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ABSTRACT

Image databases for quality assessment are helpful to evalu-
ate the performance of objective assessment methods. Rec-
ommendations in regard to the constitution of databases
and experimental methods of the subjective assessment have
been proposed to ensure the database a good ground truth
for the validation of objective quality assessment methods.
However, these restrictions make databases scale-limited by
covering small number of scenes distorted by few levels.
To enrich IQA databases and increase the generalization
capability of IQA models, we devise an effective image
augmentation method. The two-stages scheme consists of
the image-label pairs generation by minimizing the free
energy between the pristine image and its augmentation as
well as the distortion level interpolation which is based on
the monotonicity of the perceptual quality with the severity
of distortion. The experimental results show the ability of
the augmented database to improve the prediction accuracy
of learning-based no-reference image quality assessment
metrics which in turn demonstrates the effectiveness of our
method.

Index Terms— Image quality assessment ( IQA ), no-
reference, image augmentation, generalization capability

I. INTRODUCTION

With the rapid development of visual acquisition and
display technologies, digital images are ubiquitous in our
life. Those images often suffer from quality degradation
caused by various distortions, hence the devising of effec-
tive image quality assessment (IQA) algorithms remains an
important topic of research. In the prevalent effective no-
reference (NR) IQA metrics, it is a common strategy to
employ the natural scene statistics (NSS) [1], [2], [3], [4],
[5], [6]. And some of these models that employ statistical
features to measure the severity of distortions follow the
two-stages scheme: extraction of statistical features, then
regression model learning. It has been observed that after
suitable normalization, NSS based features follow statistical
laws well.

However, the small scale of current IQA databases causes
some problems, among which the unsuitability to serve as
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the training dataset for objective assessment metrics is com-
mon. In IQA databases, the distorted images are generated by
adding different levels of distortions into reference images.
The subjective measurements will provide the mean opinion
scores (MOSs) or the difference of quality scores (DMOSs)
which can be used as the ground truth labels. To obtain
the accurate labels, the formations of IQA databases should
be under the guidelines of recommendations regarding the
subjective assessment methods [7], [8], [9]. The images
should be evaluated in one session to minimize the scale
mismatches. The time of subjective assessment should be
designed to minimize the effect of observer fatigue. And
the introduced distortion levels should guarantee enough
perceptual difference for the accurate rank order. These
factors can ensure the database a good ground truth for the
validation of objective quality assessment methods but also
make the database to be scale-limited.

More detailedly, the number of undistorted images in
databases is far from enough to cover natural scenes, and
the number of distortion levels for pristine images is also
limited [10]. The small number of scenes and the sparsity
of distortion levels are liable to generate scene-specific or
distortion level-specific features, and the employment of
these features in objective IQA methods is liable to decrease
their generalization capability. For learning based methods,
these problems are likely to cause overfitting during the
model training which tends to happen when the amount
of training data is not large enough to support model’s
expressive power. These are inevitable problems of the rec-
ommendations regarding the subjective assessment methods.
In this paper, we devise an effective image augmentation
method to help enrich the existing IQA databases. The
method consists of two main parts which are the generation
of augmentations from pristine images and the interpolation
of distortion levels. We resort to the free-energy princi-
ple [11] to obtain the perceptually similar images as the
augmentation of the source image by minimizing the free
energy between the pristine image and its augmentation. The
interpolation of distortion level is based on the monotonicity
of the perceptual quality with the severity of distortion [12].
The shape of the relation curve is empirically determined by
the properties of HVS. And the effectiveness of augmented
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image-label pairs is demonstrated by their ability to improve
the prediction accuracy of learning based methods.

The rest of this paper is organized as follows. Section II
first presents the proposed database augmentation method.
In Section III, the effectiveness of the method is proved by
comparisons of the experimental results. Finally, concluding
remarks are given in Section IV.

II. IQA DATABASE AUGMENTATION METHOD

Given an image I as the visual stimulus, the free energy
principle suggests an internal generative model G to govern
the cognitive process in the brain. The model G can adapt
itself to different scenes by varying the parameter vector
0 [13]. The perception of image I by the brain can be
simulated by the integration defined in Eq. (1).

—log/P(I,9|g)d9. )

The brain’s working can be represented by the internal
generative model G and the behavior of the model can be
characterized by parameter 6. For the purpose of calculation,
we choose mathematical model G’ to simulate the internal
generative model and let Q(0]1) = P(A|I,G’). The latent
assumption G of model can be dropped for simplicity.
According to Jensen’s inequality we have

~log P(I|G) =

—log P(I

0)
/me emw )

Then we define the right side of Eq. (2) as the free energy:
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By the chain rule, P(I,0) = (I|9) (#) and we can

write (3) into
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The KullbackLeibler divergence is a measurement between
the approximated densities and the true prior of the model
parameters. The term Eq[log P(I|6)] is the weight-averaged
likehood over the approximated posterior density. And the 6
can be derived by = arg min F(0]1).

Here we hypothesize the 2D linear autoregressive (AR)
model as the mathematical expression of the internal gen-
erative model G for the high description capability of AR
model for natural images [13]. The AR model is defined as

X (zn)a(z,) +en Q)

where x*(z,,) is a row-vector that is formed by k neighbors
of the nth pixel z,, a(z,) = (ai,as,as,...,ax)T is the
coefficients of AR model and the ¢, is the residual. When the

In -
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assumed mathematical model well conforms to the internal
generative model and when the sample is large enough,
from Eq. (4) we can estimate the free energy as the total
description length of image I [14]. So we can estimate the
model coefficients by minimizing the description length [15].
k

& = argmin(—log P(Ilar) + §logN) (6)
where NN is the data sample size. We fix the order of the
model and thus coefficients of AR model can be estimated
by residual minimization

& = argmoions - Xalla @)
where xg = (71,22, ...,7x)T and X(n) = x*(z,,). The AR
model coefficients can be estimated as & = (X7X) 1 X7z,
In this case, the free energy can be measured by the
entropy of the residual and we employ the free energy
as the supervisor of the pristine image augmentation. The
parameters of the label-preserving transformations is best
defined by minimizing the free energy between the image
and its transformation.

N = arg mnin[F(Tn(I)) — F(I)] 8)

where 7' is the transformation and 7 is the parameter set
of T'. We employ three transformations to create extra new
image-label pairs from pristine images: the image rotation,
the image scaling and the image shifting. The parameters n
are determined by Eq. (8) to ensure these processes to be
label-preserving. In this paper, the rotation angle, the number
of pixels to be shifted and the standard deviation of gaussian
kernal used in the low-pass filter before image scaling down
are ascertained by restricting the difference of free energy
within 5%. Under this circumstance, the attached labels of
the transformed images are assumed to be the same with the
originals.

After the generation of extra new image-label pairs, we
interpolate the levels of three common distortions caused by
Gaussian noise, Gaussian blur and JPEG compression.

1 (z —n)?

P = ——e(-E L) ©
1 2 2
Glay) = 5 oxp(— ) (10)
b b

The probability density function of Gaussian noise term is
given by Eq. (9). We control the distortion level by changing
the value of standard deviation o,,. The blurred images are
filtered using a 2-D Gaussian kernel given by Eq. (10) of
standard deviation o, which controls the distortion level. In
JPEG compression scheme [16], the quality factor Q can be
regarded as a proxy of visual appearance of the final output,
the scaling factor S is computed as

S =(Q <50)? (5000

: — 11
Q)QOO 2Q) (11)
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Fig. 1: The diagram of the proposed IQA database augmentation method: Three common distortions including the White
noise, Gaussian blur and JPEG compression are analysed. New image-label pairs are generated from the original database
by the free energy-based augmentation and distortion level interpolation to enrich the database.

and the scaled quantization table T is computed from the
original table 7}, as

T, = S+ Ty, + 50
100

where the T alters with the quality factor. The distortion
levels are interpolated by varying the parameters of distortion
generation functions. By now the images in the augmented
database are generated.

However, the corresponding labels are not determined.
To obtain corresponding DMOSs ( here we suppose that
DMOS is the label ), we calculate the PSNR of images from
the augmented database and get the (PSN R, Parameter)
datasets for three kinds of distortions.

U(k) = {(PF,Pa¥),i=1.M},k=1,2,3 (13)

12)

where M is the number of overall images in augmented
database. To map the parameters in Eq. (13) to DMOSs,
we need to obtain the relation between PSNR and DMOSs.
We can choose any one kind of distortion type for analy-
sis. By calculating the PSNR of images from the original
database, we obtain the (PSNR, DM OS) dataset for orig-
inal database,

V ={(P;,D;),i=1.N} (14)

To obtain the nonlinear regression function between PSNR
and DMOSs, we employ the kernel-based regression defined
as:

>N K(P*,P)D;

D* = 15
I, K(P. ) "

P* — P;)?
K(P*, P;) = exp (—(2712)) (16)

where (P*, D*) is the point to be predicted and (P, D) is the
point from the dataset in Eq. (14). Due to the training data is
from the whole dataset, the regression function characterizes
the global feature. To obtain the specific regression functions
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of different scenes, we combine some data pairs sampled
from the global curve with data pairs of each scene in Eq.
(14) to form the scene-specific dataset. We also add two
apparent points {(P — 0,D = 1),(P — oo0,D = 0)}
into the dataset to modify the regression. The ratio between
the number of global points and scene-specific points is
empirically set as two to ensure the expression of global
characteristics as well as individual characteristics.

SG) ={(P),D}),i=1.247r +r},j=1.C (I17)

where C' is the number of scenes in Eq. (14), r; and ry are
the number of global and scene-specific points. By applying
the regression defined by Eq. (15) and (16) to the datasets in
Eq (17), we can obtain the scene-specific regression function.
By now the parameter of each image can map to the DMOS.
In other words, we attach each augmented image a DMOS as
the label. The label can be easily changed to MOS according
to the original database. It is worth to mention that during
regressions the A in Eq. (16) should be properly set to ensure
the monotonicity of parameter with the DMOS. The diagram
of designed augmentation method is shown in Fig. 1.

III. EXPERIMENTAL RESULTS

In this paper, four effective no-reference image qual-
ity assessment models including DIIVINE [1], BRISQUE
[2], GMLF [3] and NFERM [4] are used to verify the
effectiveness of the augmentation method. They are all
feature integration based methods including 88, 36, 40 and
23 features respectively. DIIVINE [1] deploys the divisive
normalization transform to make the statistics of natural
images more Gaussian-like. And features that capture the
correlations of coefficients between orientations across scales
are extracted. Using these features, they train a distortion-
specific model to detect the distortion types and then devise
models for each distortion types to evaluate the percep-
tual quality. BRISQUE [2] employs the mean subtracted
contrast normalization strategy to reduce the dependencies.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 10:11:09 UTC from IEEE Xplore. Restrictions apply.



Table I: PLCC OF CSIQ-TRAINED MODELS ON LIVE AND TID2013 IMAGE DATABASES.

Database LIVE | LIVE | LIVE | LIVE TIDx TIDx | TIDx | TIDx
BLUR | NOISE | JPEG | ALL | BLUR | NOISE | JPEG | ALL
DIIVINE [1] ORIGINAL 0.9053 | 0.9421 | 0.8398 | 0.7387 | 0.7630 | 0.8126 | 0.8180 | 0.7331
AUGMENTED | 0.9068 | 0.9560 | 0.9071 | 0.8526 | 0.8089 | 0.8213 | 0.8626 | 0.8011
BRISQUE [2] ORIGINAL 0.9278 | 0.9843 | 0.8970 | 0.8930 | 0.8301 | 0.9012 | 0.9075 | 0.8095
AUGMENTED | 0.9324 | 0.9848 | 0.9324 | 0.9102 | 0.8426 | 0.9157 | 0.9157 | 0.8216
GMLE [3] ORIGINAL 0.9076 | 0.9756 | 0.8955 | 0.8953 | 0.8606 | 0.8408 | 0.9214 | 0.8390
AUGMENTED | 0.9230 | 0.9895 | 0.9277 | 0.9042 | 0.8402 | 0.9165 | 0.8773 | 0.8413
NFERM [4] ORIGINAL 0.9208 | 0.9562 | 0.9008 | 0.8869 | 0.8271 | 0.8740 | 0.8835 | 0.8172
AUGMENTED | 09251 | 0.9581 | 0.9336 | 0.9152 | 0.8251 | 0.8828 | 0.9013 | 0.8212
Table II: SROCC OF CSIQ-TRAINED MODELS ON LIVE AND TID2013 IMAGE DATABASES.
Database LIVE | LIVE | LIVE | LIVE TIDx TIDx | TIDx | TIDx
BLUR | NOISE | JPEG | ALL | BLUR | NOISE | JPEG | ALL
DIIVINE [1] ORIGINAL 0.9189 | 0.9572 | 0.8442 | 0.7561 | 0.7743 | 0.7986 | 0.7382 | 0.7216
AUGMENTED | 0.9341 | 0.9627 | 0.8944 | 0.8385 | 0.8144 | 0.7999 | 0.7941 | 0.7785
BRISQUE [2] ORIGINAL 0.9326 | 0.9866 | 0.8924 | 0.9098 | 0.8273 | 0.8967 | 0.8608 | 0.7924
AUGMENTED | 0.9332 | 0.9881 | 0.9198 | 0.9221 | 0.8320 | 0.9078 | 0.8968 | 0.8154
GMLE [3] ORIGINAL 0.9336 | 0.9750 | 0.8706 | 0.9096 | 0.8414 | 0.8362 | 0.8858 | 0.8283
AUGMENTED | 0.9223 | 0.9812 | 0.9090 | 0.9157 | 0.8340 | 0.9079 | 0.8520 | 0.8325
NFERM [4] ORIGINAL 0.9276 | 0.9521 | 0.8746 | 0.8921 | 0.8245 | 0.8648 | 0.8621 | 0.8011
AUGMENTED | 0.9285 | 0.9594 | 0.9241 | 0.9095 | 0.8172 | 0.8785 | 0.8902 | 0.8185

The estimated parameters of the empirical distribution of
pairwise products in four orientations across two scales are
subsequently used to evaluate the naturalness of images.
GMLF [3] proposes joint adaptive normalization operation to
make features illumination-unchangeable. They extract fea-
tures based on the gradient magnitude (GM) and Laplacian
of Gaussian (LOG) to predict the image local quality and
introduce the dependency index to describe the joint statistics
between GM and LOG. NFERM [4] extracts features that
can be classified into three groups. The first group consists
of features based on free-energy principle and structural
degradation model. The second involves HVS inspired fea-
tures like structural information and gradient magnitude. The
third group quantifies the naturalness by fitting the mean
subtracted contrast normalized coefficients to generalized
Gaussian distribution.

In this paper, three common distortions are chosen for
analysis: White noise, Gaussian blur and JPEG compression.
The three subsets of CSIQ [17] are used as the training
datasets. The CSIQ database contains 30 undistorted images
and each kind of distortion involves 5 levels. So there
are 150 distorted images for each kind of distortion. We
generate new image-DMOS pairs according to the afore-
mentioned augmentation method from the three datasets
of CSIQ. The image sets of three distortions in LIVE
[18] and TID2013 [19] are used as the testing beds. The
LIVE database contains 174, 174 and 233 image-DMOS
pairs for White noise, Gaussian blur and JPEG respectively.
TID2013 contains 125 pairs for each distortion type. Pearson
linear correlation coefficient (PLCC) and Spearman rank-
order correlation coefficient (SROCC) are used to evaluate
performance of our approach. The higher SROCC and PLCC
values indicate better performance in terms of correlation
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with human opinion. PLCC can be considered as a mea-
sure of prediction accuracy, while SROCC measures the
monotonicity by ignoring the relative distance between the
data. The models are separately trained on the original and
augmented image sets of each distortion type from CSIQ and
are tested on the LIVE and TID2013 databases to validate
the effectiveness of augmentation on each distortion type.
And overall models that are trained on whole (White noise,
Gaussian blur and JPEG) image sets are also compared.
With experimental results that are listed in Table 1 and
Table 2, we can find the improvement in performance of
the model trained on augmented database which in turn
demonstrates the effectiveness of our augmentation method
for IQA databases.
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IV. CONCLUSION

In this paper, we devise an effective image augmentation
method. The method consists of two main parts which are the
generation of augmentations by minimizing the free energy
and by interpolating the distortion levels. The improvement
of cross-validation performance on different databases di-
rectly demonstrates that our augmented method can increase
the generalization capability of learning-based no-reference
image quality assessment metrics. By applying our method,
the existing database can not only be a good ground truth for
the validation of objective quality assessment methods but
also be a good database for the design of objective metrics
with high generalization capability.
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