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After the stock market crash of October 19, 1987, interest in nonlinear dynamics and
chaotic dynamics have increased in the field of financial analysis. The extent that
the daily return data from the Shanghai Stock Exchange Index and the Shenzhen
Stock Exchange Index exhibit non-random, nonlinear and chaotic characteristics
are investigated by employing various tests from chaos theory. The Hurst exponent
in R/S analysis rejects the hypothesis that the index return series are random,
independent and identically distributed. The BDS test provides evidence for non-
linearity. The estimated correlation dimensions provide evidence for deterministic
chaotic behaviors.
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1. Introduction

The two stock markets in Mainland China, the Shanghai Stock Exchange

(SHSE) and the Shenzhen Stock Exchange (SZSE) began their operations

in December 1990 and July 1991, respectively. In these years, both stock

markets have dramatically expanded. In the Shanghai Stock Exchange, by

the end of 2002, there were 728 companies listed with a trading volume of

2,825 billion yuan. In the Shenzhen Stock Exchange there were 508 com-

panies listed, with a trading volume of 1,296.5 billion yuan by the end of

2002. Both the Shanghai Stock Exchange and Shenzhen Stock Exchange

were closed markets at the early stage of operation. In order to attract for-

eign capital, both stock markets developed the Class B Shares Exchange for

the non-Mainland Chinese investors in 1992. The Class B shares are traded

by U.S. dollar in the Shanghai Stock Exchange and by HK dollar in the

Shenzhen Stock Exchange, respectively. Meanwhile, the trading of Class A

shares are restricted to Mainland Chinese investors. After May 2001, the
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Mainland Chinese are also allowed to trade Class B shares with their autho-

rized foreign currencies.

One of the challenges in the capital market theory today is to develop

theories that are capable of explaining the movements in asset prices and

returns. According to Fama’s (1970) efficient market hypothesis (EMH), all

relevant public (or private) information has been reflected in the current

prices. Many empirical studies in the 1970s and 1980s seemed to support

the EMH. However, most of the recent studies show that the EMH fails.

Before chaos theory has been applied in the field of economics or finance,

the approaches to describing the asset price behavior were by random walk

model with uncorrelated innovations (Fama, 1970). Other deviations from

the random walk would then be explained by the anomalies, such as weekend

effect, January effect and neglected-firm effect, etc. Recent research into an

explanation of stock return behavior has drawn on the field of nonlinear

dynamics, including chaos theory.

Chaos theory is based on the assumptions that the underlying system

is a nonlinear and deterministic process. Some findings have pointed out

that linear models are not very good in trying to capture the complexities

of the economic system. In fact, a number of recent studies have found

strong evidence of nonlinearity in the short-term movements of asset returns

(Hsieh, 1993). During these years, nonlinear analysis, originally developed in

physics and the natural sciences, is rapidly expanding in different research

areas. Finance and economics are areas that strongly need the application of

such approach because empirical researches show that the linear models are

not adequate to explain the underlying dynamics of recent economic data.

The chaotic and nonlinear deterministic systems can attract the attention

of many scholars from different fields because of two reasons. First, it is

relatively easy to tune the parameters of dynamic economic models so that

they generate complex dynamics (Benhabib and Nishimura, 1979). Second,

it is easy to construct examples of nonlinear dynamics that appear random

in linear tests (Sakai and Tokumaru, 1980).

The existence of chaotic behaviors can be detected by the following

indications:

1. With the chaotic behavior, there will be an existence of strange attractors

characterized by fractal shape.

2. Chaotic process is not random but independent and identically

distributed (i.i.d.).
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3. Chaotic process is a nonlinear process.

4. Chaotic process is a deterministic process which will retain its dimen-

sionality when it is placed in a higher embedding dimension.

5. Chaotic process is sensitive to initial conditions.

Recently, there are extensive researches done on chaotic behavior and

nonlinear dynamics of stock price behavior in industrial nations such as

U.S. and U.K. However, there is a lack of similar studies for the Chinese

stock markets. As the EMH and the random walk model fail to capture the

behaviors in many stock markets, and some researchers like [Hsieh (1991,

1993) and Brock et al. (1991)] have pointed out that nonlinear dynamics is

appropriate to explain the complexity in many stock returns series. Fama

(1965) admits that linear modeling techniques are limited in capturing the

complicated patterns which chartists claim to see in stock prices.

The Chinese Stock Markets have been found to be non-efficient (Huo,

1996). Papaioannou and Karytinos (1995) indicated that a non-efficient mar-

ket is very suitable for chaotic analysis, because the number of underlying

moving forces (degree of freedoms in statistical terms) is fewer than those in

developed and more efficient markets such as New York Securities Exchange

and London Securities Exchange.

At present, there is no single reliable statistical test for chaos. A feasible

way to detect nonlinear and chaotic dynamics in time series is to adopt

various tests available, in order to avoid misleading results and conclusions

(Papaioannou and Karytinos, 1995).

The objective of this paper is to examine whether the time series of the

Composite Index returns in Shanghai and Shenzhen Stock Exchange are

generated by nonlinear dynamical system. If so, the predictive ability of the

system is strongly limited, especially for long-run predictions. Furthermore,

we focus on examining whether chaos theory can capture the complex and

random behaviors that may not be obtained or derived from a stochastic

approach or the traditional random walk model.

The rest of this paper is organized as follows: Section 2 provides a review

of previous studies on non-random and chaotic behaviors in economic and

financial series. Section 3 illustrates the formulae, interpretations and usages

of the methodologies that will be employed in this study. Section 4 describes

the data that have been examined in this study. Section 5 presents the

empirical results. Section 6 is devoted to general conclusions and implications

of the financial analysts.
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2. Previous Studies

Some studies to test the evidence of identical and independent distributed

characteristics in equity returns have been done in recent years. Hsieh (1991)

has doubt on the behavior of returns on the S&P 500 Index following a

random walk. Peters (1992) shows that the S&P 500 Index monthly return

series has long-term dependence and a cycle length of 48 months. Peters

(1994) finds that the same phenomenon appears in Dow Jones Industrial

Index. Hampton (1996) report a strong and continuing dependence in the

S&P 500 returns series before the market crashes in 1987 and 1990. Opong

et al. (1999) find the same evidence of non-i.i.d. in London Financial Times

Stock Exchange (FTSE) returns series. Same results are also reported in

the other European and some emerging markets, Errunza et. al. (1994) find

evidence of fractal dynamics in equity returns of Germany, Japan, Argentina,

Brazil, Chile, India and Mexico. Papaioannou and Karytinos (1995) find that

the Athens Stock Market Index returns series have dependence. Not only

stock market returns, but also security returns have been found to have

evidence of dependence. Greene and Fieltz (1977) report that 200 security

return series listed on the New York Stock Exchange are characterized by

long-term dependence.

With the massive computer power available, there is no need to make

any simplifying assumptions and this results in the evolution of more com-

plicated models. The mathematical models rapidly become complicated and

nonlinear. The fact that most financial series are nonlinear dependent has

been found. In U.S. equity market returns, Hsieh (1991) finds that the S&P

500 weekly and daily return series are nonlinearly dependent. Lin (1997)

also report same evidence of nonlinear dependence in the Dow Jones In-

dustrial Average return series. The dependence is more significant in 1995

when the U.S. equity markets made the start of a strong bull run. Pandey

et al. (1997) report evidence of nonlinear dependence in the index returns

of Hong Kong, Japan and the U.S. Regarding the emerging markets, Hamill

and Opong (1997) report nonlinear dependence in Irish stock returns, while

Papaionnou and Karytinos (1995) find that the Athens Stock Exchange In-

dex returns are also nonlinearly dependent.

One of the indications of a chaotic process is that the process is de-

terministic. Arguments on whether deterministic structure appears in the

economic and financial series are being continued in recent years. Up to

now, most empirical findings are contradictory. Scheinkman and LeBaron

(1989) report the evidence of determinism in weekly stock returns. Willey
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(1992) finds the deterministic characteristic appears in both daily S&P 100

Index returns and NASDAQ Index returns. On the other hand, Howe et

al. (1997) find no evidence of deterministic patterns in Australia and Hong

Kong equity returns.

3. Research Methodologies

Currently, there is no single reliable statistical test for the existence of

chaotic behavior. Combining various tests is a common practice in some

other similar studies. The indications of chaotic behavior can be detected

by the following methodologies, which are well developed in the fields of

physics and the natural sciences. In this study, they will be applied to fi-

nance and will be used to detect the existence of chaotic behavior in the

time series of Chinese stock market indices.

3.1. Rescaled range (R/S) analysis

The efficient market hypothesis (EMH) assumes that all investors immedi-

ately react to new information, so that the future price movement of a stock

is unrelated to the past or present patterns of price movements. Actually, do

people behave in this manner? Peters (1991a) mentioned that most people

wait for confirming information and do not react until a trend is clearly es-

tablished. Consequently, there will be an uneven assimilation of information.

This will cause the stock price movement to follow a biased random walk,

instead of random walk. Non-random walk implies that there is memory un-

derlying in the series. Whether the stock price movement follows a random

walk or not can be detected by the rescaled range analysis or R/S analysis.

The R/S analysis is an ideal statistical tool for analyzing the occurrence of

rare events and is robust to possible nonlinear process that normality as-

sumption may not be needed. Due to this, the R/S analysis should be chosen

to describe the stock market crashes. The result of the R/S analysis is the

Hurst exponent, which is a measure of the bias or trend in a time series.

The R/S analysis was developed by hydrologist H. E. Hurst in 1951. His

work was derived from Einstein’s work regarding the Brownian motion of

physical particles to deal with the problem of reservoir control near Nile

River Dam. Peters (1994) has applied the R/S analysis to analyze both

periodic and nonperiodic cycles, following the procedures for calculating

Hurst exponent used by Peters (1994), beginning with the smallest value of

n, the partition size, to partition the series into A sequential non-overlapping

blocks, A = N
n

, where A is the number of partition, N is the amount of data
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in the series and n is the amount of data in each partition. The data in each

block is xt,a. The mean of xt,a (xa) for the ath block of data is defined as

xa =

(

1

n

) n
∑

t=1

xt,a . (1)

The accumulated differences, Xa, between each xt,a and the mean for

each block of data, xa, given by

Xa =
n

∑

t=1

(xt,a − xa) . (2)

The range, Ra, is defined as the difference between the minimum and the

maximum cumulative deviation for each block of data, given by

Ra = max(Xa) − min(Xa) . (3)

The standard deviation, Sa, for each block of data is determined, given

by

Sa =

√

√

√

√

√

n
∑

t=1

(xt,a − xa)
2

n
. (4)

The average rescaled range (R/S)n for length n, which is computed for

different lengths until n = N/2, is defined as

(R/S)n =

(

1

A

)

×
A

∑

a=1

(

Ra

Sa

)

. (5)

The final step is to apply an OLS regression with ln(R/S)n as the depen-

dent variable and ln(n) as the independent variable through the plot. The

regression coefficient of the regression equation (6), provides the estimation

of H, the Hurst exponent

ln(R/S)n = H · ln(n) + C . (6)

The value of H can be interpreted in the following ways:

• H = 0.50: denotes a random and statistically independent (uncorrelated)

series — a random walk. The present does not influence the future. The

correlation coefficient is 0. Its probability density function is normal. Such

process increases with the square root of time.

• 0.50 < H ≤ 1.00: denotes a “persistent”, or trend-reinforcing series. That

is, the data contains long-term memory and has a tendency to follow the

current trend in the next period. This process is said to be mean-averting.
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For example, if the series has been up (down) in the last period, then it

is more likely to be up (down) in the next period. The strength of the

persistence increases and the correlation coefficient approaches 1 as H

approaches 1. Such persistent series are said to be fractional Brownian

motion (biased random walks), in terms of nonlinear dynamics, the series

displays sensitive to initial conditions. Peters (1989) mentioned that the

higher H is the stronger the persistence and the less “white noise” in the

time series.

• 0 ≤ H < 0.50: denotes an “anti-persistent”, or ergodic series. That is,

the data has a tendency to reverse the current trend. This process is said

to be mean-reverting. For example, if the system has been up (down) in

the previous period, it is more likely to be down (up) in the next period.

The strength of the anti-persistence depends on how close H is to zero and

the correlation coefficient approaches −1 as H approaches 0. The frequent

reversal results in less distance covered by the process than would occur

given a random process.

An additional statistic used is the V -statistic. The basis of V -statistic

is that a periodic system corresponds to a limit cycle or a similar type of

attractor, such that its phase space portrait would be a bonded set. Because

the range could never grow beyond the amplitude, the R/S values would

reach a maximum value after one cycle. The V -statistic is given by

Vn =
(R/S)n√

n
. (7)

In the Vn versus log(n) plot, it will be flat if the process is an independent,

random process (H = 0.5). If the process is persistent (H > 0.5), the graph

will be upwardly sloping. Conversely, if the process is anti-persistent (H <

0.5), the graph will be downward sloping. The cycle length, can be discerned

from the “break-point” in this plot to occur when V reaches a peak and then

flattens out.

3.2. Phase space reconstruction and embedding dimension

The phase space reconstruction is the basis of the other methodologies such

as BDS test and correlation dimension estimation.

Suppose that information is available on a univariate time series and it

is known that this series is part of a larger, n-dimensional deterministic eco-

nomic model, i.e. there are n variables. Martin et al. (1994) indicated that

when testing for the presence of non-linearity and hence need to identify the
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dynamics of this system, it is not necessary to have time series data on the re-

maining n−1 variables in the system if the available time series is embedded.

Besides, Takens (1981) has proved that an embedded univariate time series

can encapsulate the information of a multivariate time series model with-

out any loss of information. Takens (1981) suggested that the phase space

reconstruction for a series of N observations {xi} = [x1, x2, . . . , xN−1, xN ]

can be done by transforming this series of observations into a series of scalar

vectors, and is given by

xm
1 = (x1, x2, . . . , xm)

xm
2 = (x2, x3, . . . , xm+1)

...

xm
N−m = (xN−m, xN−m+1, . . . , xN )

(8)

where the parameter m is the “embedding dimension”.

3.3. BDS test

BDS test was suggested by Brock, Dechert and Scheinkman (1987). This

hypothesis testing uses the test statistics in which mechanism is based on

the correlation integrals. The BDS test is a powerful tool for detecting serial

dependence in time series. It tests the null hypothesis of independent and

identically distributed (I.I.D.) against an unspecified alternative. The null

and alternative hypothesis are as follows:

H0: The data are independently and identically distributed (I.I.D.).

H1: The data are not I.I.D.; this implies that there may be some serial

dependence. If the linear dependence has been removed in the time

series, the serial dependence is thus nonlinear.

However, BDS test is unable to distinguish between nonlinear deter-

ministic chaos and nonlinear stochastic systems. BDS test cannot test chaos

directly but only nonlinearity, provided that any linear dependence has been

removed from the data (e.g. using traditional ARIMA-type models or tak-

ing a first difference of natural logarithms). Nevertheless, since a nonlinear

process is one of the indications of chaos, we may use the BDS test to detect

such indication.

Given an embedded series with N (length of original time series) —

m (embedding dimension) observations {xm
i } = [xm

1 , xm
2 , xm

3 , . . . xm
N−m], the

correlation integral that measures the spatial correlation among the points
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can be computed by adding the number of pairs of points (i, j), which are

“close” in the sense that the points are within a radius or tolerance ε of each

other:

Cε,m =
1

Nm(Nm − 1)

∑

i6=j

Ii,j;ε . (9)

The above equation may be read as: the correlation integral for a time series

of length N that is embedded in m-dimensional space with a correlation

distance of ε. The indicator function Ii,j;ε in the above equation is calculated

by the following equation:

Ii,j;ε =

{

1 if ‖xm
i − xm

j ‖ ≤ ε

0 otherwise .
(10)

Cε,m measures the probability that any particular pairs in the time series

are close. Brock, Dechert, and Scheinkman (1987) showed that if the time

series {xt} is I.I.D., then:

Cε,m ≈ [Cε,1]
m . (11)

Simply stated, if the series is I.I.D., the correlation integral at an embed-

ding dimension (m) and given a certain value of ε, can be approximated by

the mth power of Cε,1, where the correlation integral is under the embedding

dimension equal to 1.

If the requirements of having ratios N
m

greater than 200, allowing the

values of ε
σ

to range from 0.5 to 2 and the values of m from two to five are

fulfilled, the quantity [Cε,m−(Cε,1)
m] has an asymptotic normal distribution

with a zero mean and a variance Vε,m defined as:

Vε,m = 4[Km + 2

m−1
∑

j=1

Km−jC2j
ε + (m − 1)2C2m

ε − m2KC2m−2
ε ] (12)

where

K = Kε =
6

Nm(Nm − 1)(Nm − 2)

∑

i<j<N

hi,j,N ;ε , and

hi,j,N ;ε =
[Ii,j;εIj,N ;ε + Ii,N ;εIN,j;ε + Ij,i;εIi,N ;ε]

3

Ii,j;ε =

{

1 if ‖xm
i − xm

j ‖ ≤ ε

0 otherwise .
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The BDS test statistic is defined as

BDSε,m =

√
N [Cε,m − (Cε,1)

m]
√

Vε,m

. (13)

This test will be repeated at different values of ε and m. Lin (1997)

suggested that the appropriate values of ε
σ

range from 0.5 to 2, Brock et al.

(1987) pointed out the appropriate values of m are between 2 and 5.

Since BDS test is a two-tailed test, we should reject the null hypothesis

if the BDS test statistic is greater than the positive critical z-value or less

than the negative critical z-value. For example, if α = 0.05, the critical

z-value = ±1.96.

If the alternative hypothesis of dependence is accepted, then testing be-

tween deterministic chaos and stochastic processes can proceed by the esti-

mation of correlation dimension, which will be discussed in the next section.

3.4. Correlation dimension estimation

The correlation dimension estimation, the most common method used to

determine the fractal dimension of a system, is used to differentiate between

deterministic chaos and stochastic systems. As mentioned in Sec. 2, one of

the indications of chaos is that the chaotic process is a deterministic pro-

cess. Peters (1991a) stated that a fractal shape retains its dimensionality

when it is placed in an embedding dimension that is greater than its frac-

tal dimension. This means that as the embedding dimension increase, the

fractal dimension of a chaotic process will not increase as the embedding

dimension.

Peters (1991b) indicated that the fractal dimension that may be calcu-

lated by the means of correlation dimension measures how an attractor fills

its space. Consequently, a white-noise process is completely disorder and

thus its dimension is an infinite number. On the other hand, the dimension

of a chaotic system is a positive finite number (Frank et al., 1988) and it

need not be an integer. Liu, Granger and Heller (1993) have proved that for

a true chaotic system, the correlation dimension has a stabilized value, 1, as

the embedding dimension increases.

Given an embedded time series {xm
i } = [xm

1 , xm
2 , xm

3 , . . . xm
N−m], compute

the correlation integrals whose algorithm has been illustrated in Equations

(9) and (10), for different values of ε.

There are several ways of estimating the correlation dimension νm. For

example, Denker and Keller (1986), Scheinkman and LeBaron (1989) used
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the ordinary linear regression; Cutler (1991) used the generalized least-

square; and Ramsey and Yuan (1989) used the random coefficient regression.

The most common practice in estimating νm is by OLS regression analysis in

which the dependent variable is the natural logarithm of correlation integral

[ln(Cε,m)] and the independent variable is the natural logarithm of tolerance

[ln(ε)]. The coefficient of the independent variable in this regression model

will then be the estimated correlation dimension. This regression equation

is as follow:

ln(Cε,m) = νm ln(ε) + c . (14)

Repeat the estimations of νm with different values of m. A plot of em-

bedding dimension (m) against their corresponding estimated correlation

dimension (νm) is then constructed. The values on the x-axis are the val-

ues of embedding dimension and the values on the y-axis are the values of

estimated correlation dimensions (νm).

If chaos is present in the time-series, for increasingly larger values of

embedding dimension (m), the estimated correlation dimension (νm) will

stabilize at some value. If this stabilization does not occur, it implies that

νm increases without bounds as m increases, the system is stochastic rather

than chaotic.

4. Data

The data set consists of daily Composite Indices natural logarithmic returns

of SHSE and SZSE. The data covers a 10.25-year period from October 5,

1992 to December 31, 2002, consisting of 2,671 observations. The amount

of data being used in this study is fairly small if compared with the time

series used in the Natural Sciences. However, it contains almost 85% of the

entire time series since the opening of the SHSE and SZSE. Actually, the

lengths of data in most studies in Economics and Finance do not exceed

2,000 observations (Papaioannou and Karytinos, 1995).

The daily returns were calculated as the change in the logarithm of clos-

ing stock market indices of successive days:

xt = ln(Pt) − ln(Pt−1) . (15)

Taking the first difference may not only ensure that our time series are

stationary but also it is a common practice in standard econometric work to

“whiten” a time series. Some scholars argue that such practice may destroy

any delicate nonlinear structure present in the data (Chen, 1988). However,

the economic time series have a problem that the physical sciences do not,
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which is as the economy grows stock prices grow. Peters (1989) pointed out

that the stock prices thus have to be detrended in order to study the motion

of stock prices, in other words, the economic growth have to be filtered

out. Besides, Peters (1992) suggested using logarithmic data because they

have the statistical properties as percentage change but they sum to their

cumulative equivalent.

5. Empirical Results

5.1. Descriptive statistics

Table 1 gives a statistical description of the data used in the study. The

positive values of skewness show that the distributions of the series are

positively skewed, which are different from the results founded by Mandel-

brot and Fama for the distributions of NYSE returns. On the other hand,

the values of kurtosis are very large, same as those found by Mandelbrot

(1964) and Fama (1965). Large kurtosis implies that the distributions are

also “leptokurtic”. Figure 1 shows the comparison of the distributions of

the series with the normal distribution. The distributions of the returns

are characterized by longer tails and higher peaks at the mean than those

of the normal distribution, this difference indicates that there are strong

departures from the normal distribution. Mandelbrot called this kind of dis-

tribution Stable Paretian.

The department from the normal distribution implies that the informa-

tion given by both Chinese stock markets shows up in infrequent clump

rather than in a smooth and continuous fashion. It contradicts the assump-

tion of efficient market hypothesis.

Table 1. Summary Statistics: Daily SHSE and SZSE Composite Indices Returns

Statistics SHSE SZSE

Sample size (n) 2670 2670
Mean 0.000259 0.000136
Standard deviation 0.025986 0.024242
Skewness 1.629 0.878
Kurtosis 20.522 15.804
Minimum −0.17905 −0.188833
Maximum 0.28860 0.272152
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Fig. 1. The Distributions of SHSE and SZSE Composite Indices Daily Returns vs. Normal
Distribution

5.2. Rescaled range (R/S) analysis

To test the existence of strange attractor that is characterized by fractal

shapes and long-term memory in a series, it is subjected to rescaled range

(R/S) analysis. Since R/S analysis is robust enough to detect long-term

dependence if the distribution of the series is not normal, R/S analysis is

an appropriate tool to detect long-term dependence in the data used in this

study. Tables 2 and 3 present the results of the R/S analysis of the SHSE

and SZSE Composite Indices daily returns.

Table 3 shows that the H exponents for daily SHSE and SZSE Com-

posite Indices returns series are 0.617 and 0.625 respectively. The high R-

square (99.6% in both) and low standard error of estimate (0.0516 and

0.0518 respectively) illustrate the goodness of fit of the regression model

Table 2. R/S Analysis Results: Daily SHSE and SZSE Composite Indices Returns

SHSE SZSE

n ln(n) R/S ln(R/S) V -statistic n ln(n) R/S ln(R/S) V -statistic

10 2.3026 2.8516 1.0479 0.9018 10 2.3026 2.8506 1.0475 0.9014
20 2.9957 4.5239 1.5094 1.0116 20 2.9957 4.5348 1.5118 1.0140
25 3.2189 5.0888 1.6270 1.0178 25 3.2189 5.2138 1.6513 1.0428
40 3.6889 6.8239 1.9204 1.0790 40 3.6889 6.8821 1.9289 1.0882
50 3.9120 7.9450 2.0725 1.1236 50 3.9120 8.0276 2.0829 1.1353
100 4.6052 13.0336 2.5675 1.3034 100 4.6052 13.0982 2.5725 1.3098
125 4.8283 14.4608 2.6714 1.2934 125 4.8283 14.5323 2.6764 1.2998
200 5.2983 19.6706 2.9791 1.3909 200 5.2983 20.4227 3.0166 1.4441
250 5.5215 21.8316 3.0834 1.3808 250 5.5215 22.6745 3.1212 1.4341
500 6.2146 29.5855 3.3873 1.3231 500 6.2146 30.4383 3.4157 1.3612
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Table 3. Regression Results: Daily SHSE and SZSE Composite Indices Returns

SHSE SZSE

Hurst exponent 0.617 0.625
P -value of the regression coefficient 0.000 0.000
Constant −0.340 −0.358

R2 0.996 0.996
Standard error of estimate 0.0516 0.0518

Note: Dependent variable: ln(R/S)n

Independent variable: ln(n)

for estimation. The values of H are greater than 0.5 implies that persistence

exists in both series. Today’s data affect all future data. If the prices have

been up during the current period, there is a probability of 61.7% and 62.5%

respectively that they are likely to be up during the subsequent period. Such

kind of persistent trend is said to be biased random process, or fractional

Brownian motion. The time series is persistent implies that the investors’

interpretation of events is not reflected in the price immediately. The inter-

pretation manifests itself and becomes a bias in return, which is different

from that suggested by Efficient Market Hypothesis. However, the values

of H exponents are relatively low in our time series, which indicates that

there may be some “white noise” and the persistent trends are not strictly

consistent.

R/S analysis can be used to determine the cyclic characteristics of a time

series. Figure 2 shows a plot of V -statistic versus ln(n), the cycle length can

be discerned from the “break-point” in the occurring plot. Figure 2 shows

that there is a “break-point” when the value of ln(n) approaches 5.3 in both

series. The V -statistic flattens out after 200 days [ln(n) = 5.3 → n ≈ 200].

This suggests that the series show persistence up to about 200 days and

then alternate, the “memory effect” dissipates after 200 days. This implies

that any trading rules or models should not use a period longer than 200

trading days, i.e. about 10 months.

5.3. Tests of nonlinearity : BDS test

To test the presence of non-linearity, the logarithmic index returns series

in both stock markets are subject to BDS test. The linear dependence in

the original index time series has already been removed by taking a first

difference of natural logarithm. The hypotheses of the BDS test are:
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Fig. 2. The V -Statistic versus ln(n) Plots

H0: The data in each time series is independent and identically distributed

(I.I.D.).

H1: Unspecified alternative (since the linear dependence has been removed,

nonlinear but unspecified dependence may be found in the data).

A level of significance (α) of 5% is taken and thus the critical values

for the test are ±1.96, we should reject the null hypothesis if the BDS test

statistic is greater than 1.96 or less than −1.96. We may use the standard

normal distribution for the test statistic because the number of observations

is more than 500, the embedding dimensions are between 2 and 5, and the

ratios of ε/σ are between 0.5 and 2.

Besides the logarithmic index returns series are subjected to the BDS

test, we also test the random data for I.I.D., for the purpose of comparison. In

addition, we have shuffled the observations in the logarithmic index returns

series that will destroy any underlying serial dependence. If the BDS test

statistic for the shuffled data is not significant and indicate that the shuffled

data is I.I.D., it will imply that the rejection of the null hypothesis of I.I.D.

for logarithmic returns series is due to the underlying dependence in the

series. Table 4 shows the test statistic in the BDS test for our returns series,

the random data and the shuffled data.

Table 4 indicates that all the test statistic of logarithmic index returns

series are greater than the critical value of 1.96 significantly under different
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Table 4. BDS Test Results: Daily SHSE and SZSE Composite Indices Returns

BDS test statistic

Log. returns series Shuffled returns series

Embedding Random
ε/σ dimension (m) SHSE SZSE SHSE SZSE data

2 2 12.6805 14.6194 0.6818 −0.0664 −0.7186
2 3 16.1735 17.7598 0.5435 0.1476 −0.8881
2 4 18.5430 19.5409 0.2710 0.0305 −0.7828
2 5 19.7642 20.6998 −0.2430 −0.1819 −0.5333

1.5 2 14.6232 16.5153 0.7019 −0.0592 0.3096
1.5 3 18.2899 20.2413 0.3936 0.1477 0.2959
1.5 4 21.0134 22.9594 0.1448 −0.1894 0.2906
1.5 5 22.5724 24.9711 −0.3436 −0.4603 0.2850
1 2 15.6537 18.3951 0.3445 0.2151 −0.2560
1 3 19.8925 23.7275 0.0614 0.1242 −0.3830
1 4 23.5371 28.4080 0.2195 −0.4199 0.0279
1 5 26.5299 32.5171 −0.0482 −0.7459 0.2993

0.5 2 15.7445 19.3805 0.2158 0.4033 −0.6071
0.5 3 21.0194 27.0172 0.0360 0.1849 0.5581
0.5 4 27.3080 36.2449 0.2601 −0.2650 0.4888
0.5 5 34.0533 47.0825 −0.0457 −0.2324 −0.4122

embedding dimension and ratio of tolerance to standard deviation. Thus,

we should reject the null hypothesis of I.I.D. for both series. The results

strongly suggest that both series are non-linearly dependent at the 5% level

of significance.

The findings of nonlinear serial correlation in both series are consistent

with the other studies that the BDS test has been applied to detect nonlinear

structure in the financial data. These studies include foreign exchange rate

data (Hsieh, 1989), NYSE weekly stock return (Scheinkman and LeBaron,

1989), and U.S. daily return of futures contracts (Yang and Brorsen, 1993).

In addition, the findings point out that the BDS test statistic for SZSE

are more than the test statistic for SHSE in most cases. It indicates that the

serial correlation in SZSE is slightly more significant than that in SHSE.

On the other hand, the BDS test statistic of the simulated random data is

between the critical values of −1.96 and 1.96; thus we cannot reject the null

hypothesis of I.I.D. The decision of not rejecting null hypothesis indicates

that there is no other dependence inside the random series.

We have shuffled the logarithmic index returns series 10 times and sub-

jected every shuffled series to the BDS test. No results are significant at 5%

level of significance. Table 4 only presents one of the results. Before shuf-

fling the time series, the results of BDS test show that the time series are
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nonlinearly dependent. After shuffling the time series, the results of BDS

test show that the time series are I.I.D. It implies that the underlying serial

dependence has been destroyed, and the destroyed structure is nonlinearly

dependent since we have filtered the linear dependence by taking a first dif-

ference of logarithms. The decision of not rejecting the null hypothesis of

I.I.D. for shuffled data provides us with a strong evidence of nonlinear de-

pendence in the original logarithmic index returns time series in both stock

markets.

5.4. Tests of chaos: correlation dimension estimation

To test the presence of chaos, we have estimated the correlation dimensions

of both series under different embedding dimensions (m) = 1, 2, . . . , 20, with

the delay time (τ) = 1. The correlation dimensions (νm) are estimated by

measuring the slope of log(Cε,m) versus log(ε). Statistically, the correlation

dimension is the coefficient of the simple linear regression model, in which

the dependent variable is log(Cε,m) and the independent variable is log(ε).

Table 5 presents the estimated correlation dimensions (νm) of our returns

Table 5. Estimated Correlation Dimension

Logarithmic index returns series

Embedding dimension (m) SHSE SZSE Random data

1 1.1535 2.6690 0.94
2 1.3665 3.0162 1.86
3 1.4477 3.1285 2.80
4 1.4905 3.1815 3.91
5 1.5186 3.2122 4.95
6 1.5388 3.2318 5.83
7 1.5540 3.2447 6.92
8 1.5661 3.2539 7.91
9 1.5764 3.2605 8.90
10 1.5849 3.2682 9.92
11 1.5920 3.2702 10.90
12 1.5980 3.2714 11.88
13 1.6031 3.2718 12.91
14 1.6076 3.2719 13.90
15 1.6117 3.2720 14.92
16 1.6152 3.2720 15.86
17 1.6183 3.2720 16.88
18 1.6211 3.2720 17.90
19 1.6235 3.2720 18.89
20 1.6257 3.2720 19.91
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Figure 3.  The correlation dimension (!) vs. embedding dimension (m) 
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Fig. 3. The Correlation Dimension (ν) versus Embedding Dimension (m)

series at different values of embedding dimension (m). Figure 3 presents the

plots of the estimated correlation dimensions (νm) against their respective

values of embedding dimension (m) for both the series and the random data.

Figures 3(a) and (b) show that there are three distinct regimes. For low

values of embedding dimension (m < 5), the value of correlation dimen-

sion increases rapidly as the value of embedding dimension increases. In

this regime, the noise masks the indication of chaos. However, the value of
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embedding dimension is still low and it is very hard to conclude that the

underlying system is a stochastic system.

As the value of embedding dimension increases (5 < m < 10), there is

a weak tendency to saturate at a more or less constant value of 1.62 and

3.27 for SHSE and SZSE logarithmic index returns series respectively. This

behavior indicates that our system may be chaotic.

In the third regime (10 < m < 20), the value of embedding dimension

has been increased to 20 but the value of correlation dimension in each

series does not follow the increases in the value of embedding dimension.

The slope of the straight line became very small and the saturation effect

has finished. For SHSE logarithmic index returns series, the saturated value

is about 1.625. For SZSE, it is about 3.27.

The convergence of the estimated correlation dimensions indicate that

the underlying system of both series is not a random process. Instead, it

is a deterministic system. As the saturated values of correlation dimensions

are all non-integers, the strange attractor is present in our series. We may

conclude that our series is not only deterministic but also chaotic, which

is indicated by low fractional Hausdorff dimension due to the existence of

chaotic attractor.

Figure 3(c) points out that for the simulated random data, the value

of correlation dimension increases as the value of embedding dimension in-

creases. This phenomenon is similar to that reported by Barnett et al. (1991).

The correlation dimension is infinite for a random series because it is disor-

dered and fills the whole phase space.

6. Conclusion

In this study, we have examined the behavior of the Shanghai Stock Ex-

change and Shenzhen Stock Exchange Composite Indices returns series using

the modified rescaled range (R/S) analysis, the BDS test and the correlation

dimension estimation.

The Hurst exponents found in the rescaled range analysis are greater

than 0.5 in both series reveal that both series are persistent, fractal and

self-similar with long-term memory. However, the values of the Hurst expo-

nents are relatively low (around 0.62), which indicate that both series have

strong noisy components. Besides searching for memory, the V -statistic is

also found for both series to detect the cyclic characteristics. The V -statistic

found in this study show that the long-memory components in both series

are similar, about 200 trading days.
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Nonlinearity was found in our time series by the BDS test. The test

statistics are very significant which indicate a strong evidence of nonlinear-

ity. These findings are similar to those found by Hsieh (1993) who found

strong evidence of nonlinear dynamics in the short-term movements of asset

returns in the U.S. market. Nonlinearity is one of the indications of chaotic

behavior.

Testing for chaos is a rather delicate part in this study, we have applied

one quantitative technique — correlation dimension estimation to determine

that the time series are chaotic or stochastic. The correlation dimensions of

our time series are estimated by the regression model in which the variables

are log(Cm,ε) and log(ε) under different embedding dimensions. By plotting

the values of estimated correlation dimension against the respective values of

embedding dimension, the values of correlation dimension started to saturate

at a value around 1.62 and 3.27 for SHSE and SZSE logarithmic index

returns series respectively after the embedding dimension is larger than 6.

The saturation indicates that the systems of the time series are not stochastic

or random, instead, they are chaotic.

The findings of nonlinearity and chaotic behavior provide us with the

following implications to economists and financial analysts:

1. The distributions of both series are leptokurtic, which agree with previ-

ous findings in the literature. These findings reveal that the quantitative

economic theory copes with the possible probability distribution rather

than normal distribution and should be developed for the financial ana-

lysts who want to study Chinese stock market indices. In fact, the prac-

tice of assuming normal distribution is not because of fitting the data but

because of enabling us to apply the classical statistical tools.

2. The presence of memory effect in both series revealed by the rescaled

range analysis indicates that both series are not generated by a pure

random walk model but by a biased random walk process.

3. The existence of fractal structure implies that the Elliot Wave Principles,

the Golden Triangle and the Golden Pentagon, which are mostly used in

technical analysis and are developed on the basis of self-similarity can

be utilized when analyzing the price movements in the Chinese stock

markets.

4. The nonlinearity found in both series tells us why most of the traditional

econometric tools fail to model the Chinese stock market because most of

them try to “whiten” data that are originally nonlinear in order to make

it suitable for these linear-based tools.
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5. Nonlinear dynamics makes us know much less about how the Chinese

stock markets really work than we think we do. Predicting the Chinese

stock price movements may not be as secure as we believe.

6. The underlying nonlinear dynamics result in the backtesting of mod-

els and performance may have little meaning for the future because the

cause-and-effect relationship is no more direct. This makes some fun-

damental analysis which uses the company’s previous historical data

less useful than expected. Such techniques include, for example, growth-

stock approach, undervalued stock approach, and small capitalization

approach.

7. The chaotic behavior found in our time series indicates that the predic-

tions of the price movements in the Chinese stock market are very difficult

by the traditional econometric methods, especially in the long-term. Such

difficulty is due to one of the characteristics of chaotic behavior — sensi-

tivity to initial conditions, insignificant inputs may be compounded over

time and greatly influence the behavior of the system. However, predic-

tion is possible in the short-term, before the butterfly effect dominates

the system since the chaotic system is a deterministic system.

The limitation in long-term forecasting ability also tells us why the

number in the Fibonacci series greater than 377 always loses the predic-

tion power in the reversal time and the reversal price.

8. The limitations of long-term prediction strongly suggest that the tech-

niques of charting (technical analysis) which try to infer the short-term

future behavior of the asset prices based on observed up and downturns

in the past, may be applied when analyzing the price movements in the

Chinese stock markets.

9. Although we cannot conclusively demonstrate that the underlying struc-

ture of the Chinese stock market is a chaotic system, both booms in May

1992 and 1996 and crashes in 1994 and 1998, periods of stability in 1995

and jarring transitions behaviors in 1998 exhibited in both SHSE and

SZSE, all of these show that our time series have the characteristics of a

chaotic system (Connelly, 1996).

Meanwhile, the application of this new science, chaos theory, is still in

its infancy. There are few “economic chaologists” in comparison with the

numbers of technical analysts and fundamental analysts. In this research, we

only study the stock market index returns. Besides the stock market, some

empirical findings also found that nonlinear dynamics and chaotic behaviors

are present in the commodity futures markets. We may perform a similar
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research such as this on the series in the Chinese commodity futures markets

situated in Shanghai, Dalian and Chengzhou. There is also ample room for

empirical research on the capital markets in the ASEAN countries.

Besides chaos, there are two other possible explanations for the excep-

tional findings found in the financial and economic time series. The January

1991 issue of Scientific American proposed two alternatives, Wavelet The-

ory and Self-organized Criticality. These two alternatives are related to the

chaos theory. Since they are still relatively new, there are many areas for

the researchers to find some empirical evidence to support them.

In this new science, much work remains to be done.
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