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INVESTIGATION OF WAYS TO

HANDLE SAMPLING WEIGHTS FOR

MULTILEVEL MODEL ANALYSES

Tianji Cai*

Abstract

When analysts estimate a multilevel model using survey data, they often use

weighted procedures using multilevel sampling weights to correct the effect

of unequal probabilities of selection. This study addresses the impacts of

including sampling weights and the consequences of ignoring them by asses-

sing the performance of four approaches: the multilevel pseudo–maximum

likelihood (MPML), the probability-weighted iterative generalized least

squares (PWIGLS), the naive (ignoring sampling weights), and the sample

distribution methods for a linear random-intercept model under a two-stage

clustering sampling design. When inclusion probabilities are correlated with

the values of outcome variable conditioning on the model covariates, the sam-

pling design becomes informative. The results show that whether a sampling

design is informative and at which stage of the sampling design it is informa-

tive have substantial impacts on the estimation. The results also show that the

level of variation of sampling weights is correlated with the bias of estimates.

A higher level of variation of sampling weights is associated with a higher

level of bias when a sampling design is informative; however, under a nonin-

formative design, the level of variation of sampling weights may not necessa-

rily associate with biased results. Ignoring an informative sampling design at

the first stage will result in biased estimates on the intercept and variance of
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random effect, whereas ignoring an informative sampling design at the sec-

ond stage will lead to slightly underestimated fixed effects and residual var-

iance, in addition to the biased estimates on the intercept and variance of

random effect. Including the sampling weights as the hybrid methods (MPML

and PWIGLS) may still produce biased estimates on the intercept and

variance of random effect and slightly underestimated fixed effects and resi-

dual variance. The sample distribution method may give unbiased estimates,

but it depends on the correct specification of the sampling process.

Keywords

sampling weights, multilevel model, sample distribution method

1. INTRODUCTION

Classical statistical models assume that any data being analyzed are a

simple random sample; however, using simple random sampling in large-

scale surveys is rare. Most data available for social science researchers are

from large-scale surveys, in which complex sampling techniques such as

unequal probabilities of selection, stratification, and/or cluster sampling

are implemented to save money and time. For example, under a two-stage

cluster with unequal probabilities design, the population elements are

grouped into clusters according to characteristics such as city blocks,

schools, and hospitals. Before the elements are selected, a subset of clus-

ters called primary sampling units (PSUs) is selected with unequal prob-

abilities. Elements are then drawn with unequal probabilities from each of

the selected PSUs. The key features of such a design are that individual

elements within a PSU are usually positively correlated, and the sample is

disproportional with respect to the population from which the sample is

drawn (Kish 1965; Mickey, Goodwin, and Costanza 1991). Furthermore,

if inclusion probabilities are correlated with the values of outcome vari-

able conditioning on the model covariates, the sampling design then

becomes informative, because even if the proposed model is true in the

population under study, the corresponding model holding in the sample is

different from the true population model. Therefore, ignoring the sampling

process may lead to biased estimates (Pfeffermann, Da Moura, and Do

Nascimento Silva 2006).

Questions have been asked (e.g. Skinner, Holt, and Smith 1989) about

how survey data should be modeled when individuals are correlated
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within clusters and the sampling design generates a nonrepresentative

sample. On one hand, to correct for the disproportionality, usually after

the data are collected in a survey, sampling weights are generated to

reflect unequal probabilities of inclusion and to compensate for the non-

ignorable nonresponse and the frame undercoverage. On the other hand,

a multilevel model has been widely adopted to handle the correlated

data, because it not only accounts for clustering of responses in estimat-

ing standard errors of regression coefficients but also allows modeling

different effects for different clusters.

Unfortunately, using multilevel model and sampling weights together

is not straightforward. It has been widely accepted that weighting of sam-

ple data is necessary for the inference on descriptive finite population

quantities such as mean, sum, ratio, and so on. However, whether sam-

pling weights need to be used and how they should be used in analytical

models have been debated extensively in the literature (e.g. Little 1993;

Pfeffermann 1993). The debate is largely between modelers and survey

statisticians (see, e.g., Lehtonen, and Pahkinen 2004), who have different

theoretical perspectives on the target of inference for survey data.

To a modeler, the target of inference is the parameters of a specified

model that generates outcome variable, for example, the regression coef-

ficients, expected values, variances, and so on. A modeler would consider

sampling weights irrelevant and thereby to be excluded in the analytical

model as long as the probabilities of inclusion were not correlated with

the response variable, while other design features, such as clustering or

stratification, could be incorporated as an inherent part of the proposed

model. If the proposed model between the response variable and covari-

ates is correct, excluding sampling weights does not lead to biased esti-

mates. This type of analysis is referred to as the model-based approach,

which relies on the data-generating process. The actual finite population

from which the sample is drawn is considered a realization of the infinite

possible ones from the specified superpopulation model. The model-

based inference proceeds with respect to the sampling distribution of the

parameters of interest over repeated realizations generated by the super-

population model while the selected sample is held fixed (Skinner et al.

1989).

In contrast, a survey statistician usually focuses on a fixed finite pop-

ulation, and the parameters of interest are some descriptive finite popu-

lation quantities, such as mean, sum, or ratio. Because the population is

fixed, to draw a sample, one needs to define a sampling design in which
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a random indicator is introduced to each of the population elements.

Given the sampling design, the realization of the random indictor is the

only source of randomness. If a census were taken, there would be no

variability for the parameters of interest. The inference proceeds with

respect to the sampling distribution of the parameters of interest of

repeated samples (Skinner et al. 1989). Including sampling weights in

the estimation and inference is necessary; ignoring them leads to biased

estimates, because they reflect unequal sample inclusion probabilities

and compensate for differential nonresponse and frame undercoverage.

This type of analysis is usually referred to as a design-based or rando-

mization approach.

It seems as if there are irreconcilable differences between design-

based and model-based approaches; however, it has been shown that a

hybrid approach does exist by linking the two approaches through a so-

called census parameter, which is a finite population parameter and is

close to the superpopulation parameter (Pfeffermann 1993, 1996).

Pfeffermann (1993) argued that under the mixed pj distribution, the

inference of superpopulation parameters can be made in two steps: (1)

inference from the sample to the finite population and (2) inference

from the finite population to the superpopulation model. For example,

assume that a linear superpopulation model Y = Xb + ε generates a

finite population with size N in which Y takes value y1, . . ., yN and that

a sample with size n (n � N) is drawn from the finite population with

observed y1, . . ., yn and the corresponding covariates x1, . . . , xn. If the

whole population is observed, one could estimate the regression para-

meters b by the least squares estimator

B =
XN

i = 1
xix

9
i

� ��1XN

i = 1

xiyi:

In this case, B are census parameters and are model consistent (j con-

sistent) to b as the size of finite population N increases to infinite. If

data are available only for a subset of the finite population, one must

estimate B by b using the sample data,

b =
Xn

i = 1
xiwix

0
i

� ��1Xn

i = 1
xiwiyi:

The estimator b is design consistent, which means it approaches to B

as both n, the sample size, and N, the finite population size, tend to be
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infinite (e.g., Binder and Roberts 2003). The reason one should restrict

to the design consistent estimator b is the robustness. As Box (1979)

stated, ‘‘all models are wrong; some models are useful.’’ If the superpo-

pulation model is misspecified, the B still has a meaningful substantive

interpretation, which is the best linear approximation to the Y value in

the finite population, whereas the b may not (Pfeffermann 1993).

As mentioned above, the design-based and model-based approaches

are also different in how they define the variability of the estimated

parameters: the model-based approach estimates the variance under the

model, whereas the design-based approach estimates the variance under

the randomization distribution. Theoretically, a hybrid approach should

include variability under both the model and the randomization distribu-

tion. However, empirically, in most cases, the population size is much

larger than the sample size; the variance of the design consistent estima-

tor b under the pj distribution is approximately the same as the design-

based variance (Pfeffermann 1993).

In addition to the hybrid approach, model-based approaches have also

been proposed to incorporate the probabilities of inclusion when they

are correlated with the response variable. Although the design variables

and their interactions can be included as an inherent part of the proposed

model, doing this may lead to unstable estimates (Cook and Gelman

2006). Krieger and Pfeffermann (1992, 1997) proposed the so-called

sample distribution method, which extracted the parametric distribution

of the sample data as a function of the superpopulation model and the

sampling design. For example, denote the superpopulation distribution

of response variable Y as fp YijXið Þ, and let Ii be the indicator of whether

or not a population member is selected into the sample. Then the sample

distribution of Y fs yijxið Þ can be written as

fs yijxið Þ= fp YijXi, Ii = 1ð Þ= Prob Ii = 1jYi, Xið Þ3fp YijXið Þ
Prob Ii = 1jXið Þ ,

where the subscripts p and s refer to the population and sample, respec-

tively. When an unequal probability sample design is used, the selected

sample may not be representative of the population. Although the theo-

retical model fp YijXið Þ might not be exactly the same as the model

fs yijxið Þ that holds in the sample, fs yijxið Þ is a function of fp YijXið Þ and

the distribution of Ii conditional on Yi and Xi. In general, the probability

of inclusion pi = Prob Ii = 1jYi, Zið Þ is not the same as Prob Ii = 1jYi, Xið Þ,
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where Zi denotes the other design variables, and Xi is the set of indepen-

dent variables in the population model fp YijXið Þ. Pfeffermann, Skinner,

et al. (1998) showed that

Prob Ii = 1jYi, Xið Þ=
ð

Prob Ii = 1jYi, Xi, pið Þf pijYi, Xið Þdpi = Ep pijYi, Xið Þ:

Thus,

fs yijxið Þ= =
Ep pijYi, Xið Þ3fp YijXið Þ

Ep pijXið Þ =
Ep pijYi, Xið Þ3fp YijXið ÞÐ

Ep pijYi, Xið Þ3fp YijXið ÞdYi

:

If one can specify Ep pijYi, Xið Þ, then the model held in the sample

fs YijXið Þ can be derived. Although the exact form of Ep pijYi, Xið Þis usu-

ally unknown, under some regularity conditions, it can be approximated

by low-order polynomials in terms of Yi and Xi or by exponentials via

the Taylor series approximation. For example, under an exponential

model,

Ep pijYi, Xið Þ’exp
XJ

j = 0
AjY

j
i + h Xið Þ

� �
:

The corresponding sample distribution can be written as

fs yijxið Þ=
exp

PJ
j = 0 AjY

j
i

� �
3fp YijXið ÞÐ

exp
PJ

j = 0 AjY
j
i

� �
3fp YijXið ÞdYi

:

The unknown parameters Ajs can be estimated using the sample data.

Pfeffermann and Sverchkov (1999) showed that those population expec-

tations can be identified and estimated from the sample data using the

following relationships (see Pfeffermann and Sverchkov 1999, for

detailed proofs):

Ep pijYi, Xið Þ= 1

Es wijyi, xið Þ ,

Ep pijXið Þ= 1

Es wijxið Þ :

Although the hybrid and the sample distribution approaches have

been extended to incorporate multilevel sampling design (e.g., Korn and

Graubard 1995, 2003; Rabe-Hesketh and Skrondal 2006; Pfeffermann et
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al. 2006; Pfeffermann, Skinner, et al. 1998; Eideh and Nathan 2009), it

is still unclear which of those methods is more appropriate, because the

performance of each approach may depend on the actual survey design

and data features (Asparouhov 2006). Published studies have focused

on comparing weighting schemes for the hybrid approach. The literature

is sparse in terms of comparing the sample distribution and hybrid

approaches. The goal of this article is to fill these gaps in the literature

by focusing on various ways to handle sampling weights for a linear

random-intercept model under a two-stage cluster with unequal prob-

abilities design. In this study, the sampling weights are defined as the

reciprocal of the PSUs, or individual probabilities of inclusion. Issues

such as using weights to compensate for nonresponse or undercoverage

are not discussed.

The article is organized as follows. The details of the hybrid and sam-

ple distribution methods that are evaluated are presented in section 2.

Section 2.1 gives details of how two widely used hybrid procedures

incorporate sampling weights, section 2.2 describes how a sample distri-

bution approach includes sampling information, and section 2.3 dis-

cusses the scaling issue of sampling weights for the hybrid approach.

Closer inspection of these methods, mainly through simulation studies,

is provided in section 3. The results of simulation studies are presented

and discussed in section 4. Section 5 includes conclusions and a real

data example with more discussion. Technical details and codes used in

the study are provided in Appendices A and B, respectively.

2. MULTILEVEL MODELS FOR SURVEY DATA

Laird and Ware (1982) outlined a general form of the two-level linear

model,

Y i = Xib + Zibi + ei:

In the above equation, i indexes the cluster, with i = 1 to m, where m is

the number of clusters. For the ith cluster with size ni, Y i is an ni 3 1

vector of observed response, X i is an ni 3 p observed matrix for fixed

effects, b is a p 3 1 vector of unknown coefficients, Zi denotes an ni

3 q random-effect design matrix, bi is a q 3 1 vector of cluster-

specified random effects, and ei is an ni 3 1 vector of random resi-

dual errors, where p is the number of unknown coefficients including
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the intercept and q is the number of random effects. Because the

focus is on the random-intercept model, q equals 1. Introducing a

cluster-specified random effect not only controls the correlation

within clusters, but also corrects the denominator degrees of freedom

for the number of clusters. Searle, Casella, and McCulloch (1992)

provided a detailed derivation of the maximum likelihood estimator.

For example, the likelihood function for the linear mixed model

above is defined as

L Y jX , Z, b, D, s2
e

� �
=

exp � 1
2

Y � Xbð Þ0V�1 Y � Xbð Þ
� �

2pð Þ
N
2 jV j

1
2

,

where V is the covariance matrix of vector Y, V = ZDZ9 + s2
eI , D

denotes the covariance matrix for the random effect vector bi, and in

our case, it is a scalar s2
u, and s2

e is the variance of the error term. Then

the log likelihood function can be written as

l = logL Y jX , Z, b, D, s2
e

� �
= � 1

2
N log 2pð Þ � s

1

2
logjV j � 1

2
Y � Xbð Þ9V�1 Y � Xbð Þ,

where N is the total number of observations, N =
Pm

i = 1 ni. The unknown

parameters (fixed coefficients and variance components) can be solved

by either the full maximum likelihood or the restricted maximum likeli-

hood method.

2.1. The Hybrid Approaches

One difficulty of using sampling weights in multilevel models is the

proper incorporation of sampling weights into the estimation. Unlike a

single-level regression, in which sampling weights are inserted into

sums of squares and cross-products, direct insertion of final-level

weights, which are the product of multilevel weights, might lead to

biased estimates in multilevel models (Christ, Biemer, and Wiesen

2007). Also, single final-level weights may not carry adequate informa-

tion to correct for higher level unequal probabilities of inclusion

(Pfeffermann, Skinner, et al. 1998). For example, under a two-stage

cluster sampling design, both clusters and individuals can be chosen

with unequal probabilities.

If the whole finite population were included in the data, a finite pop-

ulation likelihood function could be constructed. However, although
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only sample data and the sampling weights are available, the unknown

parameters have to be solved by maximizing the weighted sample like-

lihood, which is design consistent to the finite population likelihood.

There are two widely used estimation methods to solve the weighted

sample likelihood. Rabe-Hesketh and Skrondal (2006) and Asparouhov

(2004, 2006) proposed the multilevel pseudo–maximum likelihood

(MPML) method, which directly estimated the population likelihood

function by weighting the sample likelihood function,

L u1, u2ð Þ =
Ym

i = 1

ð Yni

j = 1
f yijjxij, ui, u1

� �l2iwjji
� �

f uijzi, u2ð Þdui

� �l1iwi

,

where u1 and u2 are census parameters for the fixed effects for the indi-

vidual level and the cluster level, respectively; mi is the cluster-specific

random effect; and l1i and l2i are the scaling factors for the cluster-

level and individual-level sampling weights, respectively. Numerical

techniques are needed to integrate out the unobserved random effect mi

or to approximate the weighted likelihood. Mplus (Muthén and Muthén

1998–2011) has implemented this method with the variance estimated

by the robust variance estimator, which takes the following form:

∂2 log L

∂u2

� ��1 Xm

i = 1
l1iwið Þ ∂ log L

∂u

∂ log L

∂u

� �0� �
∂2 log L

∂u2

� ��1

:

Goldstein (1986) developed an iterative generalized least squares

(IGLS) algorithm involving iterations between estimation of the fixed

effects and variance components for a linear multilevel model.

Pfeffermann, Skinner, et al. (1998) proposed the probability-weighted

iterative generalized least squares (PWIGLS) approach, in which the

population quantities in IGLS solutions of the fixed effects and variance

components for a linear multilevel model were replaced by their corre-

sponding weighted sample statistics. For instance, for a linear random-

intercept model, the IGLS solution for the fixed effects is

b̂ = X 0V�1X
� ��1

X 0V�1Y
� �

=
X

i
X 0iV

�1
i X 0i

� ��1 X
i
X 0iV

�1
i Y 0i

� �
,

The PWIGLS replaced the population quantities, for example,P
i X 0iV

�1
i X 0i, by the weighted sample statistics
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X
i
wi

X
j
wjjixijx

0
ij �

P
j wjjixij

� �2

P
j wjji +

s2
e

s2
u

0
B@

1
CA:

This algorithm has been implemented in commercial packages such as

LISREL (Mels 2006). Given the sufficiently small sampling fractions at

both levels, the variance of PWIGLS estimates is close to the randomi-

zation variance and can be estimated using the delta method

(Pfeffermann, Skinner, et al. 1998).

2.2. Scaling Sampling Weights for Multilevel Models

For the weighted multilevel procedures, it is well known that the esti-

mated variance components are biased for small cluster sizes such as 20

(e.g., Rabe-Hesketh and Skrondal 2006). Many studies have been done

to correct this by rescaling sampling weights. For example,

Pfeffermann, Skinner, et al. (1998) suggested that if the cluster-level

sampling weights were noninformative, scaling the individual-level

sampling weights for the ith cluster by the factor

l2i =

Pni

j = 1 wjjiPni

j = 1 wjji2
,

produced approximately unbiased estimators for both variance compo-

nents. If both levels of sampling design were informative, in their simu-

lation study, scaling the individual-level sampling weights for the ith

cluster by the factor l2i, defined as
l2i =

niPni

j = 1 wjji
,

worked better, where ni is the number of sample units in ith cluster.

These two scaling methods, referred to as ECluster and Cluster in the

Mplus documentation, have been implemented in Mplus Asparouhov

(2008). LISREL automatically applies Cluster scaling for both level of

sampling weights during the estimation (Scientific Software

International 2005–2012).

2.3. The Sample Distribution Approach

The sample distribution method proposed by Krieger and Pfeffermann

(1992, 1997), Pfeffermann, Krieger, and Rinott (1998), and Pfeffermann
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and Sverchkov (1999) has been extended to multilevel cases.

Pfeffermann, Moura, and Silva (2006) and Eideh and Nathan (2009)

showed that the conditional sample distribution of the cluster-level ran-

dom effect ui is

fs uijzið Þ= Ep pijui, zið Þ3fp uijzið Þ
Ep pijzið Þ ,

Ep pijzið Þ=
ð

Ep pijui, zið Þ3fp uijzið Þdui,

where zi is an ni 3 q matrix of cluster-level auxiliary predictors for the

random effect ui, and fp uijzið Þ is the population distribution of the random

effect ui conditional on covariates zi. Similarly, the conditional sample

distribution of yij given ui, xij is

fs yijjxij, ui

� �
=

Ep pjjijui, xij, yij

� �
3fp YijjX ij, ui

� �
Ep pjjijui, xij

� � ,

Ep pjjijui, xij

� �
=

ð
Ep pjjijui, xij, yij

� �
3fp yijjxij, ui

� �
dyij,

where xij is a 1 3 p vector of individual level predictors. Thus, the

joint-sample likelihood function can be written as

fs yð Þ =
Ym

i = 1

ðYni

j = 1
fs yijjxij, ui

� �
fs uijzið Þdui,

which can be maximized by any standard procedures.

Eideh and Nathan (2009) approximated the conditional expectations

on both levels by the first-order exponential model, and then the joint-

sample likelihood function was simplified to a multivariate normal dis-

tribution with a shifted intercept, while the variance remained the same

as in the population model. The detailed derivation for a linear multile-

vel model with two-stage first-order exponential model adopted from

Eideh and Nathan (2009) can be found in Appendix A1.

For simplicity’s sake, the exponential model is appealing. But usu-

ally, researchers may not have enough information to determine

whether the exponential approximation is appropriate. Besides the

exponential approximation, the conditional expectations Ep pijui, zið Þ
and Ep pjjijui, xij, yij

� �
can also be modeled by the logistic model, and

188 Cai

 at University of Macau on September 10, 2013smx.sagepub.comDownloaded from 

http://smx.sagepub.com/


then Ep pijzið Þ and Ep pjjijui, xij

� �
can be approximated by the Laplace

approximation. For example, assume that the cluster-level sample indi-

cator Ii follows a logistic model,

Ep pijuið Þ = 1

1 + exp �a0 � a1uið Þ ,

Ep pið Þ=
ð

1

1 + exp �a0 � a1uið Þ dui:

Because ui follows the normal distribution, the expectation can be

approximated by the Laplace approximation. For example, the marginal

conditional expectation can be approximated by

Ep pið Þ’
exp a0 + a1suu(1) �

u2
(1)

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1s2
uexp a0 + a1suu(1)

� �
+ 1 + exp a0 + a1suu(1)

� �	 
2q ,

where

u(1) =
a1su 1 + exp a0ð Þ½ �

a2
1s2

uexp a0ð Þ+ 1 + exp a0ð Þ½ �2
:

Similarly, assume that Ijji follows a logistic model

Ep pjjijyij

� �
=

1

1 + exp �b0 � b1yij

� � ,

Ep pjji
� �

=

ð
1

1 + exp �b0 � b1yij

� � dyij:

Thus, the marginal conditional expectation can be approximated by

Ep pjji
� �

’
exp b0 + b1 xijb + ui + ses(1)

� �
� s2

(1)

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2q ,

s(1) =
b1se 1þ exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �� �
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2 :

Substituting the approximated Ep pið Þ and Ep pjji
� �

, the joint-sample

likelihood fs yð Þ can then be maximized by numerical techniques to
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integrate out the unobserved random effect ui. The detailed derivation

and proof can be found in Appendix A2.

The sample distribution method relies on both model and randomiza-

tion distributions. The variability of the parameter estimates is from both

the model that generates the data and the differences across all possible

samples. Eideh and Nathan (2009) estimated the variance of the sample

distribution estimator by bootstrapping. It follows from Pfeffermann

(1993) that if the sampling fraction is small, the variance under the pj

distribution can be estimated by the randomization variance, which

again can be implemented using the delta method.

3. SIMULATION STUDY

To evaluate the performance of the hybrid and sample distribution

approaches for linear multilevel model under informative sampling

designs, I conduct a simulation study on the following model:

Yij = 2 + :5X1ij + :8X2ij � :5X3ij + ui + eij,

where ui is the normally distributed cluster-level random effect with

mean 0 and variance 3, and eij is the normally distributed individual-

level error term with mean 0 and variance 6. Explanatory variable X1

follows a Bernoulli distribution with mean 5 (e.g., gender). X2 is from a

normal distribution N 12, 9ð Þ (e.g., years of schooling). X3 follows a uni-

form distribution U 0, 20ð Þ (e.g., centered age). I adopt the infinite target

population approach (Asparouhov 2005) to generate samples. For exam-

ple, let Y, X, and I be the model outcome, independent variables, and the

inclusion indicator, respectively. A selection model for I, p(I = 1) = f (Y,

X), is specified. Individual elements (Y, X, I) are included in a sample

only if I = 1. The informative selection model at each level is defined by

p Ii = 1ð Þ= 1

1 + exp �a0 � a13uið Þ ,

p Ijji = 1
� �

=
1

1 + exp �b0 � b13yij

� � :
When the selection at cluster or individual level is noninformative, ui

or yij is replaced by another random variable that is not part of the

population model. Because there are many factors that have substan-

tial influence on the quality of the estimation (e.g., the sample size of
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cluster, the intraclass correlation [Asparouhov and Muthén 2006]), to

simplify our study, I focus only on the effect of the informative sam-

pling design and the unequal probabilities inclusion. Other parameters

are set to be fixed as in a typical social science scenario, for instance,

a relatively large sample size (100 clusters of size 50) and a moderate

intraclass correlation such as .33.

By varying a0, a1, b0, and b1, samples with different levels of the

informativeness of selection and variation of sampling weights can be

produced. In reality, the variation of sampling weights can vary greatly

across levels and studies. For example, for the data from the 2005–2006

National Survey of Children with Special Health Care Needs, the rela-

tive variances of the sampling weights (defined as variance over the

squared mean) are 1.80 and 1.92 at household and individual levels,

respectively (Carle 2009), while for the first-wave core sample from the

National Longitudinal Study of Adolescent Health (Add Health; Harris

et al. 2009), they are 3.00 and 0.89 at the school and individual levels,

respectively. In this study, I fix a0 and b0 at negative and vary a1 and b1

(both take positive values) to obtain the relative variances of the sam-

pling weights for two levels, for example, approximately 6.0 and 4.0 as

high, 3.0 and 2.0 as moderate, and 2.0 and 1.0 as low. Therefore, for

each level of variation of sampling weights, I conduct four simulations

according to the level of informativeness. In design 1, both levels of

selection are informative; design 2 and design 3 are informative at the

second level and the first level of selection, respectively; and in design

4, neither level is informative.

Each simulation is replicated 500 times, with two hybrid estima-

tors—MPML using Mplus and PWIGLS using the LISREL

MULTILEV module—and two approximation models for the sample

distribution estimator. For the MPML estimator, I consider three scaling

methods: method A (the Cluster method in Mplus), method B (the

ECluster method in Mplus), and method U (unscaled). SAS PROC

NLMIXED is used to estimate the sample distribution estimator with

the two-stage first-order exponential model, and the variance is esti-

mated by the model-based approach (see Appendix A1 for more discus-

sion of this), where the one using the logistic model is implemented in

SAS IML and its variance is estimated using the delta method. The non-

linear optimization of the likelihood function is carried out by the IML

function NLPNRA, and the corresponding Hessian matrix is obtained

by using function NLPFDD.
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The informativeness of sampling design is evaluated by the x2 test

constructed by Pfeffermann (1993):

I = ûw � û0

� �0
V̂ ûw

� �
� V̂ û0

� �	 
�1
ûw � û0

� �
~x2

p,

where ûw and û0 are the estimates of weighted and unweighted analyses,

respectively, and V̂ ûw

� �
and V̂ û0

� �
are their variance estimates. The sta-

tistic approximately follows a x2
p distribution with p = dim uð Þ degrees of

freedom. The quality of estimates is evaluated by using the empirical

relative bias, the empirical mean square error (MSE), and the coverage

rate. The relative bias is defined as

RBias û
� �

=
1

u

1

500

X500

1
ûi � u
� �� �

:

The root of MSE is calculated using the following formula

RMSE û
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

500

X500

1
ûi � �̂

u
� �2

� �s
,

where
�̂
u = 1

500

P500

1

ûi. The coverage rate is calculated as the percentage of

true parameter that falls within the t test–based 95 percent confidence

region of estimates for each replicated sample.

4. RESULTS

4.1. The Effect of Informativeness at a High Level of Variation

Figure 1 shows the relative bias, root of MSE, and coverage rate at

high-level variation of sampling weights. About 99.6 percent, 78.8 per-

cent, 81.8 percent, and 49.2 percent of the tests of the informativeness

are significant at the .05 level in designs 1 to 4, respectively. When both

of the sampling stages are informative in our simulation setup, the clus-

ters with higher value of ui and the individuals with higher response

value are more likely to be included in the sample. Hence, if the sam-

pling design is ignored, the variance of ui, s2
u, would be underestimated,

and the intercept would be overestimated. Because the explanatory vari-

ables in a linear model are treated as fixed, ignoring the sampling design

would not produce biased estimates for other fixed effects. If s2
u is
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underestimated, then the confidence interval would be too narrow to

cover the true parameter.

The results from design 1 are presented in Figure 1A. All estimates for

b0 and s2
u are biased: b0 is overestimated, and s2

u is underestimated. All

other fixed effects and s2
e are also underestimated except for those from

the sample distribution estimator using the logistic model, which produces

unbiased results.

Because s2
u is substantially underestimated, the coverage rates of the

naive method are very poor, for example, 37.6 percent, 43 percent, and

68 percent for b2, b3, and s2
e , respectively, along with 0 percent cover-

age for b0 and s2
u. The MPML estimates are slightly biased for b0 and

s2
u, where the biases are within 15 percent. Compared with other esti-

mators, the MPML estimates have the highest MSE. The coverage rates

of three MPML estimates for fixed effects and variance components

vary from 69 percent to 95 percent and from 54.4 percent to 76.4 per-

cent, respectively. Scaling method B slightly outperforms method A,

which confirms Pfeffermann, Skinner, et al.’s (1998) finding. However,

the unscaled method works slightly better than methods A and B. The

PWIGLS estimates are relatively better than MPML estimates for the

fixed effects and s2
e but are a bit worse for s2

u. The sample distribution

estimator using logistic model produces unbiased estimates and very

good coverage rates on all parameters except b0 and s2
u. Although the

estimates for b0 and s2
u are biased, the b0 estimates are less biased, and

coverage rates for b0 and s2
u are better than any other estimates. The

sample distribution estimator using the first-order exponential model

does not work well. It suffers all the problems the naive method has,

except for having a less biased b0.

When the sampling design is informative at the second stage, the

individuals with higher value of yij are more likely to be selected.

Therefore, the estimates of b0 will be positively biased if the sampling

design is ignored. Figure 1B shows the results from this design. All esti-

mators tend to overestimate b0 and underestimate other fixed effects

and s2
e , except for the sample distribution estimator using logistic

model, which has almost unbiased estimates for all parameters.

As expected, the naive estimates are positively biased on b0. The

naive method also underestimated the variance components, which leads

to poor coverage rates for some parameters, such as b2, b3, and s2
e .

Negative biases appear for most of the MPML estimates, except b0 and

s2
u under methods B and U. Similar to the naive estimator, all the MPML
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estimates provide poor coverage rates for b2, b3, and s2
e . It is hard to say

which scaling method works better. Still, method A works slightly better

than method B only for the variance components, and method U works

slightly better than methods A and B in estimating the fixed effects. The

PWIGLS estimates are better than all MPML estimates in terms of bias

and coverage rate, except for s2
u, which is underestimated by 11.4 percent

with a 65.4 percent coverage rate. Again, the sample distribution method

with the logistic model produces the best estimates for all parameters.

When the sampling design is informative at the first stage, ignoring

the sampling design will result in overestimated b0 and underestimated

s2
u. Figure 1C presents the results from design 3. Similar to design 1, all

estimates for b0 and s2
u are biased. The hybrid methods also tend to

underestimate s2
e . All estimates on the other fixed effects are unbiased,

with almost 95 percent coverage rates.

If the sampling design is noninformative at both stages, all parameters

should be correctly estimated, and the naive estimator should be most

efficient. As shown in Figure 1D, all estimates for the fixed effects are

unbiased, but the hybrid methods tend to slightly underestimate s2
e , and

the PWIGLS also tend to underestimate s2
u. Among all estimators, the

naive estimator produces the lowest MSE, while the MPML estimator

gives the highest MSE.

To summarize the results presented in Figure 1, whether a sampling

design is informative and at which stage of the sampling design is infor-

mative have substantial impacts on the estimation. For the naive method,

an informative sampling design at the first stage will result in biased

estimates on b0 and s2
u, whereas an informative sampling design at the

second stage will lead to slightly underestimated fixed effects and s2
e ,

besides the biased estimates on b0 and s2
u. Although the hybrid methods

produce biased estimates when a sampling design is informative, only

estimates on b0 and s2
u are severely biased, and the biases on the other

fixed effects and s2
e usually are within 15 percent. Nevertheless, at a

high level of variation of the sampling weights, the sample distribution

estimator using logistic model, which is the correct sampling model,

works reasonably well and outperforms most of other estimators.

However, the sample distribution method with exponential model does

not work well. It works better than the naive method only on estimation

of b0. Hence, the sample distribution method is not robust to the misspe-

cification of the sampling process in our setup.

Handling Sampling Weights for Multilevel Model Analyses 195

 at University of Macau on September 10, 2013smx.sagepub.comDownloaded from 

http://smx.sagepub.com/


4.2. The Effect of Variation

To further explore the effect of variation of sampling weights on esti-

mation, I conduct a simulation using the same setup for the informative-

ness but vary the level of variation. The parameters a1, and b1 in the

selection model are kept the same for each design, while a0 and b0 are

changed to obtain different level of variation. Figure 2 reports the

results of designs 1 to 3 under moderate and low levels of variation. It

is clear that all biases reduce as the level of variation reduces, which

confirms Asparouhov’s (2006) finding. The naive estimates are still

substantially biased for b0 and s2
u. Although the estimates for the other

fixed effects and s2
e are close to unbiased, the coverage rates are not

satisfactory when the second stage is informative: designs 1 and 2. The

hybrid methods estimate all fixed effects and s2
e reasonably well, but

the estimated s2
u is still biased about 30 percent, even under the low

level of variation. Again, the sample distribution estimator using the

logistic model produces unbiased estimates for almost all parameters,

with 95 percent of coverage rates for all informative designs. With the

exponential model, the sample distribution method works better than

the naive method but worse than the hybrid methods.

Since the estimates of fixed effects are close to unbiased for design

4, only the results for b0, s2
u, and s2

e are reported in Table 1. In brief,

with a large number of clusters and a sufficient cluster sample size, all

methods perform well when the sample design is noninformative. The

increased level of variation does not associate with the increase of bias,

except for the PWIGLS method: The negative bias increases as the

level of variation at the second level decreases.

4.3. The Effect of Trimming Sampling Weights

Large variation of sampling weights is associated with high variability

and bias of parameter estimates. In practice, variation reduction tech-

niques such as weight truncation or trimming can be imposed to reduce

biases. To investigate the performance of weight trimming on hybrid

methods, I use eight trimming levels in the simulation conducted in sec-

tion 4.1.1 For example, the weight beyond or below the following quan-

tiles is trimmed at the left and right tails: 1 percent, 2.5 percent, 5

percent, 10 percent, 15 percent, 20 percent, 25 percent, and 30 percent.

The relative variation of sampling weights for each level of trimming is
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reported in Table 2. Only the results for b0, s2
u, and s2

e using scaling

method B are reported in Figure 3.

In general, imposing trimming reduces the relative variation but does

not change the informativeness for all designs. It also reduces the MSE

for all parameters. For b0, trimming the sampling weights does not

reduce any bias under an informative sampling design: As the level of

trimming increases, the bias gets larger and the coverage rate drops to

zero. When the sampling design is noninformative at both stages, trim-

ming does slightly increase the coverage rate.

For s2
e , trimming weights lead to lower biases and MSE. When a

sampling design is informative at the second stage or both stages, the

coverage rate drops to zero as the level of trimming increases; when a

sampling design is noninformative at the second level or both (designs

2 and 1), higher level of trimming is associated with higher level of

coverage rate.

When the first stage is informative (designs 1 and 3), a higher level of

trimming leads to higher biases and lower coverage rates for s2
u. When

the first stage is noninformative (designs 2 and 4), trimming improves

the estimates from MPML but does not do the same for PWIGLS.

The results clearly indicate that the effect of trimming depends on the

informativeness at certain stage. It works well for the noninformative sit-

uation but does not reduce the bias for the parameter of a variable that is

involved in the selection process.

5. DISCUSSION AND AN ILLUSTRATED EXAMPLE

5.1. Discussion

In many cases, data available for social scientists contain sampling

weights that are assigned to each observation at one or multiple levels to

adjust for the unequal probability of selection. Hybrid approaches have

been widely recommended when one analyzes survey data. However, in

some cases, the hierarchical structure of the multilevel model that one

wants to estimate does not fit the structure of the sampling design. A

decision must be made to either change the model or to ignore the sam-

pling weights. One may want to investigate whether there are other

options besides a hybrid approach and the consequences if the informa-

tive sampling design is ignored. To aid future investigations, in this

study, I conduct simple simulations to evaluate the hybrid and sample

distribution methods in a linear random-intercept model.
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Figure 3. The relative bias, mean square error (MSE), and coverage rate at
different levels of weight trimming at high variation of the sampling weights.
Note: The solid line and dashed line represent the result from the multilevel pseudo–maximum

likelihood (MPML) and probability-weighted iterative generalized least squares (PWIGLS)

approaches, respectively. The relative bias is indicated by the diamond marker, the squared

marker represents the MSE, and the triangle marker represents the coverage rate.
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I found substantial differences among these methods. The naive

method does not work well in estimating b0 and s2
u, though the esti-

mates for other fixed effects and s2
e are nearly unbiased or slightly

biased within 10 percent of the true value. Although in many cases,

biased estimates for the b0 and s2
u may not cause serious concern, ignor-

ing the uncertainties of parameters that are due to the randomization

leads to incorrect inference for all parameters, because the confidence

interval is too narrow to cover the true parameter.

Generally, for point estimates, the hybrid methods have the same

problems as the naive method, although the randomization variance

gives a better coverage rate than the naive method. For example, the

estimated b0 and s2
u are severely biased when a sampling design is

informative. Furthermore, including the sampling weights substantially

increases the MSE.

The sampling distribution method reduces the biases on b0 dramati-

cally, but it is sensitive to the specification of the sampling model.

Without the correct form of sampling selection, the bias reduction is

very limited, only on b0 for instance. If the sampling model is correctly

specified, the sample distribution method outperforms any other meth-

ods considered in this study.

The test of informativeness might fail to detect the informativeness of

a sampling design, because it depends on the naive and hybrid estimates

of model parameters and their variances, both which can be biased. For

example, in design 2, only 78.8 percent of the tests are significant at the

.05 level, and in design 4, 49.2 percent of the tests are significant at the

.05 level. In addition, if the selection process at the first level is nega-

tively associated with ui and positively correlated with yij, the test might

even be more unreliable.

To sum up, in this study, I compare the hybrid and sample distribu-

tion methods on estimation of linear random-intercept model under a

two-stage sampling design. Although there are many factors that could

affect the quality of the estimation, to reduce the complexity, I focus on

the effect of informativeness, and the level of variation of sampling

weights. I find the following:

1. Whether a sampling design is informative and at which stage of the

sampling design is informative have substantial impacts on the estima-

tion. When a sampling design is informative, the level of variation of

sampling weights is also correlated with the bias of estimates.
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2. A higher level of variation of sampling weights is associated with a

higher level of bias when a sampling design is informative; this may

not be true under a noninformative design.

3. Ignoring an informative sampling design at the first stage will result in

biased estimates on b0 and s2
u, whereas ignoring an informative sam-

pling design at the second stage will lead to slightly underestimated

fixed effects and s2
e , besides the biased estimates on b0 and s2

u.

4. Including the sampling weights as in the hybrid methods may still pro-

duce biased estimates on b0 and s2
u and slightly underestimated fixed

effects and s2
e .

5. The sample distribution method may give unbiased estimates, but it

depends on the correct specification of the sampling process.

6. The effect of sampling weight trimming depends on whether a sampling

stage is informative. Imposing weight trimming does not reduce the bias

for the parameter of a variable that involves in sampling selection.

The design of this simulation study captures the general features of

data sets available in social science that have large numbers of clusters,

large cluster sizes, and moderate intraclass correlation coefficients.

Further analyses may be required to generalize the conclusions drawn

here to other settings. Some of the results obtained from our study are

different from those obtained by Asparouhov and Muthén (2007); for

example, they reported that the MPML estimator outperforms substan-

tially the PWIGLS estimator. The difference might be due to the differ-

ent settings of simulation, in particular the relative variation of sampling

weights.2 Therefore, it is highly possible that our results might not be

replicated in a different setting. Some of the simulation settings in our

study might be very rare in reality, such as having the relative variation

of weights at 6. Such an extreme case only serves to evaluate the perfor-

mance of different estimators.

5.2. An Illustrated Example

To illustrate the multiple ways of handing sampling weights, I fit a lin-

ear random-intercept model using the wave I data from Add Health, a

longitudinal study of a nationally representative sample of adolescents

in grades 7 to 12 in the United States during the 1994–1995 school year

(Harris et al. 2009). Add Health provides a rich set of information on

respondents’ social, economic, psychological, and physical well-being,
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with contextual data on families, neighborhoods, communities,

schools, friendships, peer groups, and romantic relationships. Add

Health was designed as a stratified two-stage cluster sample with

unequal probabilities of inclusion for individuals. The dependent vari-

able is a delinquency index, which summarizes responses from 12 sur-

vey questions that ask how often the respondent engaged in activities

such as stealing amounts larger or smaller than $50, breaking and

entering, selling drugs, serious physical fighting, the use of weapons

to get something from someone, involvement in physical fighting

between groups, shooting or stabbing someone, deliberately damaging

property, and pulling a knife or gun on someone in the past 12 months.

The responses to those survey items are coded from 1 (‘‘never’’) to 4

(‘‘more than 3 times’’). The predictors are age, gender, and Picture

Vocabulary Test score.

The results are presented in Table 3. The data include 17,681 com-

pleted cases from 130 schools with relative variances of the sampling

weights of 3.00 and 0.89 at the school and student levels, respectively.

The calculated x2 statistic for the informativeness test is 31.68, with 6

degrees of freedom, which yields a p value \ .0001. Pfeffermann and

Sverchkov (1999) suggested that the t test for the coefficient of sampling

weights against residuals in a linear regression can also be used to detect

whether the sampling weights is informative. For the school level, the t-

test result is significant at the .05 level, which suggests that the sampling

design is informative, whereas the same test result is not significant at

individual level. I also tested the effect of sampling weights within each

school and found that only 6 percent of coefficients were significant at

.05 level. Therefore, according to the model I estimate, the sampling

design might fit scenario C1 in Figure 2. All the estimated parameters

are in same direction and have similar sizes, no matter which estimator

is used, except for the effect of Picture Vocabulary Test score estimated

by the unscaled MPML. The effect size of estimates from MPML is

smaller than that from other methods. The MPML estimates also have

higher standard error than other estimates. The sample distribution esti-

mates are very close to the naive estimates. Choosing the best method is

not an easy task. Some traditional index may not work well. For exam-

ple, the Akaike information criterion and the Bayesian information cri-

terion are almost identical among the naive and sample distribution

methods and not comparable with those from MPML.
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Nevertheless, some conclusions are clear. Although the estimates are

different, their confidence intervals actually overlap. Those estimates

are not substantially different from each other. It does not matter which

method one chooses in this example.

I also further investigate some possible reasons why the hybrid esti-

mates on intercept are lower than those from other methods. I find that

the missing pattern on delinquency is correlated with the individual-

level sampling weights. Because the sampling weights were adjusted

according to survey nonresponse (Tourangeau and Shin 1999), but not

for the missing on delinquency, the sampling weights at the individual

level may not carry enough information to recover the possible nonran-

dom missing on delinquency. Cautiously using the same set of sampling

weights for all analyses should be advised.

APPENDIX A1
All 1st Order Exponential Approximation From Eideh And

Nathan 2009

Under the first-order exponential approximation, the cluster level probabilities

of inclusion can be written as

Ep pijui, zið Þ’g zið Þexp a1uið Þ:

Thus, the sample distribution of random effect ui can be derived as

fs uijzið Þ = 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

u

p exp �
ui � a1s2

u + z0ig
� �� �2

2s2
u

 !
:

If the individual level probabilities of inclusion can also be approximated by

the first-order exponential, according to Eideh and Nathan (2009), the condi-

tional sample distribution of individual elements can be written as

Ep pjjijyij, xij, ui

� �
’k xij, ui

� �
exp b1yij

� �
,

fs yijjxij, ui

� �
=

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp �
yij � ui + x0ijb + b1s2

e

� �� �2

2s2
e

0
B@

1
CA,

and then the marginal sample distribution for the ith cluster and the full sample

distribution function are given as follows:
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fs yið Þ= 2p�
ni
2 s2

e

� ��ni�1

2 mis
2
u + s2

e

� ��1
23

exp � 1

2s2
e

Xni

j = 1
yij � a1s2

u + z0ig + x0ijb + b1s2
e

� �2
� �� �

3exp
s2

u

2s2
e nis2

u + s2
e

� �Xni

j = 1
yij � a1s2

u + z0ig + x0ijb + b1s2
e

� �� �2

 !
,

fs yð Þ=
Ym
i = 1

fs yið Þ,

where g and b are unknown fixed effects, and s2
u, and s2

e are variance compo-

nents. Because the sample likelihood function contains some unknown infor-

mativeness parameters a1 and b1, they must be estimated first. A two-stage

estimation procedure was proposed by Eideh and Nathan (2009). The first step

is to estimate a1 and b1, by regressing �log wið Þ and �log wjji
� �

against ui and

yij, respectively. One problem is that the random effect ui is not observed,

though it can be measured by the cluster mean, for example, �yi = 1
mi

Pmi

j = 1 yij

(Eideh and Nathan 2009). However, substituting ui with �yi is not an ideal solu-

tion, because for ui, �yi is a measure with error. A better solution is to use ûi,

which is the predicted ui from the unweighted method, because ûi is the BLUP

(e.g., Robinson 1991).

The second step is to maximize the full sample likelihood function, with â1

and b̂1. Because the two-stage procedure treats â1 and b̂1 as fixed, the model-

based variance estimator underestimates the true variability. Although the var-

iance can be estimated by bootstrapping (Eideh and Nathan 2009), for compu-

tational conveniences, we ignore the variation due to the randomization

distribution and use the model variance, which is directly obtained by PROC

NLMIXED. Another reason we do so is that the first-order exponential model

is an oversimplified approximation and does not reduce much bias on b0 and

s2
u. It produces identical estimates as the naive method for other parameters.

Although variance can be better estimated, and the variability of a1 and b1 can

be implemented using methods other than the two-stage estimation, such as

EM, we still adopt the model-based variance and acknowledge that by doing

so, the coverage rates can be very poor.

APPENDIX A2

When the cluster-level sample indicator Ii follows a logistic model conditional

on the cluster-specified random effect ui, the conditional expectation and its

marginal can be written as
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Ep pijuið Þ = 1

1 + exp �a0 � a1uið Þ ,

Ep pið Þ=
ð

1

1 + exp �a0 � a1uið Þ dui =

ð
1

1 + exp �a0 � a1uið Þ3

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

u

p exp � u2
i

2s2
u

� �
dui:

Define h uið Þ as

h uið Þ= � log 1 + exp �a0 � a1uið Þð Þ � u2
i

2s2
u

:

The first and second derivatives for h uið Þ are

dh uið Þ
dui

=
a1

1 + exp a0 + a1uið Þ �
ui

s2
u

,

dh2 uið Þ
du2

i

= � a2
1exp a0 + a1uið Þ

1 + exp a0 + a1uið Þ½ �2
� 1

s2
u

:

Because
dh2 uið Þ

du2
i

\0, the function h uið Þ is concave. Set
dh uið Þ

dui
= 0, and use the

Newton algorithm to find the solution:

u(t + 1) = u(t) �
dh uið Þ

dui

dh2 uið Þ
du2

i

jui = u(t)
:

Practice shows that the algorithm quickly converges at iteration 1 to the maxi-

mum point from u(0) = 0:

u(1) =
a1su 1 + exp a0ð Þ½ �

a2
1s2

uexp a0ð Þ+ 1 + exp a0ð Þ½ �2
:

Thus, the Laplace approximation of Ep pið Þ can be written as

Ep pið Þ’exp h u 1ð Þ
� �� � dh2 uið Þ

du2
i

� ��1
2

jui = u 1ð Þ

=
exp a0 + a1suu(1) �

u2
(1)

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1s2
uexp a0 + a1suu(1)

� �
+ 1 + exp a0 + a1suu(1)

� �	 
2q :
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Therefore, the approximated sample distribution of ui is

fs uið Þ’
exp a1 ui � suu 1ð Þ

� �
+

u2
1ð Þ

2
� u2

i

2s2
u

� �
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

u

p
1 + exp a0 + a1uið Þ½ �

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1s2
uexp a0 + a1suu 1ð Þ

� �
+ 1 + exp a0 + a1suu 1ð Þ

� �	 
2q
:

Smilarly, if the individual-level sample indicator Ijji follows a logistic model con-

ditional on yij, the conditional expectation, and its marginal, can be written as

Ep pjjijyij

� �
=

1

1 + exp �b0 � b1yij

� � ,

Ep pjji
� �

=

ð
1

1 + exp �b0 � b1yij

� � dyij =

ð
1

1 + exp �b0 � b1yij

� �
3

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp �
yij � xijb� ui

� �2

2s2
e

 !
dyij:

Define sij as

sij =
yij � xijb� ui

se

:

Thus,

Ep pjji
� �

=

ð
1

1 + exp �b0 � b1 xijb + ui + sesij

� �� � 1ffiffiffiffiffiffi
2p
p exp � sij

2

2

� �
dsij:

Define g sij

� �
as

g sij

� �
= � log 1 + exp �b0 � b1 xijb + ui + sesij

� �� �� �
�

s2
ij

2
:

The first and second derivatives for g sij

� �
are

dg sij

� �
dsij

=
b1se

1 + exp b0 + b1 xijb + ui + sesij

� �� �� sij,

dg2 sij

� �
ds2

ij

= �
b2

1s2
eexp b0 + b1 xijb + ui + sesij

� �� �
1 + exp b0 + b1 xijb + ui + sesij

� �� �	 
2 � 1:
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Because
dg2 sijð Þ

ds2
ij

\0, the function g sij

� �
is concave. Again, we set

dg sijð Þ
dsij

= 0 and

use the Newton algorithm to find the solution:

s(t + 1) = s(t) �
dg sijð Þ

dsij

dg2 sijð Þ
ds2

ij

jsij = s(t)
:

The algorithm quickly converges at iteration 1 to the maximum point from

s(0) = 0:

s(1) =
b1se 1þ exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �� �
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2 :
Thus, the marginal conditional expectation can be approximated by

Ep pjji
� �

’
exp b0 + b1 xijb + ui + ses(1)

� �
� s2

(1)

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2q :

Therefore, the approximated sample distribution of yij can be written as

fs yij

� �
’

exp b1 yij � xijb� ui � ses 1ð Þ
� �

� yij�xijb�uið Þ2
2s2

e
+

s2
1ð Þ
2

� �
1 + exp b0 + b1yij

� �	 

3

ffiffiffiffiffiffiffiffiffiffiffi
2ps2

e

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2q
:

The approximated marginal sample distribution of yi is

fs yið Þ=
ðYni

j = 1

fs yijjxij, ui

� �
dui

’c23

ð exp � 1
2s2

e

Pni

j = 1 yij � xijb� ui � b1s2
e

� �2 � ui�a1s2
uð Þ2

2s2
u

� �
1 + exp a0 + a1uið Þ

3
Yni

j = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2q
dui,

where
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c2 =
c13exp 1

2

Pni

j = 1 s 1ð Þ � b1se

	 
2� �
Qni

j = 1 exp b0 + b1yij

� � 3 2ps2
e

� ��ni
2 ,

c1 =
exp 1

2
(u 1ð Þ � a1su)2

� �
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

u

p 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1s2
uexp a0 + a1u(1)

� �
+ 1 + exp a0 + a1u(1)

� �	 
2q
:

The approximated marginal sample distribution of yi still needs to be approxi-

mated according to the random effect ui.

Define D as

D = b0 + b1 xijb + ui + ses 1ð Þ
� �

:

Then dD
dui

= b1.

Define k uið Þ as

k uið Þ= �
Pni

j = 1 yij � xijb� ui � b1s2
e

� �2

2s2
e

�
ui � a1s2

u

� �2

2s2
u

� log 1 + exp a0 + a1uið Þð Þ

+

Pni

j = 1 log b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
� �

2
:

Thus, the first and second derivatives of k uið Þ are

dk uið Þ
dui

=

Pni

j = 1 yij � xijb� ui � b1s2
e

� �
s2

e

�
ui � a1s2

u

� �
s2

u

� a1

1 + exp �a0 � a1uið Þ

+
1

2

Xni

j = 1

2b1exp 2Dð Þ+ b3
1s2

e + 2b1

� �
exp Dð Þ

b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
,

dk2 uið Þ
du2

i

= � ni

s2
e

� 1

s2
u

� a2
1exp a0 + a1uið Þ

1 + exp a0 + a1uið Þ½ �2

+
Xni

j = 1

b2
1 b2

1s2
e + 2

� �
exp 3Dð Þ+ exp Dð Þ½ �+ 4b2

1exp 2Dð Þ

2 b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
h i2

:

b2
1 b2

1s2
e + 2

� �
exp 3Dð Þ+ exp Dð Þ½ �+ 4b2

1exp 2Dð Þ

2 b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
h i2

=
b2

1

exp Dð Þ+ exp �Dð Þ+ b2
1s2

e + 2
3

b2
1s2

e + 2

2
�

b2
1s2

e + 2
	 
2 � 4

2 exp Dð Þ+ exp �Dð Þ+ b2
1s2

e + 2
� �

 !
:

Because function exp Dð Þ+ exp �Dð Þ � 2, and it takes value 2 at D = 0.
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Therefore,

b2
1 b2

1s2
e + 2

� �
exp 3Dð Þ+ exp Dð Þ½ �+ 4b2

1exp 2Dð Þ

2 b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
h i2

� b2
1

b2
1s2

e + 4
3

b2
1s2

e + 2

2
� 1

2
3

b2
1s2

e + 2
	 
2 � 4

b2
1s2

e + 4

 !
=

b2
1

b2
1s2

e + 4
\

1

s2
e

:

Thus,

Xni

j = 1

b2
1 b2

1s2
e + 2

� �
exp 3Dð Þ+ exp Dð Þ½ �+ 4b2

1exp 2Dð Þ

2 b2
1s2

eexp Dð Þ+ 1 + exp Dð Þ½ �2
h i2

\
ni

s2
e

,

and
dk2 uið Þ

du2
i

\0 and k uið Þ is concave. Set
dk uið Þ

dui
= 0, and use the Newton algorithm

to find the solution.

Update u(t + 1) = u(t) �
dk uið Þ

dui

dk2 uið Þ
du2

i

jui = u(t)
, till convergence.

The Laplace approximation for
Ð

exp k uið Þð Þdui isð
exp k uið Þð Þdui’exp k u(2)

� �� �
3

ffiffiffiffiffiffiffiffiffiffiffi
2pŝ2

p
,

where u(2) is the limit point of the Newton iterations, and

ŝ2 = � dk2 uið Þ
du2

i

� ��1

jui = u(2)
:

Put all together, the log likelihood of the approximated fs yið Þ is

log fs yið Þð Þ’log c2ð Þ+ k u 2ð Þ
� �

+
1

2
log 2pŝ2
� �

,

where

log c2ð Þ= log c1ð Þ+
Pni

j = 1 s 2ð Þ � b1se

	 
2
2

�
Xni

j = 1
log 1 + exp b0 + b1yij

� �� �
� ni

2
log 2ps2

e

� �
,

log c1ð Þ=
u 1ð Þ � a1su

	 
2
2

�
log 2ps2

u

� �
2

+

log a2
1s2

uexp a0 + a1suu 1ð Þ
� �

+ 1 + exp a0 + a1suu(1)

� �	 
2� �
2

,
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s 2ð Þ = s 1ð Þjui = u(2)
:

The sample information parameters a0, a1, b0 and b1 can be estimated from the

sample data.

If the cluster-level sample indicator Ii does not depend on the cluster-

specified random effect ui, then a0 = a1 = 0, and fs yið Þ becomes

fs yið Þ’c03

ð
exp � 1

2s2
e

Xni

j = 1

yij � xijb� ui � b1s2
e

� �2 � uið Þ2

2s2
u

 !

3
Yni

j = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1s2
eexp b0 + b1 xijb + ui + ses 1ð Þ

� �� �
+ 1 + exp b0 + b1 xijb + ui + ses 1ð Þ

� �� �	 
2q
dui

where

c0 =

ffiffiffiffiffiffiffiffiffiffiffi
2ps2

u

q
3

exp 1
2

Pni

j = 1 s 1ð Þ � b1se

	 
2� �
Qni

j = 1 exp b0 + b1yij

� � 3 2ps2
e

� ��ni
2 :

If the individual-level sample indicator Ijji does depend on the response variable

yij, then b0 = b1 = 0, and fs yið Þ becomes

fs yið Þ’ 2ps2
e

� ��ni
2 exp

(u 1ð Þ � a1su)2

2

 !
3

ð exp � 1
2s2

e

Pni

j = 1 yij � xijb� ui

� �2 � ui�a1s2
uð Þ2

2s2
u

� �
1 + exp a0 + a1uið Þ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1s2
uexp a0 + a1uið Þ+ 1 + exp a0 + a1uið Þ½ �2

q
dui:

The value of a0, a1, b0 and b1can be estimated by given

wi = 1 + exp �a0 � a1uið Þ,

wjji = 1 + exp �b0 � b1yij

� �
:

where ui can be replaced by ûi.

APPENDIX B

SAS code for the naive method:

proc mixed data=data covtest method=REML empirical;

model y=x1 x2 x3/s;

random intercept/sub=clu;

run;
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SAS code for the sample distribution method: the exponential approximation

under the two-stage informative design:

proc nlmixed data=_sample QPOINTS=100 NOAD NOADSCALE;

parms beta0-beta3 1 s2u s2e 2;

mu=a1*s2u+b1*s2e+beta0+beta1*x1+beta2*x2+beta3*x3+u;

model y~normal(mu,s2e);

random u~normal(0,s2u) sub=cluster;

run;

SAS IML code for the sample distribution method: the Laplace approximation

under the two-stage informative design:

proc iml;

start lfs(initial) global(cluster,x,y,a0,a1,b0,b1);

beta=initial[1:4];

s2u=initial[5];

s2e=initial[6];

n=ncol(UNIQUE(cluster));

lfs=0;

/*u(1)*/

u1=a1*sqrt(s2u)*(1+exp(a0))/(a1**2*s2u*exp(a0)+(1+

exp(a0))**2);

/*log C1 */

lc1=.5*(u1-a1*sqrt(s2u))**2+.5*log(a1**2*s2u*exp(a0+a1

*sqrt(s2u)*u1)+

(1+exp(a0+a1*sqrt(s2u)*u1))**2)-.5*log(2*CONSTANT (’PI’))-

.5*log(s2u);

do i=1 to n;

yi=y[loc(cluster=i)];

xi=x[loc(cluster=i),];

mui=xi*beta;

ei=yi-mui;

mi=nrow(yi);

c=b1**2*s2e+2;

t=0;

u=-1;

/*u(2) and s(2) for ijth individual*/

do until (abs(u2-u0)\.0001);

u0=u;

s2=(b1*sqrt(s2e)*(1+exp(b0+b1*(mui+u0))))

/(b1**2*s2e*exp(b0+b1*(mui+u0))+(1+exp(b0+b1*

(mui+u0)))##2);

delta=b0+b1*(mui+u0+sqrt(s2e)*s1);
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d1=-u0/s2u+a1+1/s2e*sum(ei-u0-b1*s2e)-a1/(1+exp

(-a0-a1*u0))+

.5*sum((b1*c*exp(-delta)+2*b1)/(c*exp(-delta) +1+exp

(-2*delta)));

d2=-1/s2u-mi/s2e-a1**2/(exp(-.5*a0-.5*a1*u0)+exp

(.5*a0+.5*a1*u0))**2

+.5*sum((b1**2/(c+exp(-delta)+exp(delta)))#(c-(c**2-4)/

(c+exp(delta)

+exp(-delta))));

u=sum(u0,-d1/d2);

u2=u;

t=t+1;

end;

/*log C2 for ith cluster*/

lc2i=lc1+.5*sum((s1-b1*sqrt(s2e))##2)-sum(log(1+exp

(b0+b1*yi)))

-.5*mi*(log(s2e)+log(2*CONSTANT(’PI’)));

ki=-(u2-a1*s2u)**2/(2*s2u)-sum((ei-u2-b1*s2e)##2/(2*s2e))-

log(1+exp(a0+a1*u2))

+.5*sum(log(b1**2*s2e*exp(delta)+(1+exp(delta))##2));

lfsi=lc2i+ki-.5*sum(log(-d2))+.5*log(2*CONSTANT(’PI’));

lfs=lfs+lfsi;

end;

return(-lfs);

finish lfs;

Mplus code:

VARIABLE:

Names are clu wt1 x1 x2 x3 y wt2 ind;

Usevariables are clu y x1 x2 x3;

Cluster is clu;

WITHIN =x1 x2 x3;

Weight is wt2;

Bweight = wt1;

Wtscale =CLUSTER;

Bwtscale =SAMPLE;

MODEL:

%WITHIN%

y on x1 x2 x3;

%BETWEEN%

ANALYSIS:

ALGORITHM = INTEGRATION;
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ITERATIONS =2000;

Type =twolevel;

OUTPUT:

sampstat tech1;

LISREL code

#Make a PSF file

Raw Data from File c:\temp\lis.dat

DA NI=8 NO=0

LA

id x1 x2 x3 y wt_ind wt_clu clu

RA FI=C:\temp\lis.dat

OU RA=lis.PSF

#MULTILEV module

OPTIONS OLS=YES CONVERGE=0.0001 MAXITER=2000 OUTPUT=STANDARD;

SY=lis.psf;

ID2=clu;

ID1=id;

WEIGHT2=wt_clu;

WEIGHT1=wt_ind;

RESPONSE=y;

FIXED=intcept x1 x2 x3;

RANDOM1=intcept;

RANDOM2=intcept;

Notes

1. I also evaluated the effect of weight trimming for the simulations in section 4.2. The

results were very close to those reported here and are available on request.

2. I replicated their results and found that in our replication, the average relative varia-

tions of sampling weights were 0.184, and 0.452, respectively. The results and code

are available on request.
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