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Virtual reality adequately stimulates senses to trick users into accepting the virtual environment. To create
a sense of immersion, high-resolution images are required to satisfy human visual system, and low latency
is essential for smooth operations, which put great demands on data processing and transmission. Actually,
when exploring in the virtual environment, viewers only perceive the content in the current field of view.
Therefore, if we can predict the head movements that are important behaviors of viewers, more processing
resources can be allocated to the active field of view. In this article, we propose a model to predict the tra-
jectory of head movement. Deep reinforcement learning is employed to mimic the decision making. In our
framework, to characterize each state, features for viewport images are extracted by convolutional neural
networks. In addition, the spherical coordinate maps and visited maps are generated for each viewport im-
age, which facilitate the multiple dimensions of the state information by considering the impact of historical
head movement and position information. To ensure the accurate simulation of visual behaviors during the
watching of panoramas, we stipulate that the model imitates the behaviors of human demonstrators. To allow
the model to generalize to more conditions, the intrinsic motivation is employed to guide the agent’s action
toward reducing uncertainty, which can enhance robustness during the exploration. The experimental results
demonstrate the effectiveness of the proposed stepwise head movement predictor.
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1 INTRODUCTION

Virtual reality (VR) is a powerful technology to enhance the expressiveness of traditional media,
from images to movies to computer games. The immersive experience brought by VR gives people a
sense of presence in the real world or artificial world. To achieve this goal, hardware components
in VR system should produce stimuli to override human sense organs. The multidimensions of
human perceptual experience increase the complexity of producing artificial simulations to all of
the senses, so most VR systems only involve auditory and visual senses as a compromise. With
the widespread availability of related electronics, more light-weight and low-cost headsets have
appeared. The VR headset shows the trend of a high refresh rate, high resolution, and portability,
and will maintain a progressive momentum, which will also encourage the development of more
VR contents and applications. Actually, at any moment, only the part in the viewport will be
rendered. Therefore, the utilization of eye-tracking technology and foveated rendering will greatly
enhance the visual experience and will appear on the next-generation VR device [1]. The prediction
of head and eye movements has become an important issue in VR development.

Among the efforts toward the saliency prediction for panoramas, head movement (HM) pre-
diction is the most important yet daunting task that needs to be researched. HMs are important
behaviors when viewers are using a VR headset. With HMs, users can orient the center of viewport
to the position of interests and construct the percept by actively seeking new sensations. Accu-
rate HM prediction can increase the bandwidth efficiency in the video streaming, where the agent
can prioritize bandwidth for the video portions according to the probability of visual visits [2].
Furthermore, accurate prediction of HMs can increase the quality of experience since it would be
possible to increase the visual quality and reduce the motion-to-photon delay by rendering the
portions in the predicted viewports in advance before the head moves [3].

In the current research, most works only predict the saliency for panoramas (i.e., the distribu-
tion of viewports and fixations). Among these works, some algorithms are based on the human
visual system (HVS) decomposition of visual signals, including the extraction of low-level and
high-level features in the spatial domain and frequency domain to predict the saliency [4, 5, 6, 7,
8,9, 10]. However, the complexity of HVS makes it difficult to depict which features are useful in
the saliency prediction. Instead, convolutional neural networks (CNNs) can learn distinctive fea-
tures between salient areas and non-salient areas [11, 12, 13]. However, the determination of the
supervised learning (SL) model depends on the database. When the amount of annotated data is
not enough for training, the performance of SL will degrade.

Some immersive databases have been established that collect head and eye movements data on
immersive image/video [14-19]. However, their sizes are limited due to the strictness and com-
plexness of data collections. To reduce the amount of required data, in the prediction of HM paths,
deep reinforcement learning (DRL) can be employed to mimic the long-term HM behavior of the
user [20]. Compared with SL, DRL can learn the optimal strategy by sampling actions and choosing
the actions that maximize the reward. However, if the reward function is solely determined by the
closeness of the prediction and the subject annotation, the same problem will arise. Therefore, in
the design of reward function, the free-energy principle suggests that a psychovisual mechanism
can guide the deployment of attention that can be employed as the guidance for the simulation of
HM paths.

Some works have been proposed to explain in biological and physical sciences about human
behaviors in perception (e.g., HM). Related works demonstrate the validity of the main tenet of
the premotor theory of attention [21], which reveals that motor preparation and spatial attention
employ the same neural substrates, and the intrinsic motivated actions are most likely to be those
that canvass explicit data that are not liable to be predicted before the action [22]. In brief, the
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degree of discrepancy between the prediction by the generative model of the brain [23] and the
actual external visual stimuli controls the salient action, which can also be defined as Bayesian
surprise [24] and the expected free energy [25]. From the perspective of free energy, the principle
suggests that the internal states of human agents are always at the low entropy level. This goal is
realized by reducing the “surprise” under different environments that is upper bounded by a term
called free energy [25]. Therefore, the minimization of surprise can be realized through reducing
the free energy. More importantly, human agents can measure the free energy using the generative
model based on the sensory information as the external state. In addition, human agents lower the
free energy by actively seeking new sensations to eliminate the discrepancy between the external
state and the inference of the internal generative model. Therefore, the perceptual inference builds
the important intrinsic interactions between the visual perception and salient actions and guides
the prediction of salient HMs in the VR system.

Operationally, our quest for improving the HM prediction for immersive images, which is guided
by brain theory, is well realized by employing the psychovisual mechanism-based reward func-
tion in the framework of DRL. Specifically, the contributions of this work lie on several aspects.
In the framework of DRL, our model extracts the features of the viewport images. In addition, the
spherical coordinates of each pixel are provided as extra position information to enable the net-
work to observe the position prior (e.g., center prior and equator bias). The visited map recording
the HM positions before the current position is also included in the input to enable the network to
learn the impact of past HMs. The psychovisual mechanism-based reward is incorporated in the
reward to maximize the exploration and generalize the network. The psychovisual mechanism-
based reward can measure the novelty of the state in terms of free energy and provide agents with
bonus rewards whenever they visit a novel state. Therefore, some poorly understood states can
be investigated and the agent’s exploratory behavior can be enhanced. When making multi-step
predictions, the previous predictions will be incorporated into the current input. The investigation
of poorly understood states can reduce the propagation of discrepancy and potentially improve
future performance. In addition, the psychovisual mechanism-based reward is much less sensitive
to low-level visual features. Therefore, the policy equipped with a high-level psychovisual mech-
anism can also encourage the agent to have similar features even for some different visual signals,
and help the model learn features that are more general. Given the learned model, the HM posi-
tions and path during the viewing of panoramas can be well predicted by the client in a stepwise
way. Experiments that are conducted on the VR datasets named Salient360 [14], OIQA [26] and
ODS [15] demonstrate the effectiveness of our stepwise head movement predictor (SHMP).

The rest of this article is organized as follows. Section 2 presents some related works about
saliency prediction models in panoramas. Section 3 presents implementation details of our model
to predict head motions. In Section 4, the effectiveness of the model is proved by comparisons of
the experimental results. Finally, concluding remarks are given in Section 5.

2 RELATED WORK

Recently, many databases have emerged for visual attention analysis and modeling on immersive
images/videos. For establishing a visual attention database for immersive content, the motion sen-
sors in HMD can record the HM data, and the eye tracker that is embedded into the HMD can
capture the EM data. Some datasets provide both head and eye tracking data. Sitzmann et al. [15]
found that starting points and watching conditions had an influence on the viewing behavior and
designed the subjective experiments to record both HM and EM across 22 panoramas. Rai et al.
[14] established a dataset of both head- and eye-tracking data from at least 40 subjects across 85
panoramas. In the work of Xu et al. [13], a new database was constructed. A total of 208 immer-
sive videos and the corresponding HM and EM data were provided. Each video was viewed by at
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least 31 subjects. David et al. [19] constructed a database of immersive videos that recorded both
HM and EM data across 19 videos. Some datasets only provide head-tracking data. Li et al. [17]
constructed a database that contained 73 immersive videos and the HM data. Corbillon et al. [16]
constructed a database that contained 7 omnidirectional videos and recorded the corresponding
HM data. Ozcinar and Smolic [27] established a visual attention user dataset of 6 omnidirectional
videos with different contents, recording viewport center trajectories of 17 participants. Fremerey
et al. [18] constructed a dataset that recorded the head-tracking data of 48 subjects across 20 om-
nidirectional videos. In addition, the competition called Salient360' was held to understand how
users watch and explore immersive content and model visual attention. We can see that several
datasets have been established in recent years in this area. The collection of data in VR systems is
more complex and time consuming, so the sizes of these datasets are limited.

Some saliency prediction models for immersive images and videos have been proposed. Hand-
crafted features can be used to predict the saliency. In these methods, the employed features are
usually classified into top-down and bottom-up features. Rai et al. [5] designed several saliency
weighting strategies and compared their performances to generate saliency maps from HM data.
Zhu et al. [10] proposed a method to extend the existing saliency models designed for traditional
images to panoramas. In addition, a model to predict HM, head-eye movement, and scanpath was
also proposed. Abreu et al. [4] modified the current saliency models for traditional images to
fast design omnidirectional image—oriented methods. Lebreton and Raake [9] modified existing
saliency prediction models designed for traditional images to predict the saliency for omnidirec-
tional images in the equirectangular format. Startsev and Dorr [6] employed various projection
methods and compared the performances of the resulting saliency maps. Ling et al. [8] employed
color dictionary—-based sparse representation to predict the saliency for omnidirectional images.
Battisti et al. [7] employed some low-level and semantic features to predict the saliency for omnidi-
rectional images. Although the preceding models have tried to model visual attention, the features
required to perform saliency prediction are all handcrafted and based on heuristics.

With the development of the CNN, many models use it to predict the saliency for 360-degree
images. Because the omnidirectional images are distributed on the sphere, some methods mapped
the images to the plane, then the CNN was employed to process the resulting 2D images [28, 29]. To
enable the CNN to learn the spherical features, the spherical convolution was proposed by Su and
Grauman [30] to extract features on panoramas. Cohen et al. [31] proposed spherical CNNs and
employed spherical rotation-equivariant cross correlation to extract spherical features. To predict
the saliency in panoramas, Monroy et al. [11] fed cube-mapped images and the location map into
the designed network and trained the model in an end-to-end manner. Xu et al. [13] predicted
the gaze in immersive videos by referring to the historical gaze path and employing the temporal
and spatial saliency. Cheng et al. [12] employed cube padding and proposed a weakly supervised
spatial-temporal network to predict saliency of immersive videos. However, these models are not
comprehensive in terms of HM prediction, and it is difficult to conduct deep learning with limited
data. Therefore, in this work, we devise the model that is based on DRL with designed reward to
mitigate the problem.

Different from the preceding methods, here we employ the framework of DRL to predict the HM
in immersive images. In the framework of DRL, our model extracts the features of the viewport
images. In addition, the spherical coordinates of each pixel and the visited map recording the HM
positions before current position are also incorporated. To maximize the exploration and general-
ize the network, we incorporate the psychovisual mechanism-based reward, which can measure
the free energy of the state and advocate the state of large free energy value. With the psychovisual

Ihttps://salient360.1s2n.fr/.
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Fig. 1. In the framework, modules that need calculations are marked with blue. In the viewport extraction,
the viewport image, location map, visited map, and saliency map are extracted at each viewport. A total of ¢,
(tc = 6) [32] viewports constitute one state. With the action a, the agent makes the transition from s to s” and
calculates the reward r of the transition. The buffer pool stores and randomizes the extracted viewports, the
calculated rewards, and the actions. During learning, a minibatch of transitions (s¢, as, rt,s;) are extracted
uniformly from the buffer pool. The Image embedding network (E) extracts features of the viewport image.
Then the image features are concatenated with the location map and visited map. In addition, the concate-
nated features are embedded by the feature embedding network (F). The output of F is fed as the input of
the LSTM network. The whole network ends with a 48-way fully connected layer with softmax. The output
of the evaluation network and target network are used to calculate the loss, which is employed to update
the evaluation network. The target network remains fixed between individual updates and is only updated
every fixed step. The e-greedy policy is employed to select the action.

mechanism-based reward, the agent is encouraged to investigate some poorly understood states
and perform exploratory behavior. In addition, the psychovisual mechanism-based reward is high-
level. The policy equipped with the psychovisual mechanism-based reward is less sensitive to low-
level visual features, which can help the agent learn features that are more general and exploit the
high-quality action under different conditions.

3 DESIGNING THE SHMP
3.1 The Overall Framework

The Markov decision process is employed to model the decision-making process. The switch of
viewport with HM over time ¢ is denoted as the stochastic process {u;,t € T}, of which the state
space is the set of all possible HM locations. Considering the retention of memory of our brain,
the process of HM is not memoryless. To satisfy the Markov property stating that the stochastic
process should be memoryless, inspired by time-delay embeddings [33], we embed the dependent
“memory” into the state.

In the process of watching panoramas, with the HMs, viewers are continuously being exposed
to new content. When watching panoramas, the working memory will temporarily retain the vi-
sual information from the field of view, which is referred to as short-term retention. Compared
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with long-term memory, we believe that short-term memory is more important here.” The infor-
mation kept in short-term memory will spontaneously decay over time. Therefore, the conditional
probability distribution of the future state depends upon the present states and the past states in
a short term. We can define a new process {s;,t € T} by prolonging the state such that the new
state of each random variable s; consists of the current HM locations and the “history” over a time
interval:

S = H, (1)

where S is the state space that is formed by the t.-element Cartesian product on the set H, and
H is the set that contains all possible field of view center positions. After the Cartesian product,
each member in S contains ¢, elements. By involving additional historical states, process {s;,t € T}
satisfies the Markov property.

The transition probability is influenced by a human agent who makes decisions to affect the
evolution of the system over time. There is the finite set A that is composed of available actions.
In the operation of HM prediction, the action set consists of movements of discrete distances and
directions. There are 48 available actions that the agent can take. The detailed definition will be
introduced in Section 4.1. On the basis of action set A, policy y(als) specifies the probability of
choosing action a when in state s. Therefore, the transition probability can be written as Equa-
tion (2):

P(se+1lse) = Z x(aclse)p(seeilse, ar), (2)
acA

where the transition probability that the process moves into s, is influenced by the chosen action
a;. Thus, we have the decision-making process:

T = S0, aO»shal""’sl‘o—hato—lastg' (3)

In the decision-making process 7, the agent will start from the sy and take the action ay to switch to
the s1, and so on. Considering the Markov property, we can compute the probability of the decision
process 7 as Equation (4):

P(T) = P(so, ap, S1, 41, )7

1 @
= p(s0) l—[ x(alse)p(sesalse, ar).
t=0

The goal is to specify and optimize the policy y(a;|s;) when the state transition function
p(s¢+1lse,ar) is known. To formulate the objective function, the instant reward is defined as
ry = r(sy—1,ar-1,St), and we have the discounted return of the process:

to-1

G(r)= D y'r, yelo), (5)
t=0

where y is the discount factor. When y is close to one, more long-term reward will be included in
the discounted return. Otherwise, the short-term reward is emphasized when y is close to zero.
Then the weighted average of the discounted return of the trajectories can be calculated as Equa-
tion (6), and we can optimize the policy by maximizing the expected return:

J = Ep(r)(G()). (6)

2The transfer of short-term memory to long-term memory should undergo the process of consolidation, involving rehearsal
and meaningful association.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 4, Article 130. Publication date: December 2020.



Learning a Deep Agent to Predict Head Movement in 360-Degree Images 130:7

The expected return can be further expanded by rearranging Equation (6), and we have

fo—1
Ep(r\so) Z }’trm} , (7)

t=0

Ep(r)(G(7)) = Ep(sy)

where the term in the square brackets is the value function VX (s) that measures the expected
return starting form state s, and following policy y. For convenience, we can use 7y, to represent

trajectory so, dg, S1, . - . Sg,- In addition, 7o.;, = $o, ao, 71.¢,- The further expanding with respect to the
next state can be conducted as follows:
to—1
VX (SO) = EP(TO:tO \So) Z Ytrt+1
=0
-1
t
= Ep(rpge\so) [T1 Y Z Y rt+lj|
= (8)

to—1

= E“O~X(“0|SO)E31~P(31|$o,ao) |:F(S(), ao, $1) + YEP(Tl:tO\Sl) Z Ytrt‘*'l
t=1

= an~X(a0|So)E51~P(51|So,a0) [ (s0, a0, s1) + yV*(s1)]

= Eag~)((ag|s(]) [QX(SO’ aO)] >

where the Q% (s¢, ap) is the state-action value function. For the ease of representation, the current
state and next state are denoted as s and s’, and actions based on the current state and next state
are denoted separately as a and a’. By substituting V¥ (s"), we will have

QX (57 a) = Es’~p(s’|s,a) [r(s’ a, 3,) + }/VX (S’)]
= Es’~p(s’\s,a) [r(s, a,s’) + YEa’~)((a’|s’) [Q¥ (s, al)]] .
The greedy policy can be employed to choose the action that maximizes the state-action value.
In addition, when the transition probability is unknown, bootstrapping can be employed to form

the model-free method and estimate the optimal action value function [34] by the following update
rule:

©)

Q(s,a) « Q(s,a) + a (r +y max Q(s’,a’) — Q(s, a)) , (10)

where « is the learning rate in the Q-learning. Utilizing the representation power of the neural
network, a network with parameter 1 can be used to approximate the action value. Similar to the
Q-learning in Equation (10), the update of the network uses the following loss function:
2
L(s,a,s’|n) = (r +ymax Q- (s',a") — Qy(s, a)) , (11)
0

where 7 are the parameters of the Q-evaluation network and n~ are the network parameters used to
compute the target r + y max, Qy,(s’, a’). To reduce the correlation between the evaluation value
and target value, the parameters n~ remain fixed between individual updates and are only updated
every fixed step [35]. In addition, there is strong correlation between consecutive samples that are
not suitable for learning. Randoming samples can remove the correlations, so we realize the expe-
rience replay by storing the experience of agent in the buffer pool. During the learning process,
minibatches of experiences are uniformly sampled at random from the buffer pool. To ensure ad-
equate exploration of the state space, the action distribution is selected by the e-greedy policy
that selects a random action with probability ¢ and follows the greedy policy with probability 1-¢.
Figure 1 shows the diagram of our framework.
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Table 1. Image Embedding Network

Layer Name | Output Size | Kernel, Depth, Stride

Convl 112 X 112 7 X7, 64, stride 2
3 X 3 max pool, stride 2

1x1, 64
Conv2_x 56 X 56 [3><3, 64] X3

1X1, 256

1x1, 128
Conv3_x 28 X 28 [3><3, 128] X 4

1X1, 512

1X1, 256
Conv4_x 14 X 14 [SXS, 256] X 6

1x1, 1024

1x1, 512
Conv5_x 7 X7 [3><3, 512] X3

1X1, 2048
DConv6 14 X 14 5% 5,512, stride 2
DConv7 28 X 28 5% 5, 128, stride 2
DConv8 56 X 56 5 X 5, 32, stride 2
DConv9 112 X 112 5% 5, 8, stride 2
Conv10 112 X 112 1x1,3

(a) (b)

Fig. 2. Generation of a visited map. (a) The head location map. (b) Results after applying a Gaussian mask
and the extraction of the visited map on different locations.

3.2 Network Architectures

To remove the correlation and improve the stability, we employ the experience replay and use
a separate network for generating the targets as shown in Figure 1. The Q-network is mainly
comprised of the image embedding module, feature embedding module, and sequence modeling
module.

Image embedding. We use the image embedding network (E) to extract features from viewport
images because Resnet can mitigate the degradation problem. In addition, Resnet can extract fea-
tures with a large receptive field and meanwhile preserve fine details. We take the advantage of
the Resnet50 [36] network that is pretrained on ImageNet [37]. We remove the average-pooling
layer and fully connected layer in Resnet50. To upscale the feature map to the same dimensions
as the location map, four learnable transpose convolution layers are employed to conduct the de-
convolution. The final convolution layer is employed to map features to three channels. Table 1
shows more details.

Feature embedding. The location map, visited map, and viewport image features are combined
as the input to the module of feature embedding (F). The two-channel location map records the
longitude and latitude of each pixel in the viewport image, which provides the network the infor-
mation of absolute position. The single-channel visited map records the visited information in the
current viewport. As illustrated in Figure 2, we form the head location map by aggregating the
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Table 2. Feature Embedding Network

Layer Name | Output Size | Kernel, Depth, Stride

Convl 112 X 112 7 X7, 64, stride 1
3 X 3 max pool, stride 2
1x1, 64
Conv2_x 56 X 56 [3><3, 64] X3
1X1, 256
1x1, 128
Conv3 x 28 X 28 [3x3, 128] X 4
1X1, 512
1X1, 256
Conv4_x 14 X 14 [sxa, 256] X 6
1x1, 1024
1x1, 512
Conv5_x 7 X7 [3x3, 512] X3
1X1, 2048
Pool6 1x1 7 X 7, 2048, stride 1

historical visited locations. Considering the existing central fixation bias in scene viewing [38], we
apply a Gaussian mask on the head location map on the sphere to get the global visited map [39].
The area of the current viewport on the global visited map is extracted as the visited map of the
current viewport. The visited map provides the network the information of pseudo-visiting count
and relative position. The concatenated features are fed to the next layers to refine the features
with the extra information that is provided by the location map and visited map. The feature em-
bedding network takes advantage of the plain network and shortcut connections in Resnet50 [36].
Table 2 shows more details.

Sequence modeling. Stacked Long Short-Term Memory (LSTM) is employed to model the se-
quence, which is comprised of two LSTM layers. Each LSTM cell at time t and level [ has inputs
z(t) and hidden state h(l, t). In the first layer, the input is the actual feature sequence from the
feature embedding network and previous hidden state h(1,t — 1). In the second layer, the input is
the hidden state of the corresponding cell in the previous layer A(1, t) and previous hidden state
h(2,t —1). According to Miller [32], short memory has the capacity of about seven items. Thus,
the model is designed to predict the current state based on six historical memory states (i.e., the
number of timesteps is set as 6). At each timestep, the first layer obtains the feature sequence
length of 2048 and a hidden size of 256, and the second layer obtains the sequence length of 256
and a hidden size of 256.

3.3 Designing Reward Function

We employ the intrinsic motivation to guide the agent’s action toward reducing uncertainty. Dur-
ing the active visual perception [40] in the VR headset, human behavior and visual perception
are tightly coupled. We move the head and eyes, and what we perceive in turn motivates our
behaviors. Much evidence shows that the degree of discrepancy between the prediction by the
generative model of the brain and the actual external visual stimuli, which is the cognitive disso-
nance in HVS and upper bounded by free energy [25], draws people’s attention[22, 41]. Since the
motor preparation and spatial attention employ the same neural substrates [21], the reduction of
visually cognitive dissonance motivates the behavior.

The intrinsically motivated visual exploration is to maximally eliminate the discrepancy be-
tween the external state and the inference of internal generative model. Therefore, given a visual
stimuli, or an image I, intrinsic motivation of visual exploration is positively correlated with the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 4, Article 130. Publication date: December 2020.



130:10 Y. Zhu et al.

degree of discrepancy between the external visual stimuli and the prediction of the generative
model. The unified internal generative model [25] can be employed to estimate the free energy,
which is the upper bound of the discrepancy. The internal generative model for visual perception is
parametric, which explains perceived scenes by adjusting the vector 0 of parameters. To make this
notion precise mathematically, we refer to the definition of free energy as in statistical physics and
thermodynamics, which has also been widely used in visual quality measure [23, 42] and visual
saliency prediction [41].

Qs (0II)
f Qs (i lee 5o mpem

0
~log Pg(I) + f 0s(011) log g;((m'g

—log Pg(I) + KL (Qs(011)11Pg (611)) (12)

In brain theory [25], Pg(6|I) is referred to the recognition density that is conditioned on the in-
ternal generative model and external stimuli, and Qs(0|I) is conditioned on the unconscious pro-
cessing model that is instantly triggered by external visual stimuli (our brain digests what comes
through the eyes using two sets of circuits) [43].

The —log Pg(I) term is the log-evidence of the image data I given the model under the en-
tire generative process, which will be reduced at each switch of viewport. The divergence term
KL (Qs(0II)||Pg(0|I)) measures the discrepancy between the recognition density of the uncon-
scious model and the internal generative model when perceiving a given scene. Therefore, the
visual exploration is the process of updating and reducing the free energy, and the exploration of
new content is better than the revisiting of the historical content. According to some instantiations
[23, 42], the linear autoregressive (AR) model is the good choice for model G. The AR model is
defined as

F(6)

de

xi = XK (x)a + e, (13)

where x; denotes the pixel at location i, X* (x;) is the vector of k-member neighborhood of x;, and
« = (a1,az,...,ax)" are the model parameters. The identity function is a simple choice for the
unconscious processing model S. Under a large sample limit, free energy equals the description
length [44]. Therefore, the model can be estimated by minimizing the description length, and the
free energy can be approximated as the total description length of the image. In general, we can
form the training set N (x;) in a neighborhood of x; with x = (x1,x3, ..., xy)T and the neighbor-
hood member set with X(i,:) = X¥(x;). For a pixel x;, we can deploy the k-th order piecewise
AR model as in (13) on the training set and neighborhood member set. Under such conditions, to
estimate «, the linear system can be written in matrix form as

@ = argmin ||x — Xe||, . (14)
(04

The optimization on the linear system can be solved easily as & = (X7 X) !X x. With &, we can
then calculate the estimation error of a local pixel as

& =x;— % =x - XF(x))a. (15)

Given the input image I, the point-wise error e; can be computed and pooled to get the error

map E(I). The entropy of errors can be employed as the approximate to free energy term that is
computed as H(E) = ), —P(e) log P(e) with P(e) the probability distribution of the errors.

To measure the elimination of the discrepancy, given the viewport images, the internal genera-

tive model G is optimized based on the visual perceptions that have already been observed, which
is employed to measure the intrinsic motivation of next state. The algorithm for computing the
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ALGORITHM 1: Estimation of Reward for Transition from s to s’
Input: Viewport image set I = {Iy, I, ... I,} and the I’ = {I, I5...In41},
visited map I, | and saliency map I7
Output: The estimated reward R

: for all images [; in1UI" do
for all pixel xf in Ij, pixel xl.t inI;41 do
Form x and X for xf
model estimation di(xf) = xTx)"1xTx.
error estimation é7, g, (i) = xit - Xk(xf)di(xg)
end for
Pool é,1,,, as By,

Fiyslys = HERS1,,)s
: end for

F,
o1 1) —>Ip41
Rf={0'5’ fea X/, >4

R S A U R S

Frp =141

_
<

0, otherwise.
11: form all-ones matrix J,,xp

122 Yy =(J-I7,)® I,

13 R = 0> 1 i Zij Ynr1 (i) > &
0, otherwise.
14: R = Rf + Rs

free-energy-based reward is summarized in Algorithm 1. Discrete rewards are used to drive the
system away from bad states. And we can consider the relative sizes of the two components and
scale the contributions of them expediently. The two parameters &, &, are set as 1.12 and 0.15,
respectively. The parameters are selected from a coarse parameter sweep. For the unlabelled data,
the calculation of free-energy-based reward need no observations of actions from human demon-
strators. Therefore, reinforcement learning (RL) can be conducted in a self-supervised way.

4 PERFORMANCE EVALUATIONS AND ANALYSES
4.1 Implementation Details

Viewport determination. Research on human factors indicates that the optimal rotation angle of
eyes downward and upward from normal line of sight (NLoS) is 15 degrees [45], and the maximum
rotation angle of direct vertical viewing for eyes only is 20 degrees below NLoS and 40 degrees
above NLoS. The optimum rotation angle of eyes to the left and right is also 15 degrees from NLoS,
and the maximum rotation angle of direct horizontal viewing for eyes only is 35 degrees. For HM,
the turning angle is +65 degrees from NLoS to the left and right, 65 degrees above NLoS, and 35
degrees below NLoS. If both HM and EM are allowed, the horizontal field is +95 degrees for head
turning and eye rolling, and the vertical field can cover £90 degrees. Figure 3 shows the details.
Thus, in the implementation of our model, the size of the viewport is determined according to the
rotation range of eyes. We use a local block image to simulate the viewport image and use the
block-wise projection method that is proposed by Zhu et al. [10] to extract the local viewport.
HM discretization. The recordings of HM are the latitude and longitude over a continuous range
(e.g., the range for latitude is [0, 7], and the range for longitude is [0, 27]). The micro movements
of head are messy and unpredictable. Many factors can result in micro changes of head position,
such as the accompanying HM with the movement of body, the small movement of a headset
because of the inertia and gravity, and the noise from the sensors. According to some research,
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Fig. 3. Physiological functions of human vision (top row) and HM (bottom row).

small head position changes are confined because the eyes will counter-rotate substantially in
the head direction [46]. In addition, in many cases, the goal-directed HMs will continue with the
counter-rotation of eyes after the gaze is already on the target. Thus, it is reasonable to assume
that the micro HMs are mostly from the aforementioned noises.

It is straightforward to regress the coordinates of the viewport in the geographic coordinate
system [47]. But the even angular unit corresponds to the uneven length unit especially near the
northern and southern poles, which means that near the poles, a small position change will cause
a big longitude change. Therefore, the regression of coordinate is not suitable for panoramas. Ac-
tually, the transformation of the viewport can be characterized as the transformation of the fixed
distance in the certain direction. But if the direction is regressed using the continuous radian,
robustness is lacking when the transformation distance is small, because in such cases a small
disturbance will cause a large change of the direction. To increase the robustness, the discretiza-
tion of both transformation distance and direction will be a good choice. Another benefit of the
discretization is that the number of training data with different labels can be easily controlled to
make the training data balanced.

After the discretization on both the distance and direction, there are 48 different actions that the
agent can take. Specifically, the current center of the viewport can be assigned as the north pole of
the geographic coordinate system [47]. The polar coordinate is defined, in which viewport center
V is the origin, latitude (@) is the radial coordinate that measures the transformation distance, and
longitude (¢) is the angular coordinate that measures the transformation direction. As illustrated
in Figure 4, in the polar coordinate, we can define the active area a(®, {/|V) that satisfies 15° <
® < 40°. Then the active area is segmented into 48 sectors, and each sector is associated with one
cluster center. There are 16 innermost sectors that have the angle of éf[ in radian and 32 outmost
sectors that have the angle of %n in radian. The latitude of sector arcs and cluster centers are set as
® = 15°,18°,25°32°, and 40° separately. This allocation can ensure that most HMs locate in the
two rings, and each sector has similar area. The locations of clusters are determined according to
the rotation range of the human head. The cluster centers are the candidates for the next viewport
center. Therefore, there are 48 available actions that are indexed by (@, {) of the cluster center. On
these bases, the discretization of HM paths can be conducted. The discretization procedures are
described in Algorithm 2.
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ALGORITHM 2: HM Path Discretization
Input: HM path, V = {V1, V5...}
Output: The discrete sequence, V' = {Vl’, VZ’...}

1: Dis(Vi, V3): calculates and returns the normalized orthodromic distance between Vi and V5.
2: T (@, y|V): shifts V according to action (@, ¥) and returns the result.
3: a(@, Y|V): the active area with V as the center.

4: Sector allocation can be approximated by i* = min; Dis(T (o;, ¥;|V’), V), i = 1,2,3...48
5:

6: V[' =W
7: 'V’ .push(V/)
8: Vi1 = V.pop()
9: while V;,1 is not Null do

10: if Vi41 € a(@,¢|V/) then

11: i* = min; Dis(T (@;, l//i|Vt/), Vit1), i=1,2,3...48

12: Vt,+1 = T(@i*,l//i*|Vt’)

13: V’.push(V/,)

14: vi=V/,

15: Vi+1 = V.pop()

16: else

17: while V; 11 ¢ a(@,¥|V/) and V;, is not Null do

18: if Dis(Vy41,V/) < % - then

19: Vi+1 = V.pop()

20: continue

21: end if

22: i* = min; Dis(T(®;, ¢i|Vt/)9 Vit1), i=1,2,3...48

23: Vt/Jrl = T((Di* s lﬁi* |Vt’)

24: V' push(V/,,),

25: Vi =V/,

26: end while

27: end if

28: end while

Dataset. We employ the publicly available Salient360 dataset [14] to conduct our experiments.
There are 85 panoramas in the dataset, which can be classified into five categories: natural land-
scapes, grand halls, indoor rooms, cityscapes, and people. The resolutions of the images vary
within the range from 5376 X2688 to 18332 X9166. During the experiment, 63 subjects were asked
to watch the immersive image for 25 seconds through a VR display. In addition, there were 40
to 42 subjects participating in the evaluation for each image. Head orientations for each stimulus
were provided. HM discretization is conducted on the dataset. We present some statistical results
in Figure 5. From the results, we can observe that the transformation distances of most HMs are
concentrated in a small range from 0.25 to 0.6 rad, and most transformation orientations are con-
centrated in the small range around the equator. As a result, the number of instances for different
labels are imbalanced, which means that some classes dominate the other. To mitigate the class
imbalance, new minority instances are synthesized by copying existing examples. In the test phase,
besides the preceding dataset, we also test the performance on the OIQA dataset [26]. Sixteen raw
images with resolution from 11332 X 5666 to 13320 X 6660 are included. Each image is evaluated
by 20 subjects for 20 seconds. The ODS dataset [15] is also used to test the performance. The ODS
dataset contains 22 images of resolution 8192 x4096 that are viewed by 169 subjects. We mainly
use the Salient360 dataset as the testbed. The OIQA and ODS datasets are used as a complement.
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Fig. 4. There are 48 actions in multiple directions and distances. During the discretization, the pole is shifted
to the viewport center, the transformation direction can be specified by the longitude of the meridian after
the shift, and the transformation distance can be specified by the latitude after the shift that is also the
radian between two positions on the sphere.
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Fig. 5. (a) Histogram for the normalized orthodromic distance of HM transformations of which the unit is
rad. (b) We count the HMs in different orientations and plot the distribution with a radar chart. The blue
curve is the result after fitting.

Training and testing. The training of our model is conducted in two phases: SL and RL. To train
and test our model, we randomly divide the Salient360 dataset into 80% training images and 20%
testing images. There are 85 images in the dataset, of which 68 are used for training and 17 are used
for testing. It is worth noting that to conduct the cross-dataset evaluation, all images in the OIQA
and ODS datasets are not involved in the whole training process and are only used for testing.

In SL, we train the SL Q-learning network on the sampled state-action pairs, which are extracted
from panoramas and the actions of human demonstrators in the training dataset. Cross entropy
is employed as the loss function. The second stage of the training pipeline aims at improving the
network by RL. Equation (11) indicates the loss function that is employed to update the network
in the RL stage. The RL Q-learning network is identical in structure to the SL Q-learning network,
and its weights are initialized to the same values. To improve stability, we use a separate network
for generating the targets. The target network remains fixed between individual updates and is
only updated every fixed step. In addition, the experience replay is used to remove the correla-
tions of the input, and the ¢-greedy policy is employed to select the action. We set the exploration
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rate ¢ as 1 at the beginning and anneal ¢ to a final value of 0.01. In the RL phase, the testing im-
ages in the Salient360 dataset are also involved. For these testing images in the Salient360 dataset,
the exploration is conducted and stipulated by the psychovisual mechanism-based reward (R in
Algorithm 1), which is independent of the annotation. To conduct cross-dataset evaluation, all im-
ages in the OIQA and ODS datasets are not involved in the SL phase and RL phase and are only
used for testing. In the operation of HM prediction, the evaluation network will predict the action
based on the current state. The new state will be fed to the network to make further prediction.

4.2 Evaluation Metric

To compare the distance between HM paths from the human and model, we employ to measure
the dynamical similarity between HM paths of varied length. However, some existing methods
totally ignore the temporal dimension [48]. By contrast, the modified metric takes both spatial
properties and temporal dimension into account. In the modified metric, the similarity matrix is
first computed, based on which the alignment is conducted and then the distances between the
human HM path and the model-generated HM path are computed accordingly.

Similarity is measured by comparing both the normalized orthodromic distance and the an-
gle distance of the direction. The calculations are performed in the three-dimensional Cartesian
coordinate. Since image pixels are located on a sphere, the distance between two points is mea-
sured along the surface of the sphere. Thus, orthodromic distance is used instead of Euclidean
distance. Given the HM location v; from the human HM path and the HM location u; from the
model-generated HM path, the normalized orthodromic distance can be computed:

Dis(v;, uj) = arccos(v; - u;). (16)

Two sequentially adjacent HM locations form the vector v; ;4i from the human and u; ;1 from
the model. Then the angle between two vectors can be calculated as the angle distance:

—_— —>
Vi i+1 " Uj j+1
—> —_— .
ll2

_
Ang(v; 41, Uj j+1) = arccos(
1o, i1ll2lluj j+1

(17)
Each HM location of the human path is compared with that of the model-generated path to form
the similarity matrix W between two paths. The element of W is calculated as

1 . 1 NN
Wij = o Dis(v;, uj) + o Ang(vi, i1, Uj, j+1)- (18)

The w; ; is normalized by the 27 to the 0 to 1 range. The alignment will be conducted based on the
similarity matrix.

In the previous method for the path alignment [48], the alignment is conducted to reflect the
dynamical similarities, but no temporal orders are considered. To ensure that the relative order is
maintained during the alignment, the restriction is added that the alignment should be conducted
forward. One sequence is arranged in rows, and another is arranged in columns that form the
nodes of the graph. The edge weight is determined according to the similarity matrix indexed
by the corresponding nodes. Figure 6 illustrates the placement of the nodes, connections, and
edge weights. Dynamic programming can be employed to find the path of the smallest average
orthodromic and angel distance (SA-OAD) from the start node (top left) to the goal node (bottom
right). The alignment is global and spans the entire length of sequences, and the SA-OAD can be
computed as

SA-OAD = Z wi;/L(P), (19)
(if)eP
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Fig. 6. lllustration of the placement for the nodes, connections, and edge weights during pairwise compar-
isons. One sequence is arranged in rows, and another is arranged in columns to form the nodes of the graph.

The edge weight is determined according to the similarity matrix indexed by the corresponding nodes. Three
directions are allowed to ensure that the alignment is conducted forward.

where P is the path from the starting node to the ending node determined by the alignment. The
total weight of the path from the starting node is averaged by the path length L(P).

In addition to the SA-OAD metric, we employ the inter-observer congruency (IOC) metric to
measure the performance [49]. We implement the IOC measure by quantifying the saliency value
at the locations of HMs [50]:

N
_ 1 (Vi) — prs
oc= L S0 e, @

i=1 ors

where V is the location of HMs, N is the total number of HMs, and I° is the saliency map for HMs.
u and o are the mean and standard deviation, respectively.

4.3 Experiments and Analyses

Our model leverages the observed HM locations to make the prediction. To evaluate accuracy, the
initial k locations of each human HM path are taken as the observed locations, based on which
our model will make future predictions.

Qualitative results. The performance of the proposed model has been explored in the qualitative
perspective. Immersive images can be characterized by content complexity. The natural elements
and artificial elements contribute to the content diversity. In addition, the presence of the hu-
man will also enrich the content. However, images can be characterized by the spatial complexity.
Some images contain rich texture information, whereas others contain the plain areas of less tex-
ture information. As well, some images contain obvious foreground objects, whereas others have
no obvious contrast between background and foreground. We choose 12 images of different char-
acteristics: Gully, Crossroadsl1, Crossroads2, Highway1, Highway2, Hall, Yard, Train, Bar, Hotel,
Room, and Square. The prediction of 15 HM locations are made on the 12 images. We divide the
ground-truth HM paths into slices of 15 HM locations. Then we find the slice of minimum SA-
OAD value from the observers’ paths to the predicted path. The HM paths from predictions and
the ground truth are plotted in the equirectangular image in Figure 7. From the results, we can
observe that diversity predictions are made given different images, showing that the model can
avoid the mode collapse. Although the left boundary of the image is 0 in longitude, and the right
boundary is 277 in longitude, the agent can take the action that the starting position is near the left
boundary and the target position is near the right boundary, which actually is a small movement
on the sphere. This is because that the input of the model is the viewport data on the sphere that
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Room Crossroads2 Square

Fig. 7. Experimental results for HM path predictions under different panoramas. The prediction of 15 HM
locations are made on the 12 images in the Salient360 dataset. The ground-truth HM paths are divided into
slices of 15 HM locations. Then we find the slice of minimum SA-OAD value from the observers’ paths to
the predicted path. The HM paths from predictions and the ground truth are plotted in the equirectangular
image. For each panorama, the first row is the ground-truth path and the second row is the prediction.

is a closed surface, and the actions that the agent can take are specified by the local transforma-
tion distance and orientation. The transformation distance is discretized into two levels, but they
can tackle most conditions. Some longer transformations that rarely occur can be partitioned as
combinations of the two levels of transformations. From Highway1, Highway2, and Room that
contain obvious foreground objects, we can see that the predictions can cover and switch between
the objects. By comparing the predictions and the ground truth, we can observe that the model
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Table 3. Experimental Results for HM Predictions on the Salient360 [14],
OIQA [26], and ODS [15] Datasets

Feature Type Salient360 OIQA ODS
SA-OAD | IOCT | SA-OAD| IOCT | SA-OAD| IOCT
Random locations (RLS) 0.168 0.036 0.173 0.018 0.167 0.020
SHMP without DRL (SHMPy,, k=1) 0.131 1.378 0.142 1.309 0.136 1.321
Graph-based HM predictor (GBHMP) [10] 0.118 1.435 0.128 1.351 0.130 1.368
SHMP (SHMP,, k=1) 0.102 1.581 0.124 1.413 0.122 1.422
SHMP (SHMP, k=6) 0.087 1.669 0.115 1.498 0.110 1.496

can perform well on the images of different characteristics. Because of RL and the discretization
of HMs, our model is robust under different conditions.

Quantitative results. In the work of Zhu et al. [10], the graph-based HM path predictor employs
both low-level and high-level features, which is compared as the baseline. In addition, paths of
random HM locations are generated by randomly selecting locations on the sphere. Different from
the baseline method, our proposed HM predictor predicts the HM in a stepwise way and is en-
hanced and generalized to more conditions by DRL. To compare the performance, the Salient360
[14], OIQA [26], and ODS [15] datasets are employed. We calculate the IOC value and the minimum
SA-OAD value from the observers’ paths to the predicted path. Table 3 compares the SA-OAD and
IOC values of different methods. A lower SA-OAD value and a higher IOC value indicate that the
prediction is more consistent with the ground-truth data. It can be observed that the proposed HM
predictor without DRL can achieve good performance, and a substantial enhancement is made by
DRL. The initial k locations of each human HM path are taken as the observed locations. The re-
sults demonstrate that more accurate predictions can be achieved with more observed information.
The good performance is also maintained on the OIQA and ODS datasets, which demonstrates that
the proposed method can also perform well in the cross-validation condition.

Longest path slice. The continuous head rotations in the horizontal directions contain rich in-
formation. We define the longest path slice as the longest continuous head rotations in the two
horizontal directions, which should satisfy the condition that the longitude is monotonically in-
creasing or decreasing. We calculate the A(longitude) of the longest path slice. The horizontal
direction of the longest path slice is regarded as the positive direction, and the opposite direction
is regarded as the negative direction. Table 4 shows the mean of A(longitude) of the continuous
head rotation on the two directions. The value is normalized by 2. It can be observed that the
proposed method can well maintain the continuous head rotations in the horizontal directions.
From the results, we can see that the rotation in the positive direction is generally greater than
0.5. The continuous rotations in the positive and negative directions cover a large portion of the
longitude, and therefore much visual information is obtained during the exploration of continuous
head rotations.

Multi-step predictions. To investigate the performance under increasing numbers of prediction
steps, the HM predictor is manipulated to make N-step predictions. To compare the predictions,
we divide the ground-truth HM paths into slices with the same length of N. Then we calculate
the minimum SA-OAD value from the slices extracted from the observers’ paths to the N-step
predicted path. Figure 8 shows the minimum SA-OAD values on HM predictions with increasing
numbers of prediction steps. It can be observed that the proposed predictor (SHMP,) has the
best performance on HM path prediction. When the number of prediction steps increases, the
value of SA-OAD increases. There is a sharp decrease in the performance of the proposed HM
predictor without DRL (SHMP,) when the number of prediction steps increases. The results
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Table 4. The Longest Path Slice Is Extracted for Each HM Path

Index AL, A(L)2 AL A(L)®
Gully 0.499 0.438 0.599 0.564
Crossroads1 0.604 0.464 0.711 0.517
Highway1 0.593 0.529 0.582 0.455
Hall 0.510 0.464 0.466 0.372
Yard 0.556 0.496 0.618 0.512
Highway?2 0.589 0.444 0.649 0.466
Train 0.486 0.432 0.496 0.427
Bar 0.566 0.359 0.671 0.498
Hotel 0.622 0.491 0.624 0.453
Room 0.593 0.503 0.497 0.436
Crossroads?2 0.520 0.473 0.633 0.573
Square 0.646 0.459 0.690 0.515

The A(longitude) of the longest path slice is calculated and averaged on each
panorama. Here, p refers to positive, n refers to negative, G refers to ground truth,
andP refers to predicted. SHMP,, k=6 is employed to make the predictions.

0.24 T T T T T T T T
—#— SHMPe, k=6
0.21 ~—+——SHMPe, k=1| |
GBHMP
—6&— SHMPb, k=1
0.18 ~—#—RLS g

0 . . . . .
2 4 6 8 10 12 14 16 18 20

Prediction Length

Fig. 8. The HM predictor is manipulated to make multi-step predictions on the testing Salient360 dataset.
The ground-truth HM paths are divided into slices with the same length. The minimum SA-OAD value is
calculated from the slices extracted from the observers’ paths to the predicted path. The minimum SA-OAD
value is reported.

demonstrate that the propagation of discrepancy makes the predicted HM paths deviate from the
visual behavior pattern of viewers as the length of the sequence increases. The employment of
psychovisual mechanism-based reward can guide the agent’s action during the exploration to
enhance the robustness, and more observed information can make the prediction more accurate.
Inter-paths comparisons. Given more observations of the HM path, the predicted HM path should
be more consistent with the observed path from the demonstrator. Therefore, we also provide the
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Fig. 9. Similarity matrices are plotted to make the inter-paths comparison. The horizontal axis represents
predicted HM paths, and the vertical axis represents ground-truth HM paths. Predicted paths are arranged
in the same order with the corresponding observed paths. The first row shows the results of SHMP,, k=1,
and the second row shows the results of SHMP,, k=8.

inter-paths comparisons. To measure the consistency between the predicted HM paths and the
ground-truth HM paths, we provide the similarity matrix of SA-OAD values from HM paths from
demonstrators to predicted HM paths. Predicted paths are arranged in the same order with the
corresponding observed paths (i.e., there are 25 pairs). The horizontal axis represents predicted
HM paths, and the vertical axis represents ground-truth HM paths. Min-max normalization is
used to compare the results in the unit range. As shown in Figure 9, the proposed model predicts
the HM paths on three panoramas: Train, Yard, and Square. The model is manipulated to conduct
the predictions under different amounts of available observations. It can be observed from the
diagonal of the similarity matrix that when more observations are available, the predicted HM
path is more consistent with the observed path from the demonstrator.

5 CONCLUSION AND FUTURE WORK

In this article, we focus on the prediction of HMs, which are important behaviors of viewers, and
propose the effective SHMP for panoramas that can be used to increase the bandwidth efficiency
in the video streaming, increase the visual quality, and reduce the motion-to-photon delay. We em-
ploy the framework of DRL to predict HM in immersive images. Our model extracts the features of
the viewport images. The spherical coordinates of each pixel are provided as extra position infor-
mation to enable the model to observe the position prior. To enable the model to learn the impact
of past HMs, the visited map recording the historical HM positions is also included in the input.
In the training pipeline of the designed network, on one hand the training is designed such that it
includes the employment of available annotation data to reflect the closeness of the truly annota-
tion data to the predictions of our model. On the other hand, the psychovisual mechanism-based
reward is independent of the annotation and is used to maximize the exploration and enable the
model to generalize to more conditions. The experimental results on the publicly available dataset
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demonstrate the effectiveness of our method. In the future, we are ready to work on improving the
framework of our model and adapting our model for HM predictions on omnidirectional videos.
One intuitive idea is to incorporate the temporal information.
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