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We show that visibility data contain crucial information for learning the air pollution-income linkage. First,
visibility reflects air pollutants (e.g. fine particulates) that are typically omitted by publicly reported indicators
of air pollution, typically SO, and TSP. Second, data on visibility cover almost the entire world, whereas the typical
pollution indicators cover a smaller and non-representative sample. We show that both features matter, in a
significant way, by employing visibility as a proxy of air quality to re-estimate its relationship with income.
Using the findings of Grossman and Krueger (1995) and Harbaugh et al. (2002) as benchmarks, we find that
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013 the test of the Environmental Kuznets Curve hypothesis is highly sensitive to the coverage of countries. More

Q21 importantly, we find that this visibility-income linkage is only partially driven by publicly monitored pollutants,

Q25 but is dominated by the “unobserved” ones. Addressing both issues, we find the inverse-U shape relationship
supported for most of the economies.
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1. Introduction

Economic growth may affect the natural environment. This linkage
has an important implication for sustainable growth and health, and
has been estimated by a large number of studies. The influential work
of Grossman and Krueger (1995) (GK), for example, uses panel data
across countries to estimate that the relationship between sulfur dioxide
and per capita income follows an inverse-U shape (as implied by the
Environmental Kuznets Curve hypothesis). This relationship, however,
received mixed evidence from more recent studies. Harbaugh et al.
(2002) (HLW), in particular, find that the EKC SO,-income path disap-
pears when the augmented GK data are used.!

The current study provides new evidence on the EKC hypothesis, but
testing it is not our emphasis. Instead, our objective is to address two
potentially fatal, yet largely omitted, limitations of the existing studies.
Both of them concern the sample of commonly used pollution data.
One is on the geographical coverage. The early influential studies mainly
focus on developed countries and hence the sample is unrepresentative
(Carson, 2010). Even in the later studies, for example, the data used in
HLW (2002), cover less than 45 countries, which over-sample Asia
and Europe. It is important to note that even if a true EKC path exists

* Corresponding author. Tel.: +852 97223859; fax: 4852 25481152.
E-mail address: zli.economics@gmai.com (Z. Li).
! Copeland and Taylor (2004) discuss extensively the reasons for which the reduced-
form tests of the EKC hypothesis may be uninformative.
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between pollution and income, the estimate of the path based on a
non-representative sample may be severely biased if the functional
form is mis-specified (see Fig. 1 for an illustration with hypothetical
data).?

Another limitation of the existing data is that they may miss impor-
tant pollutants in the air. For example, in most countries, the particles
with diameters greater than 10 pm are monitored and reported, but
finer particles are not (Roumasset et al., 2008). Hence, by focusing on
the observed air pollutants, the literature might have omitted a signifi-
cant component of the pollution-income dynamics. More importantly,
this selective monitoring may give polluters an incentive to substitute
their production of unmonitored particles for the observed ones so as
to avoid penalty. This substitution effect could further distort the
estimates based on observed pollutants. So the data quality issue has
become one problem in testing the existence of EKC (Carson, 2010).

To address these two issues, at least partially, we utilize visibility, a
measure of air quality that has been rarely used in the literature, to
re-visit the EKC hypothesis. Air visibility reflects the outcome of
both observed and unobserved air pollutants (especially particles with
diameters less than 10 um). Moreover, data available on air visibility

2 InFig. 1, the true pollution-income path (the solid line) is consistent with the EKC hy-
pothesis. We approximate this path by a triple-polynomial function of income. The dashed
line represents the fitted value after the regression using full sample. It shows an inverse-U
shape that reasonably approximates the true path. When we restrict the sample such that
the income is greater than 20, the fitted value (the dotted line) shows little support for the
EKC pattern.
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Fig. 1. An illustration of the bias due to the non-representative sub-sample.

cover over 18,000 sites from 184 countries since 1950, which is much
more extensive than the existing data on air pollutants.>

In general, we find that the omitted countries and pollutants can bias
the estimates significantly. Specifically, using the full sample of the
visibility data, we find robust evidence supporting the EKC hypothesis
for most of the economies, following the methodology of HLW (2002).
The turning point is generally within a narrow range (between $3000
and $6000 per capita) for different specifications. Once we restrict the
sample coverage to the countries that also report on sulfur dioxide
(SO,) and total suspended particulates (TSP), the foregoing EKC rela-
tionship disappears. In addition, when the concentrations of SO, and
TSP are added to the visibility regressions, we find that they only partially
explain the visibility-income path. The other pollutants, those that
are unobserved, appear to be the key underlying factor of the EKC
relationship.

The following section demonstrates how air visibility may be used to
test the EKC hypothesis. It is followed by a section describing the data.
Section four reports the estimated relationship between air visibility
and income. The last section concludes.

2. Methodology

This section shows how air visibility may be used as a proxy for air
quality to estimate the pollution-income linkage and to recover the
effect of omitted air pollutants.

2.1. Visibility as a Measure of Air Pollution

In the literature, researchers have adopted various air pollutant
indicators to study the Environmental Kuznets Curve. Typical indicators
include Sulfur dioxide (SO,),* nitrogen oxide (NOx), suspended particle
matter (SPM), dark matter (fine smoke), carbon oxide (CO), carbon
dioxide (CO,), vehicle hydrocarbon emissions, etc. Readers can refer
to Panayotou (2000) and Dinda (2004) for details. In this paper, we
propose to exploit a rarely used database on air visibility to measure
air pollution. This approach allows us to provide additional complemen-
tary evidence to the EKC literature by addressing some remaining
controversies.

Air visibility refers to “the greatest distance at which an observer can
just see a black object viewed against the horizon sky” (Malm, 1999). It
is determined by the density of particles (e.g. black carbon) and gases

3 This data set has been used in Husar et al. (2000) to study the spatial distribution of air
quality across the world, but they have not linked visibility to economic growth.

4 Stern (2005) employs a database of SO,, which documents and imputes the global
sulfur emissions at the country level during 1850-2003.

(mainly NO;) in the atmosphere. The sources of these aerosol matters
can be manmade or natural. They reduce visibility by scattering and
absorbing light.®

Compared with typical pollutant indicators used in the literature, the
air visibility data has the following major advantages. First, as air visibil-
ity is less technical to measure and is a basic measure of air quality, it is
systematically recorded in most of the places in the world for a long
time span (1950-now). Hence, sample selection, which is a potential
issue with studies of the existing literature, may be avoided using the
visibility data. Second, for technical reasons, such as the lack of cost-
effective measuring devices, important pollutants may be omitted by
the data of typical air pollutants. For example, PM2.5, which refers to
the particulate matter with 2.5 pm or smaller in size, has important
health impact.° However, data on PM2.5 is lacking in many developing
countries. Nevertheless, because PM2.5 is the primary cause for the
scattering of visible light and the cause of the degradation of visibility
(Sloane et al., 1991), air visibility may help to address this issue.

Despite the advantages, air visibility has seen limited use in the liter-
ature, possibly for the following reasons. First, visibility is affected by
both man-made pollutants and natural conditions. To address this issue,
we shall control for as many weather factors that can affect visibility in
our regressions as possible. Generally, we do not find that adding the
weather factors have material effects on our estimates. Second, mea-
surement technologies of visibility have changed over time and might
be prone to the endogenous technology adoption issue. In our analysis,
we will conduct robustness checks by conducting regressions by differ-
ent time period, so as to check the robustness of our estimates over
time. Third, air visibility does not completely capture all harmful pollut-
ants. Hence, our estimates do not provide the compete answer to the
pollution-growth linkage. Nevertheless, we can advance the literature
in this direction with the insufficiently used data on air visibility.

Following the meteorological literature (e.g., Malm et al., 1994;
Wang, 2003; Watson, 2002), the inverse of visibility may be modeled
as a linear function of the density of particles and gases: ’

n
1/Visibility; = > wyAy. (1)

=

Here Ay is the concentration of pollutant j for site i in year t. The
parameter wj; reflects the light property (scattering and absorbing) of
this pollutant. According to the existing studies, particles (e.g. dust,
smoke, elemental carbon, and naturally occurring hydrometeors)
dominate gases (especially NO,) in reducing visibility in the world
(see Eidels-Dubovoi, 2002, for discussion).® Note that w;; could vary by
site. For example, visibility would be lower in more humid regions
given the same pollutant concentration.

5 Aerosol refers to particles and the gas together. Some of the aerosols occur naturally,
originating from volcanoes, dust storms, forest and grassland fires, living vegetation, and
sea spray. Human activities, such as the burning of fossil fuels in vehicles, power plants
and various industrial processes also generate significant amounts of aerosols. Averaged
over the globe, anthropogenic aerosols - those made by human activities - currently
account for about 10% of the total amount of aerosols in our atmosphere (Hardin and
Kahn, 1999).

5 Cohen et al., 2005 estimates that “... fine particulate air pollution (PM(2.5)), causes
about 3% of mortality from cardiopulmonary disease, about 5% of mortality from cancer
of the trachea, bronchus, and lung, and about 1% of mortality from acute respiratory infec-
tions in children under 5 years, worldwide.” (doi:10.1080/15287390590936166).

7 For example, the IMPROVE project (Interagency Monitoring of Protected Visual
Environments) models the inverse of visibility as a linear function of sulfate, nitrate, or-
ganics, light-absorbing carbon, soil, and coarse mass (Malm et al., 1994).

8 Particulate, alternatively referred to as particulate matter (PM) or fine particles, are
tiny particles of solid or liquid suspended in a gas. Hydrometeors are large droplets or crys-
tals of water (>5 pm) and they occur as rain, fog, clouds, and snow.
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2.2. The Visibility-Income Linkage

Following GK (1995) and HLW (2002), we model the emission of
pollutant j at site i in year t, A;j, as follows:

2 3 2 3
Ajie = GePj + GieBaj + GieBsj + LiBaj + LiBsj + LiBosj + X ieB7j + 1y
+Vji. (2)

Here G, is the per capita GDP of the country where site i locates. L;; is
the three-year average of lagged GDP per capita. X;; include country-
and site- specific characteristics that may vary over time and affect the
emission of air pollutants. The factors constant over time are summa-
rized by the variable y; (unique for each site-pollutant combination).
Combining models (1) with (2), we have

o 2 3 2 3
1/Vsibility;, = Gi6y; + Giy; + Gies; + Ligba; + LiBs; + Libg; + X 105
+Hi + Vi

where
I
O = Z Wiy (4)
=

Here I is the number of the types of air pollutants. The visibility—
growth linkage is thus a weighted sum of the linkages between income
and different air pollutants.

2.3. The “Omitted” Pollution-Income Linkage

Various pollutants may affect visibility, but only some are
monitored. For example, fine particles (less than 10 um in diameter)
are the products of combustion of fossil fuels. They are much more
damaging in terms of health complications than bigger particles.
However, the fine particles are not included in TSP, which is for bigger
particles (up to 40 um in diameter) (Roumasset et al., 2008).

Nevertheless, the missed link between income and unobserved air
pollutants may be partially uncovered via visibility. To illustrate, let I°
index those pollutants observed and I for the unobserved, then
model (2) can be re-written as:

g ey -~ 2"" 3~ ~ 2~ 3~
1/Vsibility; = " wyAy; + Gies; + Gieby; + GiyO3; + LitO; + LigOs; + L
jer
+ X 07+ 1+ vy
5)

where
O = > Wiy 6)
jem

As we have controlled for observed pollutants, the parameters 6y;
thus indicate the linkage between income and unobserved pollutants.

2.4. Estimation and Identification Issues

With panel data, models (3) and (5) may be estimated with random
effect or fixed effect estimators, as in GK (1995) and HLW (2002).° To
facilitate the comparison of their findings with ours, we shall consider
both estimators. Moreover, we shall follow HLW (2002) to consider
various specifications and robustness checks.

9 The random effect estimator assumes that the site-specific fixed effects y; are uncorre-
lated with the independent variables and that v; is normally distributed. These assump-
tions are not needed in the fixed effect approach, in which site-specific dummy
variables are included in the regression.

Note that the parameters 6y; and 6); could vary by region, but we are
only estimating their averages over different pollutants and sites, E(6;)
and E(6y;). According to Wooldridge (2004), the estimates of these aver-
ages are consistent for the fixed effect model under weak conditions. In
contrast, the random-effect estimator may be inconsistent unless 6y;
and 6); are uncorrelated with the regressors. This assumption requires
that the local economic growth is unrelated with local amenities
(e.g. geography or environment), which may not hold in general. The
estimates of the random-effect model may need to be treated more
cautiously.

Another identification issue concerns the measurement of visibility.
Most of the visibility readings in our sample were made by human
observers (using visual targets at known distance such as large build-
ings and hills), which generally underestimates the actual visual range
(see Husar et al., 2000, for discussion). Our model estimates may thus
be biased by these measurement errors if their variations over time
are correlated with the independent variables. This is possible, for
example, if more rapid economic growth accelerates the adoption of
technology that can measure visibility more precisely. This endogeneity
issue cannot be addressed directly in this study as we have no informa-
tion on the actual measurement method used. Nevertheless, we may
compare the estimates for different sub-periods: since the new mea-
surement technology was introduced in more recent years, comparing
the estimates for earlier and later sub-periods may help us check the
sensitivity of our estimates.!°

3. Data
Below we introduce the data used in this study.
3.1. Climate Data

Visibility records used in this study result from the data exchanged
under the World Meteorological Organization (WMO) World Weather
Watch Program according to WMO Resolution 40 (Cg-XII) (WMO,
1996). The data used are distributed by the National Climatic Data
Center. As shown in Table 1, this data set covers over 18,000 sites in
184 countries from 1950 to 2004. Countries with missing observations
are mainly in Africa. For comparison, the data in GK (1995) cover 239
sites from 42 countries, and 285 sites from 45 countries are covered in
HLW (2002) (the sample varies by pollutants).

Besides air visibility, the data set also contains temperature,
pressure, dew point, wind speed, total precipitation, snow depth, and
the indicators of fog, rain, snow, hail, thunder, and tornado. The daily
mean values of these weather measures (based on at least four valid
hourly readings per day) are reported. The observational procedures
are specified in the guidelines issued by the World Meteorological
Organization (WMO, 1996). Part of the data (1994-1998) has been
used in Husar et al. (2000) to study the spatial distribution of air quality
around the world.

For the purpose of this study, we first aggregate the data from daily
to annual frequency by taking either the annual average or median for
each site.!" This aggregation reduces the sample size to around
330,000 site-year observations. Summary statistics of major variables
are reported in Table 1. Mean air visibility is around 20 miles within
the sample.

In order to filter out observations affected by extreme weather con-
ditions (e.g. high concentration of naturally occurring hydrometeors,

10 For example, Automated Surface Observing System is one of the two primary systems
deployed at airports across the U.S. (http://www.nws.noaa.gov/asos/obs.htm). This sys-
tem includes visibility sensors (based on xenon light), which generate measures of visibil-
ity that are used as part of the visibility data set (for the airport in the U.S. with this
system). The preparation of the ASOS in the U.S. began in 1991 and was completed in
2004 (according to Wikipedia.com).

™ In calculating the annul mean or median of visibility, the daily observations with ex-
treme air visibility (below 1 mile and above 100 miles) are excluded.
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Table 1
Summary statistics and the comparison with GK (1995) and HLW (2002).
Grossman and Krueger (1995) Harbaugh et al. (2002) This study
Obs. Obs.
Variable S02 TSP Smoke S02 TSP Smoke Obs Mean Std. dev. Min Max
Pollution concentration (pg/m>) 1261 1021 487 2401 1092 710
Mean visibility (miles) 329,160 19.805 23.489 1 99.9
Mean inverse visibility 329,160 0.118 0.071 0.010 1
Temperature (Fahrenheit) 329,160 53.165 16.655 —-99 99.3
Precipitation (inches) 329,160 0.070 0.138 0 1717
Snow depth (inches) 329,160 0.586 2237 0 110.2
Fog or not 329,160 0.096 0.138 0 1
Rain or not 329,160 0.247 0.178 0 1
Snow or not 329,160 0.097 0.134 0 1
Hail or not 329,160 0.004 0.015 0 1
Thunder or not 329,160 0.050 0.072 0 1
Tornado or not 329,160 0.000 0.003 0 1
GDP per capita (thousand USD) 1352 1021 488 2381 1085 687 265,960 10.940 10.090 0.059 54.285
Three-year avg. lag GDP (Thousand USD) 1352 1021 488 2389 1092 687 259,520 10.084 9.417 0.062 49.723
Ten-year avg. lag GDP (Thousand USD) 1352 1021 488 2389 1092 687 232,561 9.097 8377 0.073 41.558
Population density 1352 1021 488 2401 1092 710 318,918 0.070 0.185 0.001 17.772
(Thousand per sq.km.)
% GDP invested 2381 1085 687 265,960 21.118 7.369 0.15 66.62
Trade intensity 2381 1085 687 266,132 44421 33411 2.14 623.46
Democracy 2322 1063 646 291,998 5.695 4.555 0 10
Year 1352 1021 488 2401 1092 710 329,160 1983.821 13.637 1950 2004
# of cities 239 161 87 285 149 96 18,111
# of countries 42 29 19 45 30 21 184

Note: The Grossman and Krueger (1995) sample covers the 1977-1988 period, and the Harbaugh et al. (2002) sample covers the 1971-1992 period.

such as rain, snow, and fog) and measurement errors, we introduce an
algorithm adapted from that of Husar et al. (2000). This would further
reduce the sample size by about a half. Details of the filter are available
in Appendix A.

3.2. Other Variables

From Penn World Table (PWT 6.2, including 188 countries, 1950-
2004, 2000 as base year), we obtain country-level information on real
GDP per capita (standardized by Purchasing Power Parity), population,
the investment share of real GDP, and trade intensity (the sum of import
and export divided by real GDP). These data have been used by a num-
ber of studies in the literature, including GK (1995) and HLW (2002).
The democracy index is obtained from the website of “Kristian Skrede
Gleditsch, Polity Data Archive”. The range of this index is from 0 to 10;
the larger the index, the more democratic the economy is. In addition,
the area (to calculate the population density) and other natural condi-
tions of each country (e.g. whether the country is landlocked or not)
are obtained from the French Research Center in International Economics
(CEPII).

In addition, HLW have graciously made the AIRS data used in their
work in 2002 available for the current study. This data set provides
high quality measures of SO, and TSP, which are critical variables in
our regressions to infer the relevance of unobserved air pollutants.
Their data also include several additional variables indicating whether
the sites are close to industrial, residential, or center cities.

3.3. Preliminary Pattern of Visibility—-Income Relationship

Fig. 2 plots the national average of inverse visibility against GDP per
capita for the whole sample (non-filtered). The “lowess smoother” in
STATA is used to summarize their relationship.'? Interestingly, inverse
visibility first increase (implying more severe air pollution) in income
but then slowly decline (for economies with income level less than
$30,000 per capita). The turning point is around $6000 per capita.

12 The Lowess smoother conducts locally weighted regressions of inverse visibility on in-
come and then piece together the predicted inverse visibility given each income level.

4. Evidence on Visibility-Income Paths

The objective of our research is to examine whether the typical
findings in the literature is robust to our data, which has a wider coverage
of countries in the world and may be a more comprehensive measure of
air pollution. We shall first report regression results comparable to those
in GK (1995) and HLW (2002). Evidence on unobserved air pollutants is
then provided.

4.1. Baseline Estimates

The estimates of model (3) with alternative visibility measures and
specifications are reported in Table 2. The dependent variable is the
annual median of inverse visibility for column (1), and is the annual
average for column (2). In the first two regressions, we do not include
site-specific fixed effects. Both sets of estimates imply a similar
inverse-U relationship between inverse-visibility and income for econ-
omies with GDP per capita less than $27,000. The peak implied is

Inverse Visibility (1/mile)

H Sy,
M;o .t}.

T T T T

20 40 60
Real GDP per Capita ($1,000)

Fig. 2. Inverse visibility versus real GDP per capita (1950-2004).
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Table 2
Baseline estimates.

(1) Median; RE  (2) Mean; RE (3) Mean; FE (4) Mean; FE

Full sample Full sample Full sample  Restricted
sample
GDP 0458 2.141 3.086 47.039
(0.382) (0.404)* (0.406)* (20.670)°
(GDP)? —0.061 —0.148 —0.189 —5378
(0.018)* (0.019)* (0.019)* (2.424)°
(GDP)? 0.001 0.003 0.003 0.163
(0.000)* (0.000)* (0.000)* (0.077)°
Lag GDP 0.452 —0.801 —1.021 —63.183
(0.414) (0.437)° (0.440)° (21.071)*
(Lag GDP)? —0.103 —0.033 —0.019 7.992
(0.021)* (0.022) (0.022) (2.589)*
(Lag GDP)? 0.002 0.001 0.001 —0.269
(0.000)* (0.000)* (0.000)* (0.085)*
Year 0.775 0.740 0.687 0.001
(0.013)* (0.014)* (0.014)* (0.000)
Population Density  33.120 39.985 29.418 170.672
(1.311)? (1.392)* (1.599)* (49.785)*
Coastal —11.783 —8912
(1.048)* (1.116)*
Temperature 0.169 0.135 —0.181 2.741
(0.013)* (0.016)* (0.018)* (0.558)*
Precipitation 26.513 20.100 21.449 132.567
(0.615)* (0.585)* (0.585)* (19.320)*
Snow depth 0.017 —0.246 —0.228 —2.701
(0.049) (0.048)* (0.048)* (8.075)
Fog 19.790 61.420 58.556 —12.811
(0471)* (0.867)* (0.887)* (28.742)
Rain 14.559 41.873 39.167 118.734
(0.340)* (0.726)* (0.744)* (17.992)*
Snow 28.522 48.270 46.707 30.944
(1.009)* (1.425)* (1.469)* (37.698)
Hail 13.614 —15.600 —12.035 —1,825.756
(5.907)° (5.242)? (5.312)° (501.267)?
Thunder 4.145 —11.405 —14.672 —138.100
(1.302)* (1.439)* (1.459)* (55.456)°
Tornado —59.317 —13.465 —22.251 —1377.724
(22.516)* (18.986) (19.375) (959.213)
Observations 251,280 251,280 251,280 762
Number of group 16,589 16,589 16,589 112
R-squared 0.07 0.09 0.09 03109
Peak 3080.0705 4260.934 6055.80 12,267.19
(275.08) (248.57) (196.37) (1043.25)
Trough 27,332.662 27,831.81 27,788.11 4126.91
(121.22) (135.62) (135.47) (1433.74)
Hausman chi? 244221 7028.82 8464.12 188.23

Note: (1) The dependent variable is the annual average of the inverse of visibility.
(2) All estimates have been scaled up 1000 times to facilitate presentation.
(4) In column 4, the sample includes the cities reporting SO2, TSP (based on the HLW data)
and visibility (based on the WMO weather data) during the 1971-1992 period.
2 Significance level of 1%.
b Significance level of 5%.
¢ Significance level of 10%.

below $5000 per capita.'® For economies with GDP per capita greater
than $27,000, the estimates suggest a positive relationship between
income and pollution, which is inconsistent with the EKC hypothesis.
This pattern is also found in GK (1995), which adopts the same function
form.

We now turn to the fixed effect estimates of the baseline model,
using mean inverse visibility as the dependent variable (column 3).
Similar to what HLW (2002) find, the Hausman test clearly rejects the
random effect in favor of the fixed effect model, but in terms of economic
significance, the pollution-income paths implied by both the RE and FE

13 Note that the inverse visibility is modeled as a triple-polynomial function of current
and lagged GDP per capita. These estimates are all used in calculating the peak and trough
of the implied visibility-income path following HLW. We thank HLW (2002) for providing
the codes.
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Fig. 3. Comparison of pollution-income paths.

estimates do not differ much: the turning point increases from $4260
per capita in the RE regression to $6056 in the FE regression.

The estimation results, however, appear to be highly sensitive to the
sample of countries included. The coefficients of lagged GDP per capita
changes dramatically when we exclude countries not considered by
HLW (column 4 of Table 2).'* As a result, the implied pollution-income
path changes drastically. The pollution-income relationship now dem-
onstrates an inverse N-shape, with the peak around $12,267 and trough
around $4127.

To facilitate the comparison across studies, we follow HLW (2002) to
plot the pollution-income paths in Fig. 3 (all based on fixed-effects
estimates). The inverse-visibility-income path generally follows an
inverse-U shape (for economies with income less than $27,000) when
the full sample is considered. With the restricted sample (column 4 of
Table 2), the pattern is dramatically different.'® For comparison, we
also plot the SO,-income and TSP-income paths implied by HLW
(2002). They provide stark contrasts: the SO, path is against the EKC
hypothesis, while the TSP path is supportive.

Turning to the estimates of other coefficients, we find that increasing
population intensity by 1000 people per square kilometer would reduce
visibility by over 3%. This is consistent with the findings in HLW (2002)
although the magnitudes of their estimates are smaller. Interestingly,
while both GK (1995) and HLW (2002) find negative time trends of
SO, and TSP emissions, we find that visibility has been declining over
time. This is possible if the emission of air pollutants other than SO,
and TSP have been increasing over time.'® Our model also includes a
rich set of controls of climate conditions that might affect visibility.
The estimates are generally consistent and the signs are as expected
for the full and the restricted samples.

4.2. Robustness Checks

Applying visibility data to the same specification as in HLW (2002),
we show some evidence for the inverse-U relationship between air
quality and growth. However, we also find that this relationship is
sensitive to the sample of countries considered. Below we shall further
examine the robustness of the visibility-income paths discovered.

4 Our sample is about 70% of the TSP sample in HLW because visibility information is
missing for some of the cities they consider.

15 Note that visibility becomes more responsive to the change in income in the restricted
sample. This might be due to the less precise estimates for the reduced sample size.

16 Our random effects estimates using the sample of HLW (not reported in the tables)
show that coastal cities have less air pollution than inland cities, as is consistent with
the findings of both GK (1995) and HLW (2002). The coefficients of the industrial, residen-
tial, and centre city indicators are insignificant, as is also the case in HLW (2002).
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Table 3
Robustness checks.

(1) FE, filtered sample (2) FE, Longer lag

(3) All control variables

(4) Log dependent variable (5) Weighted by inverse

no. of stations

(6) Aggregated
country-year

GDP 5.934 6.904 1.458
(0.440)* (0.291)? (0.343)*
(GDP)? —0.348 —0.385 —0.178
(0.021)* (0.016)* (0.018)*
(GDP)? 0.005 0.006 0.004
(0.000)* (0.000)* (0.000)*
Lag GDP —3.782 —6.659 —0.656
(0.477)* (0.356)* (0432)
(Lag GDP)? 0.137 0.338 0.042
(0.025)* (0.024)* (0.028)
(Lag GDP)? —0.001 —0.005 —0.001
(0.000)* (0.000)* (0.001)¢
Year 0.569 0.824 1.710
(0.016)* (0.017)* (0.042)*
(Year)? —0.011
(0.001)*
Population density 26.582 29.105 93.450
(1.456)* (2.032)* (3.489)*
Democracy —0.276
(0.052)*
Tradeintensity —0.228
(0.007)*
Investment 0353
(0.026)*
Observations 123,427 225,993 210,969
Number of group 10,514 15,426 14,913
R-squared 0.09 0.09 0.11
Peak 6265.70 2757.23 3269.29
(208.19) (1280.86) (520.29)
Trough 27,240.19 45,886.52 30,442.75
(172.31) (10,191.73) (11,347.45)

—12.947 6.817 6.030
(4.239) (0.281)* (1.233)
—0.551 —0.268 —0271
(0.220)° (0.015)* (0.067)?
0.021 0.003 0.003
(0.004)* (0.000)* (0.001)
22355 —5.257 —4871
(5.208)* (0.364)* (1.626)*
—1.768 0.041 0.036
(0.336)% (0.025) (0.115)
0.038 0.001 0.001
(0.007)? (0.001)® (0.002)
6.629 1.244 1.337
(1.233)° (0.015)* (0.068)°
447.929 19.022 18.111
(38.109)? (0.759)? (3.423)°
2.152 —0.552 —0.445
(0.577)% (0.038)* (0.169)*
—1.937 —0.107 —0.110
(0.075)* (0.004)? (0.019)?
210,969 209,453 3930
14,913 13,397 147
0.12 0.13 0.30
221495 3857.18 2670.24
(373.49) (254.70) (1169.32)
24,056.13 31,878.21 33,529.68
(299.09) (1055.21) (5014.05)

Note: (1) The dependent variable is the annual average of the inverse of visibility, except for column 4.

(2) All estimates have been scaled up 1000 times to facilitate presentation.
@ Significance level of 1%.
b Significance level of 5%.
¢ Significance level of 10%.

4.2.1. Non-Parametric Specification for Weather Conditions

Besides air pollutants, air visibility may be affected by other weather
conditions, especially humidity. In the baseline regressions, a linear
specification of relevant weather indicators is included to control for
their effects on visibility. Alternatively, we may use a non-parametric
approach, in which we exclude those observations with unusual weather
conditions that may affect visibility (e.g., high humidity). A filter of this
kind is adapted from Husar et al. (2000) (see the Appendix A for detail).
This filter reduces the original sample size by about a half, but the base-
line estimates appear robust to this sample change. The fixed-effect
estimates with the filtered sample and the implied visibility-income
path (Table 3; column 1) are qualitatively the same as those based on
the full sample.

4.2.2. Alternative Specifications

Below we test the robustness of the baseline estimates following
various specifications considered by HLW (2002). We shall report the
estimates using the full sample. All the estimates are based on the
fixed effect model.

We first consider extending the three-year average of lagged income
to the ten-year average (Table 3; column 2). As argued in HLW (2002),
this extension may help further distinguish the permanent from the
temporary effects of income on environment. The inverse-U shape
pattern remains and the peak is reduced to $2757 per capita. In the
discussion below the estimates with the three-year average income
are considered.

The column (3) regression includes additional control variables:
democracy index, trade intensity, investment share of GDP, and the

square of year (to capture nonlinear time trend).!” The estimates are
generally significant. Both democracy and trade intensity reduce pollu-
tion. Investment share increases pollution. The time trend of pollution is
concave. Except for the time trend, other estimates have the same signs
as those in HLW (2002). Adding the control variables has little effect on
the aforementioned inverse-U shape relationship between visibility and
income per capita. The peak is around $3269 per capita. In HLW (2002),
they show that excluding the investment share from the model signifi-
cantly affects the estimated pollution-income path. We find this not to
be the case using the visibility data.

In column (4), we replace the dependent variable in previous
regressions by the logarithm of mean inverse-visibility. In column (5),
each observation is weighted by the inverse of the number of observa-
tories in each country. In column (6), the site-level observations are
aggregated to the national level by taking averages. None of these
changes have significant effect on the baseline estimates.

Some results are not reported in the tables but are worth mention-
ing. We have examined the effect of excluding outliers and replacing
the time variable by year dummies. They do not have significant
effects on our estimates either. We have also considered the sample of
countries with income per capita greater than $8,000. The findings
are similar to that in HLW (2002): air quality improves in income for
this sub-sample. We think it is consistent with the inverse-U shape
pollution-income path because the income of $8000 per capita already

17 HLW (2002) has also controlled for relative GDP but its coefficient is insignificant. This
variable is not included in our regression because it is not available in our data.
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Table 4
Robustness check on the shape of the curve.

(1) Mean; RE  (2) Mean; FE  (3) Mean; RE  (4) Mean; FE

Full sample Full sample Full sample Full sample
GDP 1.619° 2.263* 0.545% 0.818*
(0.0960) (0.102) (0.0347) (0.0357)
(GDP)? —0.185" —0.210° —0.0129% —0.0179%
(0.00505) (0.00527) (0.000935)  (0.000955)
(GDP)? 0.00362° 0.00395°
(0.0000848)  (0.0000878)
Year 0.686° 0.6467
(0.0134) (0.0143)
Population density ~ 40.11% 29.30° 61.94° 57.65°
(1.363) (1.561) (1.355) (1.541)
Coastal —7.625% —2.789° 0.726 6.921*
(1.025) (1.241) (0.973) (1.147)
Observations 259,752 259,752 259,752 259,752
R-squared 0.09 0.07 na. 0.009
Peak 5163.880 6638.178 21,124.031 22,849.162
Trough 27,788.11 28,763.811

Notes: (1) The dependent variable is the annual average of the inverse of visibility.
(2) All estimates have been scaled up 1000 times to facilitate presentation.

2 Significance level of 1%.

b Significance level of 10%.

exceeds the turning point, so the pollution-income gradient should be
negative. These results are available from the authors.

Next, we check whether the estimates are sensitive to the inclusion
of the lagged GDP terms. Excluding them have very little effect on the
implied pollution-growth relationship (first two columns of Table 4).
All the estimates show a robust inverted-U shape curve. The peak is
located at from US$ 4000 to US$ 6600, and the trough is located at
around US$ 28,000.

In the literature, there are also many other papers which adopt a
quadratic function form. Panayotou (2000) has a good review on the

literature regarding the function form of the regression function. To
further check the sensitivity of our results, we conduct regressions
using quadratic functions (last two columns of Table 4). When year
time trend is not included, our estimates show a robust inverted-U
shape curve with the peak locates from US$ 21,000 to US$ 25,000.
Although these results are consistent with the findings in the literature,
they differ significantly from our findings using cubic functions. When
time trend is included, the inverted-U shape pattern disappears and
becomes U-shape (estimates available from authors). As the cubic spec-
ification nests the quadratic specification, the large difference between
their estimates implies that the quadratic specification is inappropriate.
In this sense, the specification by GK (1995) and HLW (2002) are
reasonable.

In sum, the estimates with alternative specifications generally sup-
port the EKC hypothesis. The turning points may vary by specification
but are generally within the range of $3000 and $6000 per capita.

4.2.3. Alternative Sub-Samples

We first estimate the baseline models by decades. This exercise is
important for two reasons. First, as discussed earlier, the adoption of
visibility-measuring devices to replace the eye-measures may bias our
estimates if this adoption is correlated with economic growth. A simple
way to check the presence of this bias may be to compare the estimates
for earlier and later periods (since the new measurement technology is
arecent phenomenon). Second, since production technology may have
changed dramatically over the past decades (especially due to the rapid
progress of information technology), it may be desirable to relax the
assumption that the pollution-income path is stable over time.

Table 5 reports the estimates of the fixed-effect model for each
decade. The estimates based on the 1950-1970 sample (column 1 and
2) clearly diverge from the estimates using more recent data. The fact
that estimates for the early periods 1950-1959 until 1970-1979 do
not show the expected signs or significances may be an argument in
favor of the EKC because most countries (lower income) are up to

Table 5
Estimates of model (3) by decade.
(1) (2) (3) (4) (5) (6)
Period 1950-1959 1960-1969 1970-1979 1980-1989 1990-1999 2000-2004
GDP 33.55 52.66% —1.395 4352° —6.143" 6.951°
(38.94) (17.17) (2.601) (0.936) (1.095) (1.452)
(GDP)2 —39.99 —19.22° —0.621° —0.241° 0.385° —0.362°
(21.60) (6.728) (0.233) (0.0440) (0.0746) (0.0643)
(GDP)3 9.784¢ 2.408% 0.0225° 0.00381° —0.00724° 0.00483"
(4.027) (0.872) (0.00564) (0.000649) (0.00158) (0.000878)
Lag GDP 45.18 —26.50 5.150 —3.931° 9.711° —10.82°
(42.95) (19.89) (2.977) (1.022) (1.201) (1.529)
(Lag GDP)2 —30.65 20.30° 0.0405 0.189" —0.777° 0.366"
(24.87) (9.738) (0.314) (0.0497) (0.0919) (0.0723)
(Lag GDP)3 5341 —3.382¢ —0.00425 —0.00258" 0.0163° —0.00470°
(4.856) (1.459) (0.00828) (0.000723) (0.00215) (0.00108)
Democracy index 0.00150° 0.000488° 0.000607° —0.00058" 0.000773° 0.00101¢
(0.000652) (0.000225) (0.000152) (0.000112) (0.000123) (0.000437)
Popdensity 606.8" 87.47 0.667 96.75° 33.75° 84.91°
(119.6) (61.20) (26.19) (22.70) (13.01) (19.89)
Tradeintensity 0.0781 0.0684 —0.0555 —0.0881° —0.0204 —0.0350
(0.131) (0.0466) (0.0320) (0.0213) (0.0115) (0.0312)
Investment 0.0735 —0.0757 0.303° 0.265° 0.174° 0.0116
(0.0898) (0.0471) (0.0613) (0.0604) (0.0414) (0.0998)
Observations 10193 14404 40250 59926 72349 37896
Number of station 1703 1973 5362 5211 6322 4330
R-squared 0.119 0.039 0.141 0.058 0.105 0.288
Peak 727172 3386.595 3981.049 4908.341 5689.513 —111,552.28
(137.444) (222.894) (854.800) (4401.524) (377.009) (295,607.9)
Trough 2385.989 —2644.797 17,185.604 23,169.816 23,015.642 89,368.645
(104.896) (2249.830) (588.578) (1784.707) (550.801) (76,178.717)

Note: All estimates have been scaled up 1000 times to facilitate presentation.

? Significant at 5%.
b Significant at 1%.
¢ Significant at 10%.
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Table 6
Estimates of model (3) by season.

Table 7
Estimates of model (5): The relevance of omitted air pollutants.

(1) (2) (3) (4) (5)

1) (2) (3) (4)

Full sample Season (1) Season (2) Season (3) Season (4)

GDP —0.749 —2.554 0.300 1.156 —0.749
(0267) (0534 (0.433) (0454)°  (0.509)
(GDP)? —0.009 0.069 —0.043 —0.078 —0.006
(0.012) (0.025)*  (0.020)°  (0.021)*  (0.024)
(GDP)? 0.001 —0.000 0.001 0.002 0.001
(0.000)*  (0.000) (0.000)*  (0.000)*  (0.000)"
Lag GDP 1.937 3.343 1.133 0.129 1.681
(0.290)* (0.578)*  (0.470)°  (0.492) (0.552)2
(Lag GDP)? —0.168 —0.226 —0.125 —0.105 —0.162
(0.015) (0.029)*  (0.024)*  (0.025)*  (0.028)*
(Lag GDP)3 0.003 0.004 0.002 0.002 0.003
(0.000)* (0.000)%*  (0.000)*  (0.000)%*  (0.000)
Year 0.830 0.780 0.840 1.006 0.705
(0.023) (0.047)*  (0.038)*  (0.039)*  (0.043)*
(Year)? 0.002 0.003 —0.000 —0.001 0.005
(0.000)* (0.001)*  (0.001) (0.001)®  (0.001)
Democracy index —0.401 —0.592 —0.393 —0.456 —0.342
(0.030) (0.059)*  (0.048)*  (0.050)*  (0.056)*
Popdensity 94.291 114.207 81.056 68.105 102.260
(1.849)°  (3.750)*  (3.008)*  (3.082)°  (3.474)°
Tradeintensity —0.237 —0.299 —0.214 —0.196 —0.261
(0.004) (0.008)*  (0.006)*  (0.006)*  (0.007)*
Investment 0.335 0.234 0.221 0.287 0.449
(0013  (0.026)*  (0.021)*  (0.022)°  (0.024)*
Observations 875,389 217,100 218,256 219,917 220,116
No. of group 16,039 14,894 15,089 15,223 15,258
R-squared 0.15 0.10 0.09 0.10 0.10
Peak 3846.632 2750906 5028334  4027.527  3078.892
(162.845)  (387.261) (261217) (259.983) (334.344)
Trough 27458404 28,036.131 27,303.738 27,832.173 28,360.916
(86.153)  (190479) (159.474) (148254) (178.613)

Note: All estimates have been scaled up 1000 times to facilitate presentation.
¢ Significant at 1%.
b Significant at 5%.

1970 still located on the ascending part of the inverted U-shaped EKC
(to the left of the peak) reflecting rather a regression line than an EKC
curve.'® Starting from 1970, the sampled economies are close to the
full coverage. In the three decades between 1970 and 1999, the
estimates confirm the N-shape pattern with peaks ranging from $3981
to $5689 and trough ranging from $17,186 to $23,016. As the adoption
of visibility-measuring devices occurred mainly in the 1990s, the stable
visibility-income relationship for the period 1990-1999 suggests that
the measuring technology adoption does not have significant effects
on the estimates. For the period from 2000 to 2004, empirical estimates
differ significantly, possibly due to the reduction of stations sampled by
one-third.

Another concern with our empirical estimates may be the omitted
effects of seasonal variations. Seasonal weather conditions may affect
visibility. Moreover, the productivity intensity and the subsequent
pollutant emission could also vary by season. To shed some light on
the possible seasonality of the pollution-income path, we aggregate
the daily visibility data to season-year level averages. We then repeat
the baseline estimation (fixed effect model) for each of the four seasons
(Table 6). The estimates do suggest that the seasonality in weather con-
ditions or production intensity could be relevant,'® but the inverse-U
shape relationship between inverse visibility and income is robust
across seasons.

18 We thank the referee for pointing this out.

19 The turning point is the highest in the second quarter ($5028 per capita) but decreases
steadily, reaching the lowest level in the first quarter of the following year ($2751 per
capita).

SO, —0.010
(0.055)
TSP 0.026
(0.027)
Smoke —0.059
(0.092)
GDP 46.392 47.039 —22.131 —23.702
(20.715)* (20.670)* (47.527) (47.412)
(GDP)? —5370 —5378 2655 2.941
(2.428)° (2.424)° (7.186) (7.164)
(GDP)? 0.163 0.163 —0.120 —0.134
(0.077)* (0.077)* (0.325) (0.324)
Lag GDP —64.261 —63.183 106.000 102.265
(21.123)° (21.071)° (45.333)* (44.907)*
(Lag GDP)? 8.123 7.992 —16.627 —16.143
(2.598)° (2.589)> (7.252)? (7.204)
(Lag GDP)? —0273 —0.269 0.762 0.742
(0.085)° (0.085)° (0.341)? (0.339)?
Year 0.001 0.001 —0.001 —0.001
(0.000) (0.000) (0.001)? (0.001)*
Population density ~ 169.185 170.672 31.302 31.028
(50.075)° (49.785)° (12.742)* (12.721)*
Observations 762 762 346 346
Number of group 112 112 56 56
R-squared 03119 03109 0.1358 0.1345
Peak 12,219.46 1226719  4243.76 4184.22
(1808,672.10)  (1043.25)  (4668.73) (407.10)
Trough 4419.13 412691 10,252.59 10,296.75
(236,422.77) (1433.74)  (9845822)  (647.76)

Note: All estimates have been scaled up 1000 times to facilitate presentation.
@ Significant at 5%.
b Significant at 1%.

4.3. The Relevance of Omitted Air Pollutants

We now turn to estimating model (5) to infer how relevant the
unobserved air pollutants may be to the pollution-income path. In par-
ticular, we add SO, and TSP to the baseline regression (Table 7; column
1). As has been discussed, this would significantly reduce the sample
coverage, and the estimates may not be representative. Nevertheless,
our focus here is on how much the observed pollutants can account
for the visibility-income linkage, but not whether the linkage is consis-
tent with the EKC hypothesis. For ease of comparison, in column (2) we
report the estimates without SO, and TSP as control variables (but
retain the same sample).

The main findings are as follows. First, the measures of SO, and TSP
have some explanatory power for visibility. Their coefficients are insig-
nificant, either individually or jointly when we use the fixed effect
model.?° As for random effect model, only the coefficient of TSP is signif-
icant. Second, the estimates of the visibility-income path are similar
with or without SO, and TSP as regressors. In sum, these findings suggest
that certain unobserved aerosols may be associated with economic
growth and affect visibility at the same time. This is consistent with
the foregoing example on unmonitored fine particles.

In columns (3) and (4) we also consider the effect of smoke, which is
among the pollutants examined by HLW (2002). Smoke is not included in
the earlier regressions because the sample with smoke is much smaller.
The findings are similar: the effect of smoke on visibility is insignificant,
regardless of random effect or fixed effect.

20 We have also tried controlling for SO2 and TSP separately. The results are similar: the
coefficients of neither variables are significant. The EKC pattern is similar for FE and RE es-
timates, and we report RE estimates.
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5. Conclusion

Existing studies have focused on several specific air pollutants
(e.g. SO, and TSP) to test the Environmental Kuznets Curve hypothesis.
The findings are ambiguous (HLW, 2002), possibly due to limited
sample coverage and the omission of important pollutants in the air. In
this study, we suggest that utilizing air visibility may address these two
issues because the visibility data have much more representative sample
coverage and contain information on un-monitored air pollutants.

Following the methodology of GK (1995) and HLW (2002), we find
that the estimated visibility-income path supports the EKC hypothesis:
air visibility first worsens in GDP per capita but then improves as the
income level surpasses a certain threshold (generally less than US
$5000 per capita). This finding is robust to various alternative specifica-
tions considered by HLW (2002) and to various sub-samples (excluding
outliers, estimation by decades, and by seasons).

The key factor driving the deviation between our findings and the
earlier ones seems to be the difference in sample coverage. The air
visibility data cover over 120 countries of the world (since 1970). In
contrast, the data by GK (1995) and HLW (2002) on common air
pollutants cover less than 50 countries. When we restrict the visibility
sample to the countries reporting SO, and TSP, the EKC pattern between
visibility and income disappears.

In addition, we find that the visibility—income linkage may be mainly
driven by “omitted” pollutants in the air: those pollutants that environ-
mental agencies commonly fail to monitor. The two mostly commonly
examined air pollutants, SO, and TSP, can account for only a small
portion of the visibility—-income linkage.
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Appendix A

Following Husar et al. (2000), we consider the following two types
of filters to reduce the effect of extreme weather conditions on visibility.

A.1. Single Data Point Filters

The following observations are eliminated from the sample.

1. The indicator for rain is one.

. Precipitation is greater than 0.25 cm.

3. The difference between temperature and dew point is less than 2.2 °C
(this temperature spread corresponds to about 90% relative humidity).

4. The indicator for fog is one, and the temperature-dew-point spread is
less than 4 °C.

5. Temperature is less than —29.3 °C and wind speed is greater than
16 km/h.

6. Visibility is less than 1/3 of the visibility in the previous and next
days.

N

A.2. Statistical Filters

1. All observations of a station that has less than 10 valid data points for
any season of a year are eliminated for that year.

2. All observations of a station for which the ratio of the 50th and 25th
percentile (in visibility) are less than 1.07 or if the ratio of the 25th to
10th percentile was less than 1.1 in a year are eliminated for that
year.

3. All observations are eliminated for a year in which the ratio of annual
maximum visibility and median visibility is less than 1.1.

Compared with the filters in Husar et al. (2000), our statistical filters
only eliminate observations for the years with the specified conditions
but not all observations for the station. This should retain more observa-
tions and yet avoid the effect of unusual observations.

In Husar et al. (2000) they further eliminate 29 stations that differed
greatly from their surrounding stations. This is not followed in this study
because the effect of the outliers would be controlled for by station-
specific fixed effects in our regressions.
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