect [27], also matter for nonlinear spin response. Besides,
the electric field E alters the scattering amplitude, which
induces interband coherence during scattering. This effect
is dubbed, following the terminology of anomalous veloc-
ity that arises from field-induced interband coherence in
drift motion [28,29], as the anomalous scattering amplitude.
These three mechanisms take action in the off-equilibrium
electronic distribution function. In addition, the scattering
potential dresses the Bloch state, leading to an interband
coherence correction to the spin carried by a particular elec-
tron, i.e., a spin shift induced by scattering. We illustrate the
extrinsic nonlinear CISP arising from these mechanisms in
a minimal model, and find that they are in the same order
of magnitude as the ASP dipole contribution [10]. We also
construct the scaling law for the phenomenon of nonlinear
CISP.

Our paper is organized as follows. We present the spin
shift mechanism in Sec. II and emphasize the importance
of field-induced anomalous scattering amplitude in Sec. III.
We show the model calculation of extrinsic contributions to
nonlinear CISP in Sec. IV and present the scaling law in
Sec. V. In Sec. VI, we make some discussions and conclude
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FIG. 1. Schematics of intraband and interband transition processes involved in (a) disorder-induced spin shift and (b) E -field-induced
anomalous scattering amplitude.

our paper. The Appendixes contain the details of formulations
and calculations.

II. DISORDER-INDUCED SPIN SHIFT

The semiclassical response theory is a convenient tool
for approaching E -field driven nonequilibrium phenomena.
It works well when the disorder-induced band broadening
h̄/τ (τ is the carrier scattering time) is much less than the
band-energy separation around Fermi surface [30]. It has been
successfully applied to account for extrinsic contributions in
anomalous and spin Hall effects [31–34], linear spin-orbit
torque [35], as well as nonlinear Hall effects [13,36–39].
Within the semiclassical formalism, the spin density is given
by the summation of the spin polarization sl carried by each
electron weighted by the distribution function fl :

S = 1

V
∑

l

flsl . (1)

Here, V represents the volume of the system, and l = (η, k)
corresponds to the band index η and the wave vector k,
respectively.

From the study of anomalous Hall effect, we know that
both electric field and scattering potential can polarize the
Bloch state, hence alter the expectation value of an observable
on that state [32,33]. Here, in the presence of scattering and
E field, the spin polarization carried by a particular electron is
given by

sl = s0
l + sa

l + sss
l , (2)

where s0
l denotes the expectation value of spin operator

on the unperturbed Bloch state |ηk〉, sa
l and sss

l arise from
field- and scattering-perturbed electronic state, respectively.
Their expressions can be acquired by the recently developed
semiclassical approach for evaluating observables other than
electric current [10,35,40]. In particular,(

sa
l

)
α

= − e

h̄
(ϒl )αβEβ (3)

shares the same origin as the E -field-induced anomalous ve-
locity [29], hence is dubbed as the anomalous spin [10]. Here

and hereafter, the summation over repeated Cartesian indices
α, β.. is implied. The rank-2 tensor

ϒηk = −2h̄2 Im
∑
η′ �=η

sηη′ (k)vη′η(k)

(εηk − εη′k)2
(4)

is the anomalous spin polarizability (ASP). In Eq. (4), εηk

is the band energy, and the numerator involves the interband
matrix elements of spin and velocity operators. On the other
hand,

sss
l = − 2π

∑
η′k′

W o
k,k′δ(εηk − εη′k′ )

× Im

⎡
⎣ ∑

η′′ �=η′

〈uηk|uη′k′ 〉sη′η′′ (k′)〈uη′′k′ |uηk〉
εη′k′ − εη′′k′

−
∑
η′′ �=η

〈uη′′k|uη′k′ 〉〈uη′k′ |uηk〉sηη′′ (k)

εηk − εη′′k

⎤
⎦ (5)

characterizes an effective spin shift due to scattering-
induced interband coherence processes [40] [see schematics
in Fig. 1(a)]. Here, W o

k,k′ = W o
k′,k is the plane-wave part of

the Born scattering amplitude, and we assume scalar disor-
der for concreteness. In the case of static impurity, one has
W o

k,k′ = 〈|V o
k,k′ |2〉c, where 〈...〉c indicates average over random

impurity configuration, and V o
k,k′ is the plane-wave part of the

scattering matrix element.
It is interesting to note that the appearance of disorder-

induced spin shift is also connected to the band geometric
quantity ASP. This connection can be made explicit by con-
sidering scattering in the long-range limit. In this limit, in
Eq. (5), k is very close to k′, hence η′ is forced to be equal
to η. Then, expanding the integrand of Eq. (5) up to the first
order of k′ − k, we get(

sss
l

)
α

= (ϒl )αβ

∑
k′

ω̃
(2)
kk′ (kβ − k′

β ) � (ϒl )αβkβ/τ, (6)

where ω̃
(2)
kk′ = 2π

h̄ 〈|V o
k,k′ |2〉cδ(εηk − εηk′ ) is the scattering rate

for long-ranged disorder in the lowest Born order. The
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integration in Eq. (6) indicates the momentum relaxation kβ/τ

within the momentum relaxation time (τ ) approximation.
The link between sss

l and ASP makes it convenient to
compare the relative importance of field-induced anomalous
spin and disorder-induced spin shift. For electrons around the
Fermi surface, the relative ratio of the two takes the form of(

sa
l

)
α(

sss
l

)
α

∼ −eEτ

h̄kF
. (7)

Here −eEτ measures the shift of Fermi surface in momentum
space, which is usually much less than the Fermi momentum
h̄kF [41].

Although sss is much larger than sa on the Fermi surface,
their contributions to macroscopic nonlinear spin response are
anticipated to be generally in the same order of magnitude. To
see this, we inspect the semiclassical Boltzmann equation that
describes the distribution function fl of electrons:

e

h̄
E · ∂k fl = −

∑
l ′

(ωl ′l fl − ωll ′ fl ′ ). (8)

The right-hand side is the collision integral, where ωl ′l is the
scattering rate from state l to l ′. fl can be solved in ascending
powers of E field:

fl = f0,l + f1,l + f2,l , (9)

where fn,l is the distribution function in the En order. Un-
der the relaxation-time approximation, one has f2,l/ f1,l ∼
−eEτ/h̄kF . Then, according to Eq. (1), the ASP and spin-shift
contributions to spin response in the E2 order are given by∑

l f1,l sa
l and

∑
l f2,l sss

l , respectively, and are of the same
order of magnitude.

The above qualitative analysis shows that the extrinsic con-
tribution to nonlinear spin from the spin-shift mechanism is
comparable to the intrinsic ASP term in the case of smooth
disorder potential. In the later quantitative calculation on a
minimal model, we show the same conclusion for short-
ranged disorder (see the blue and red curves in Fig. 2). One
can thus expect that for nonlinear spin, the extrinsic and in-
trinsic contributions are in general both important.

III. FIELD-INDUCED ANOMALOUS
SCATTERING AMPLITUDE

From the study of nonlinear Hall effect [15], it is known
that the skew scattering and the field effect during scattering,
which are beyond the above simple relaxation-time approxi-
mation, can also contribute to nonlinear response by altering
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-6

-4

-2

0

2

4

ASP dipole
Spin shift
Coordinate shift
Skew scattering
Anomalous
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FIG. 2. The second-order nonlinear CISP of model (12), plotted
according to the expressions in Table. I. The total skew scattering
comes from the sum of Gaussian and non-Gaussian terms. Parame-
ters are chosen as w = 0.1 eV Å, v = 1 eV Å, � = 0.1 eV, niV 2

0 =
102 (eV Å)2 and niV 3

1 = 104 eV3 Å4.

the distribution function. The skew scattering stems from
higher-order Born expansions of the scattering rate, includ-
ing the non-Gaussian conventional skew scattering and the
Gaussian skew scattering [32,42–45]. The field effect during
scattering consists of not only the electric field working upon
the coordinate shift process, which has been known for a
long time as a part of the side-jump mechanism for linear
anomalous Hall effect [27,32], but also the field-corrected
scattering amplitude, which is unique to nonlinear response
and starts to contribute from the E2 order [38].

As the skew scattering and coordinate shift are well known,
the pertaining formulation is relegated to the Appendixes.
As for the relatively new nonlinear contribution from field-
corrected scattering amplitude, it has thus far often been
regarded as another kind of side-jump contribution, although
its physical origin and picture are not related to any side
jump of electron. Here, considering its origin in the field-
polarized Bloch state, which also underlies the anomalous
velocity and anomalous spin of Bloch electrons [10], we dub
this contribution as the anomalous scattering amplitude. In the
case of scalar disorder, the corresponding change of scattering
rate in the lowest Born order is given by ω

(2),asa
l ′l = ω

(2),asa
ll ′ =

2π
h̄ W asa

l ′l δ(εl − εl ′ ), where the anomalous scattering amplitude
reads

W asa
l ′l = W o

k,k′ (−eE ) · 2 Re

[ ∑
η′′ �=η′

〈uηk|uη′k′ 〉Aη′η′′ (k′)〈uη′′k′ |uηk〉
εη′k′ − εη′′k′

+
∑
η′′ �=η

〈uηk|uη′k′ 〉〈uη′k′ |uη′′k〉Aη′′η(k)

εηk − εη′′k

]
, (10)

with Aη′η(k) = 〈uη′k|i∂k|uηk〉 being the interband Berry con-
nection. The schematics of intraband and interband transition
processes involved in W asa

l ′l are shown in Fig. 1(b). Com-
paring the E -field-induced anomalous scattering amplitude

Eq. (10) [Fig. 1(b)] with the disorder induced spin shift Eq. (5)
[Fig. 1(a)], one observes interesting structural similarity.

One may immediately ask why this anomalous scattering
amplitude has not been found in any linear response of current
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TABLE I. Mechanisms and expressions for extrinsic contributions to the nonlinear CISP response tensor of model (12). Short-range
random scalar impurity potential V (r) = ∑

i Viδ(r − Ri ) is considered, with 〈Vi〉c = 0, 〈V 2
i 〉c = V 2

0 , and 〈V 3
i 〉c = V 3

1 , and ni is the density of
impurities.

Mechanism Nonlinear response coefficient

Anomalous spin polarizability dipole Rasp
xxx = − 3e2 h̄vw�(�2−ε2

F )

2πniV 2
0 ε3

F (3�2+ε2
F )

Spin shift Rss
xxx = e2 h̄vw�(�2−ε2

F )(33�2−5ε2
F )

4πniV 2
0 ε3

F (3�2+ε2
F )2

Coordinate shift Rcs
xxx = e2 h̄vw�(�2−ε2

F )(17�2+3ε2
F )

4πniV 2
0 ε3

F (3�2+ε2
F )2

Anomalous scattering amplitude Rasa
xxx = 3e2 h̄vw�(�2−ε2

F )2

2πniV 2
0 ε3

F (3�2+ε2
F )2

Conventional skew scattering Rcsk
xxx = − e2 h̄vwV 3

1 �(�2−ε2
F )2 (9�2+5ε2

F )

πε2
F n2

i V 6
0 (3�2+ε2

F )3

Gaussian skew scattering RGsk
xxx = − e2 h̄vw�(�2−ε2

F )2 (77�2+13ε2
F )

4πniV 2
0 ε3

F (3�2+ε2
F )3

and spin. In fact, substituting ω
(2),asa
l ′l into the collision integral

of Boltzmann equation (8), one finds that the pertaining term
vanishes at the first order of E field. This means that the
contribution from anomalous scattering amplitude is a purely
nonlinear response phenomenon. In particular, in the E2 order,
the anomalous scattering amplitude gives rise to an effective
driving term in the Boltzmann equation, which reads∑

l ′
ω

(2),asa
l ′l ( f1,l − f1,l ′ ) = −

∑
l ′

ω
(2)
l ′l

(
f asa
2,l − f asa

2,l ′
)
. (11)

The solution of this equation, f asa
2,l , yields an additional distri-

bution function in the E2 order.

IV. MODEL CALCULATION

Gathering the aforementioned ingredients, one can get sev-
eral extrinsic contributions to the T -even nonlinear CISP by
Eq. (1), with the detailed formulation presented in the Ap-
pendixes. To illustrate these contributions, we apply the theory
to a four-band k · p model with inversion symmetry

H (k) = wkxσz + v(kxsy − kysx )σz + �sz, (12)

where si’s and σi’s are the Pauli matrices representing the spin
and orbital degrees of freedom, respectively; k = (kx, ky) is
the wave vector; w, v, and � are the model parameters. w tilts
the Dirac cone along the x direction. This model consists of
two copies of tilted Weyl models connected by the inversion
operation. It is defined around one valley in the Brillouin zone
of nonmagnetic systems, whereas its time-reversed counter-
part can be written down for the other valley. As we are
considering a T -even response, the existence of T -connected
two valleys simply doubles the result. Furthermore, regarding
symmetry, the presence of inversion forbids the linear CISP,
and the MxT symmetry of H (k) ensures that for the second-
order nonlinear response defined by

Sα = Rαβγ EβEγ , (13)

only Rxxx, Rxyy, Ry(xy), and Rz(xy) are allowed. Here Rz(xy) ≡
(Rzxy + Rzyx )/2. For illustrative purpose, we calculate Rxxx

in the following.
We consider short-range random impurity potential V (r) =∑
i Viδ(r − Ri ), with 〈Vi〉c = 0, 〈V 2

i 〉c = V 2
0 and 〈V 3

i 〉c = V 3
1 ,

and solve the Boltzmann equation with skew scattering, co-
ordinate shift, and anomalous scattering amplitude, following
the method and approximations adopted in Refs. [13,36–38].
In particular, to obtain analytic result, we assume w 	 v. The
noncrossing approximation is employed to simplify calcula-
tions of the Gaussian skew scattering. Although the Gaussian
skew scattering from crossed disorder lines is expected to be
quantitatively important in general, as in the anomalous Hall
effect [42–45], we can take the noncrossing approximation
because the main purpose here is to illustrate the existence
and importance of extrinsic contributions to nonlinear CISP.
Moreover, in qualitative aspect, the crossed Gaussian skew
scattering has the same scaling behavior as its noncrossed
companion.

The expressions of Rxxx induced by different semiclassical
mechanisms are shown in Table I. The calculation details are
provided in the Appendixes. One sees that the common factor
(�2 − ε2

F ) in the numerator of all contributions ensures the
vanishing of each term at the band edge. The tilt term w

is crucial, because it breaks out-of-plane rotational axis that
would otherwise forbid the in-plane response. In Fig. 2, we
plot different contributions as a function of the Fermi energy,
and find them to be comparable in magnitude.

V. SCALING LAW OF THE NONLINEAR CISP

Because of the coexistence of nonlinear CISP from mul-
tiple origins, it is helpful to have some guidelines for
understanding experimental data. In this regard, the scaling
law between the detected spin signal and longitudinal resis-
tivity (conductivity) may render useful information, which
has been shown in anomalous and spin Hall effects [17,18],
spin-orbit torque [2], as well as nonlinear Hall effect [13,14].
Given the parallel formulation of nonlinear CISP and non-
linear Hall effect, they should possess the same scaling law
(one can readily check this). The key reason for this coin-
cidence is that the scaling law does not rely on details of
individual contributions to spin or current but only on their
scaling forms with respect to the disorder concentration and
strength. More formally, both these two can be obtained from
A = 1

V �l flal where al = evl for electric current and al = sl

for spin polarization. The skew scattering, coordinate shift,
and anomalous scattering amplitude mechanisms contribute
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to response through the distribution function fl , which are the
same for both responses. Hence these mechanisms have the
same scaling law. Furthermore, both the anomalous velocity
(corresponding to Berry curvature dipole) and anomalous spin
(corresponding to ASP dipole) come from the E-field-induced
modification of Bloch state, and hence they also obey the same
scaling law. Besides, the side-jump velocity and spin shift
are both from disorder-induced dressing of Bloch state, thus
have the same scaling dependence on disorder. For instance,
in the presence of two types of static disorder, in which one is
impurity (i = 0) and the other is phonon (i = 1) [13,17], one
has

Rρ = C + A0
ρ0

ρ2
+

∑
i=0,1

Ci
ρi

ρ
+

∑
i, j=0,1

Ci j
ρiρ j

ρ2
, (14)

where ρ = ρ0 + ρ1 is the longitudinal resistivity, and ρ0 is
the residual resistivity. The scaling parameter C stands for
the ASP dipole contribution, A0 and Ci j are from conven-
tional and Gaussian skew scattering, respectively, and Ci =
Css

i + Ccs
i + Casa

i from the spin shift, coordinate shift, as well
as the anomalous scattering amplitude. The scaling law can
also be expressed in terms of longitudinal conductivity (σ �
1/ρ, σ0 � 1/ρ0):

R/σ − A0σ
2/σ0 = B + B′σ/σ0 + B′′(σ/σ0)2, (15)

where B = C + C1 + C11, B′ = C0 − C1 + C01 + C10 − 2C11,
and B′′ = C00 + C11 − C01 − C10. Note that the static approx-
imation of electron-phonon scattering is practically valid as
long as ρ has a nearly linear temperature dependence [19],
and this behavior usually extends to quite low temperatures in
moderately disordered samples fabricated in most spintronics
experiments [2].

At low temperatures where σ � σ0, scaling Eq. (15) be-
comes R/σ = A0σ0 + C + C0 + C00, by which A0 can be
determined in experiments. Then, at finite temperatures,
R/σ − A0σ

2/σ0 can be fitted as a parabolic function of σ/σ0.
Noticeably, the linear and quadratic terms in this fitting can
only arise from extrinsic mechanisms.

VI. DISCUSSION

We have shown the importance of extrinsic contributions
to nonlinear CISP by semiquantitative analysis and quantita-
tive model calculations. We highlight the nonlinear responses
from disorder-induced spin shift and field-induced anomalous
scattering amplitude, which have received little attention in
previous studies of spintronics and nonlinear electronics. The
proposed scaling law is expected to serve as a first step to un-
derstand the interplay of intrinsic and extrinsic contributions
in experimental data.

Besides nonlinear CISP, the T -even nonlinear current-
induced orbital magnetization has also received recent interest
[46]. Despite the complexity of accurately formulating the
nonequilibrium orbital magnetization in metals introduced by
the nonlocality of orbital magnetic dipole operator [47], the
scaling law as a qualitative result should still be the same as
that for nonlinear CISP.

In this work we focused on T -even nonlinear CISP, thus the
scaling law obtained is the same as that for T -even nonlinear
charge current response [13]. In magnetic systems, T -odd

nonlinear CISP can also occur [48,49], and the pertinent scal-
ing law is more involved, which is the same as that for T -odd
nonlinear charge transport [39].

When employing the scaling law, temperature varying
measurements have been usually taken to tune the relative pro-
portions of electron-phonon and electron-impurity scattering
[13–25]. However, Joule heating will alter the practical tem-
perature of electron and phonon systems, and hence influences
the scaling analysis. The subtraction of Joule heating effect in
analyzing nonlinear responses is thus a question that deserves
thorough studies in the future.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 12174028 and No.
12374101), and UM Start-up Grant (Grant No. SRG2023-
00033-IAPME).

APPENDIX A: NONLINEAR SPIN RESPONSE
FORMULATION

According to the Fermi golden rule, the scattering rate in
Eq. (8) in the main text is

ωl ′l = 2π

h̄
|Tl ′l |2δ(εl − εl ′ ). (A1)

Here, Tl ′l which is known as the T-matrix is defined as

Tl ′l = 〈l ′|V̂imp|�l〉, (A2)

where V̂ is the impurity potential operator and |�l〉 is the
eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂ . |�l〉 satisfies
the Lippman-Schwinger equation

|�l〉 = |l〉 + V̂imp

εl − Ĥ0 + iδ
|�l〉. (A3)

We consider weak disorder here and expand the scattering rate
up to the fourth order of V

ωl ′l ≈ ω
(2)
l ′l + ω

(3a)
l ′l + ω

(4a)
l ′l , (A4)

where ω
(3a)
l ′l and ω

(4a)
l ′l are the asymmetric parts of the third-

and fourth-order scattering rate respectively. Here we omit the
symmetric parts of both of them because they only renormal-
ize the second-order result. In the nonlinear response of spin
to the electric field, we need to consider the effect of the E
field during the scattering of semiclassical electron. We only
consider the modification to the second-order of V part and
ignore the mixed contributions from different mechanisms.
Hence, ω

(2)
l ′l can be written as [38]

ω
(2)
l ′l = ω

(2s)
l ′l + ω

(2),cs
l ′l + ω

(2),asa
l ′l . (A5)

The first term on the right side of Eq. (A5)

ω
(2s)
l ′l = 2π

h̄
〈|Vl ′l |2〉cδ(εl − εl ′ ) (A6)

is E-field independent term, where 〈· · ·〉c stands for disorder
average. And the second term

ω
(2),cs
l ′l = 2π

h̄
〈|Vl ′l |2〉c

∂δ(εl − εl ′ )

∂εl
eE · δrl ′l (A7)
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arises from the coordinate shift during scattering, where

δrl ′l = Al ′ − Al − (∂k + ∂k′ ) arg(Vl ′l ) (A8)

and Al = 〈uηk|i∂k|uηk〉 is the intraband Berry connection. The
third term originating from interband virtual transition only
contributes to nonlinear responses, that is

ω
(2),asa
l ′l = 2π

h̄
W asa

l ′l δ(εl − εl ′ ), (A9)

W asa
l ′l = −eE ·

′∑
l ′′

2 Re

〈
Vll ′Vl ′l ′′Al ′′l

εl − εl ′′
+ Vll ′Al ′l ′′Vl ′′l

εl ′ − εl ′′

〉
,

(A10)

where Al ′l = 〈uη′k|i∂k|uηk〉 is the interband Berry connection.
Substituting Eqs. (A4) and (A5) into Eq. (8) in the main
text, we can decompose the Boltzmann equation into five
equations based on the different scattering mechanisms. The
distribution function can be decomposed as

fn,l = f L
n,l + f cs

n,l + f asa
n,l + f csk

n,l + f Gsk
n,l (A11)

corresponding to the following five equations:

− e

h̄
E · ∂k f L

n−1,l =
∑

l ′
ω

(2s)
l ′l

(
f L
n,l − f L

n,l ′
)
, (A12)

− e

h̄
E · ∂k f cs

n−1,l −
∑

l ′
ω

(2),cs
l ′l

(
f L
n−1,l − f L

n−1,l ′
)

=
∑

l ′
ω

(2s)
l ′l

(
f cs
n,l − f cs

n,l ′
)
, (A13)

− e

h̄
E · ∂k f asa

n−1,l −
∑

l ′
ω

(2),asa
l ′l

(
f L
n−1,l − f L

n−1,l ′
)

=
∑

l ′
ω

(2s)
l ′l

(
f asa
n,l − f asa

n,l ′
)
, (A14)

− e

h̄
E · ∂k f csk

n−1,l =
∑

l ′
ω

(2s)
l ′l

(
f csk
n,l − f csk

n,l ′
)

+
∑

l ′

(
ω

(3a)
l ′l f L

n,l − ω
(3a)
ll ′ f L

n,l ′
)
, (A15)

and

− e

h̄
E · ∂k f Gsk

n−1,l =
∑

l ′
ω

(2s)
l ′l

(
f Gsk
n,l − f Gsk

n,l ′
)

+
∑

l ′

(
ω

(4a)
l ′l f L

n,l − ω
(4a)
ll ′ f L

n,l ′
)
. (A16)

f L
n,l arises from conventional symmetric scattering, and f L

0,l is
just Fermi distribution. f cs

n,l and f asa
n,l arise from the modifica-

tion of the scattering rate by the electric field. f csk
n,l and f Gsk

n,l
correspond to the conventional non-Gaussian disorder contri-
bution and Gaussian disorder contribution, respectively. All
contributions except f L

n,l are zero when n = 0. In particular,
f asa
1,l = 0, hence it does not contribute to the linear response.

To solve the decomposed Boltzmann equations Eqs. (A12)–
(A16), we take the relaxation-time approximation [13] that for
n > 0

∑
l ′

ω
(2s)
l ′l

(
f i
n,l − f i

n,l ′
) = f i

n,l

τl
, (A17)

where the superscript i represents any of the contributions
mentioned above. Then we can obtain the iterative form for
the distribution functions:

f L
n,l = − e

h̄
τlE · ∂k f L

n−1,l, (A18)

f cs
n,l = − e

h̄
τlE · ∂k f cs

n−1,l − τl

∑
l ′

ω
(2),cs
l ′l

(
f L
n−1,l − f L

n−1,l ′
)
,

(A19)

f asa
n,l = − e

h̄
τlE · ∂k f asa

n−1,l − τl

∑
l ′

ω
(2),asa
l ′l

(
f L
n−1,l − f L

n−1,l ′
)
,

(A20)

f csk
n,l = − e

h̄
τlE · ∂k f csk

n−1,l − τl

∑
l ′

(
ω

(3a)
l ′l f L

n,l − ω
(3a)
ll ′ f L

n,l ′
)
,

(A21)

and

f Gsk
n,l = − e

h̄
τlE · ∂k f Gsk

n−1,l − τl

∑
l ′

(
ω

(4a)
l ′l f L

n,l − ω
(4a)
ll ′ f L

n,l ′
)
.

(A22)

Theoretically, we can obtain distribution functions of any
order. To obtain the second-order spin responses, we firstly
consider the first-order distribution functions. We can easily
obtain

f L
1,l = − e

h̄
τlE · ∂k f L

0,l , (A23)

f cs
1,l = − τl

∑
l ′

ω
(2),cs
l ′l

(
f L
0,l − f L

0,l ′
)
, (A24)

f asa
1,l =0, (A25)

f csk
1,l = e

h̄
τl

∑
l ′

ω
(3a)
l ′l

(
τlE · ∂k f L

0,l + τl ′E · ∂k′ f L
0,l ′

)
, (A26)

and

f Gsk
1,l = e

h̄
τl

∑
l ′

ω
(4a)
l ′l

(
τlE · ∂k f L

0,l + τl ′E · ∂k′ f L
0,l ′

)
. (A27)

One should note that f asa
1,l = 0 because δ(εl − εl ′ ) in ω

(2),asa
l ′l

times ( f L
0,l − f L

0,l ′ ) is zero. Then, we substitute the first-order
results back into Eqs. (A18)–(A22), obtaining

f L
2,l = e2

h̄2 τlE · ∂k
(
τl E · ∂k f L

0,l

)
, (A28)

f cs
2,l = e

h̄
τlE · ∂k

[
τl

∑
l ′

ω
(2),cs
l ′l

(
f L
0,l − f L

0,l ′
)]

+ e

h̄
τl

∑
l ′

ω
(2),cs
l ′l

(
τlE · ∂k f L

0,l − τl ′E · ∂k′ f L
0,l ′

)
, (A29)

f asa
2,l = e

h̄
τl

∑
l ′

ω
(2),asa
l ′l

(
τlE · ∂k f L

0,l − τl ′E · ∂k′ f L
0,l ′

)
, (A30)

f csk
2,l = − e2

h̄2 τlE · ∂k

[
τl

∑
l ′

ω
(3a)
l ′l

(
τlE · ∂k f L

0,l+τl ′E · ∂k′ f L
0,l ′

)]

− e2

h̄2 τl

∑
l ′

ω
(3a)
l ′l

[
τlE · ∂k

(
τlE · ∂k f L

0,l

)
+ τl ′E · ∂k′

(
τl ′E · ∂k′ f L

0,l ′
)]

, (A31)
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and

f Gsk
2,l = − e2

h̄2 τlE · ∂k

[
τl

∑
l ′

ω
(4a)
l ′l

(
τlE · ∂k f L

0,l+τl ′E · ∂k′ f L
0,l ′

)]

− e2

h̄2 τl

∑
l ′

ω
(4a)
l ′l

[
τlE · ∂k

(
τlE · ∂k f L

0,l

)
+ τl ′E · ∂k′

(
τl ′E · ∂k′ f L

0,l ′
)]

. (A32)

For electron wave packet, the spin is not equal to the
expectation of the spin operator when spin-orbit coupling
exists. Both E-field and disorder scattering can correct the
spin carried by wave packet. The wave-packet spin induced
by electric field called anomalous spin [10] is

sa
l = −2 Re

⎡
⎣∑

l ′ �=l

sηη′ (k)
eE · Aη′η(k)

εηk − εη′k

⎤
⎦. (A33)

And disorder scattering can also bring spin correction, called
side-jump spin, is

sss
l = − 2π

∑
η′k′

〈∣∣V o
k,k′

∣∣2〉
cδ(εηk − εη′k′ )

× Im

[ ∑
η′′ �=η′

〈uηk|uη′k′ 〉〈uη′′k′ |uηk〉sη′η′′ (k′)
εη′k′ − εη′′k′

−
∑
η′′ �=η

〈uη′′k|uη′k′ 〉〈uη′k′ |uηk〉sηη′′ (k)

εηk − εη′′k

]
, (A34)

where V 0
k,k′ is the plane-wave part of Vl ′l . Substituting

Eq. (2) in the main text and decomposed distribution function
Eq. (A11) into Eq. (1) in the main text, the spin density can be
written as

sn = 1

V
∑

l

(
f L
n,ls

0
l + f L

n,ls
ss
l + f L

n−1,l s
a
l + f csk

n,l s0
l

+ f Gsk
n,l s0

l + f cs
n,ls

0
l + f asa

n,l s0
l

)
. (A35)

APPENDIX B: TILTED 2D MODEL

1. Electronic Structure

Now consider the 2D model Eq. (12) in the main text. The
band structure reads

ε±
k = wkx ±

√
v2k2 + m2 (B1)

with k =
√

k2
x + k2

y . And the corresponding eigenstates are

|±, k〉 = 1√
V

eik·r|u±,k〉, (B2)

where V is the volume of the system and the spinor part is

|u+,k〉 =

⎛
⎜⎜⎝

i cos
θ

2

− sin
θ

2
eiφ

⎞
⎟⎟⎠, |u−,k〉 =

⎛
⎜⎜⎝

i sin
θ

2

cos
θ

2
eiφ

⎞
⎟⎟⎠. (B3)

Here, we adopt

cos θ = �√
v2k2 + �2

, tan φ = ky

kx
(B4)

for simplicity. The group velocity is

v0,x
±,k = 1

h̄
(w ± v sin θ cos φ), (B5)

v
0,y
±,k = 1

h̄
(±v sin θ sin φ). (B6)

And the spin expectation of the spin operator is

s0
±,k = ± h̄

2
(− sin θ sin φ, sin θ cos φ, cos θ ). (B7)

The intraband Berry connections are

Ax,+
k =v sin φ cos θ tan

(
θ
2

)
2�

, (B8)

Ay,+
k = − v cos φ cos θ tan

(
θ
2

)
2�

, (B9)

Ax,−
k =v sin φ cos θ cot

(
θ
2

)
2�

, (B10)

Ay,−
k = − v cos φ cos θ cot

(
θ
2

)
2�

. (B11)

And interband Berry connections are

Ax,+−
k = − v cos θ (sin φ − i cos φ cos θ )

2�
, (B12)

Ay,+−
k =v cos θ (cos φ + i sin φ cos θ )

2�
, (B13)

Ax,−+
k = − v cos θ (sin φ + i cos φ cos θ )

2�
, (B14)

Ay,−+
k =v cos θ (cos φ − i sin φ cos θ )

2�
. (B15)

Then the anomalous spin for upper band is

sa
+,k = evh̄ cos2 θ

4�2
(Ex cos θ, Ey cos θ, Ex sin φ sin θ

−Ey cos φ sin θ ) (B16)

and the Berry curvature for each band is

�±
k = ∓v2 cos3 θ

2�2
. (B17)

2. Disorder Scattering

Assuming V̂imp = ∑
j Vjδ(r − Pj ), the element of impurity

potential is

Vl,l ′ = V o
k,k′ 〈uηk|uη′k′ 〉, (B18)

where V 0
k,k′ = ∑

j Vjei(k′−k)·Pj /V . We assume that the Fermi
level lies in the upper bands, then the second-order scattering
rate is

ω
(2s)
k′k = 2π

h̄
〈|V ++

k′k |2〉cδ(εl − εl ′ )

= πniV0
2

h̄
[1 + cos θ cos θ ′ + cos(φ − φ′) sin θ sin θ ′]

× δ(ε+
k − ε+

k′ ). (B19)
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The asymmetric part of third-order scattering is

ω
(3a)
kk′ =ω

(3)
kk′ − ω

(3)
k′k

2
= π

h̄

∑
l ′′

〈
V ++

kk′ V +η′′

k′k′′ V η′′+
k′′k − V ++

k′k V +η′′

kk′′ V η′′+
k′′k′

ε+
k′ − ε

η′′
k′′ − iδ

+ c.c.

〉
c

δ(ε+
k − ε+

k′ )

≈π�niV1
3

4v3h̄
[2v sin θ sin θ ′ sin(φ − φ′) + w(cos θ + cos θ ′)(sin φ tan θ − sin φ′ tan θ ′)]δ(ε+

k − ε+
k′ ). (B20)

For fourth-order scattering, we only take into account the Gaussian part in the noncrossing approximation. Hence the fourth-order
scattering rate for the upper band is

ω
(4)
kk′ =2π

h̄

⎡
⎣∑

η′′k′′

∑
η′′′k′′′

〈
V η′′+

k′′k V +η′′′

kk′′′
〉
c

〈
V η′′′+

k′′′k′ V +η′′

k′k′′
〉
c(

ε+
k′ − ε

η′′
k′′ − iδ

)(
ε+

k′ − ε
η′′′
k′′′ + iδ

)
⎤
⎦δ(ε+

k − ε+
k′ )

+ 2π

h̄

⎡
⎣∑

η′′k′′

∑
η′′′k′′′

〈
V ++

k′k V +η′′

kk′′
〉
c

〈
V η′′η′′′

k′′k′′′ V η′′′+
k′′′k′

〉
c(

ε+
k′ − ε

η′′
k′′ + iδ

)(
ε+

k′ − ε
η′′′
k′′′ + iδ

) + c.c.

⎤
⎦δ(ε+

k − ε+
k′ )

+ 2π

h̄

⎡
⎣∑

η′′k′′

∑
η′′′k′′′

〈
V ++

k′k V η′′′+
k′′′k

〉
c

〈
V +η′′

kk′′ V η′′η′′′

k′′k′′′
〉
c(

ε+
k′ − ε

η′′
k′′ + iδ

)(
ε+

k′ − ε
η′′′
k′′′ + iδ

) + c.c.

⎤
⎦δ(ε+

k − ε+
k′ ). (B21)

After some algebraic manipulations, the asymmetric part of fourth-order scattering is

ω
(4a)
kk′ =ω

(4)
kk′ − ω

(4)
k′k

2
≈ 3πn2

i V 4
0

8v2 h̄
sin θ sin θ ′ sin(φ − φ′)(cos θ + cos θ ′)

+ πwn2
i V 4

0

8v3h̄
[− sin θ sin θ ′ sin(φ − φ′)(cos φ sin θ cos θ + cos φ′ sin θ ′ cos θ ′)]

+ πwn2
i V 4

0

32v3h̄
(cos 2θ + cos 2θ ′ + 14)(sin φ sin θ cos θ ′ − sin φ′ cos θ sin θ ′)

+ πwn2
i V 4

0

8v3h̄
(sin φ tan θ − sin φ′ tan θ ′)(cos2 θ + cos2 θ ′). (B22)

To obtain an analytic result, we take the isotropic constant relaxation time (t = 0), that is

1

τ
=

∑
k′

ω
(2s)
kk′ [1 − cos(φ − φ′)]δ(εF − ε+

k′ ) = niV 2
0

(
ε2

F + 3�2
)

4h̄v2εF
. (B23)

We can similarly define the relaxation time for non-Gaussian scattering

1

τsk
=

∑
k′

ω
(3a)
kk′ sin(φ − φ′)δ(εF − ε+

k′ ) = niV1
3�

(
ε2

F − �2
)

8h̄v4εF
. (B24)

The coordinate shift of semiclassical electron during scattering for upper band is

δr++
k′k = v(cos θ + cos θ ′)(sin φ′ cos θ sin θ ′ − sin φ sin θ cos θ ′)

2�(sin θ sin θ ′ cos(φ − φ′) + cos θ cos θ ′ + 1)
. (B25)

Then the side-jump velocity v
s j
l = ∑

l ′ ω
(2s)
l ′l δrk′k is

v
x,sj
+,k =niV0

2 sin θ cos θ [w sin(2φ) sin θ − 4v sin φ]

8v2 h̄
, (B26)

v
y,sj
+,k =niV0

2 cos θ [−2 cos φ sin θ (w cos φ sin θ − 2v) + w(cos2 θ + 3)]

8v2 h̄
. (B27)

And the spin shift is

sx,sj
+,k = − niV0

2h̄ cos θ [−2 cos φ sin θ (w cos φ sin θ − 2v) + w cos2 θ + 3w]

16v3
, (B28)

sy,sj
+,k =niV0

2h̄ sin φ sin θ cos θ (w cos φ sin θ − 2v)

8v3
, (B29)

sz,sj
+,k = − niV0

2wh̄ sin φ sin θ [cos(2θ ) + 7]

32v3
. (B30)
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