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Abstract— This paper explores the problem of hyperspectral
image (HSI) super-resolution that merges a low resolution HSI
(LR-HSI) and a high resolution multispectral image (HR-MSI).
The cross-modality distribution of the spatial and spectral
information makes the problem challenging. Inspired by the
classic wavelet decomposition-based image fusion, we propose a
novel lightweight deep neural network-based framework, namely
progressive zero-centric residual network (PZRes-Net), to address
this problem efficiently and effectively. Specifically, PZRes-Net
learns a high resolution and zero-centric residual image, which
contains high-frequency spatial details of the scene across all
spectral bands, from both inputs in a progressive fashion along
the spectral dimension. And the resulting residual image is
then superimposed onto the up-sampled LR-HSI in a mean-
value invariant manner, leading to a coarse HR-HSI, which is
further refined by exploring the coherence across all spectral
bands simultaneously. To learn the residual image efficiently
and effectively, we employ spectral-spatial separable convolution
with dense connections. In addition, we propose zero-mean
normalization implemented on the feature maps of each layer
to realize the zero-mean characteristic of the residual image.
Extensive experiments over both real and synthetic benchmark
datasets demonstrate that our PZRes-Net outperforms state-
of-the-art methods to a significant extent in terms of both
4 quantitative metrics and visual quality, e.g., our PZRes-Net
improves the PSNR more than 3dB, while saving 2.3× parameters
and consuming 15× less FLOPs. The code is publicly available
at https://github.com/zbzhzhy/PZRes-Net

Index Terms— Hyperspectral imagery, super-resolution, image
fusion, deep learning, zero-mean normalization, cross-modality.

I. INTRODUCTION

HYPERSPECTRAL imaging is aimed at collecting infor-
mation from across the electromagnetic spectrum for

each pixel of the image of a scene [1], [2]. The rich spectral
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Fig. 1. The illustration of HSI super-resolution from an LR-HSI and an
HR-MSI that capture the same scene.

information of the recorded hyperspectral image (HSI) enables
it to deliver more faithful knowledge of a targeted scene than
conventional imaging modalities [3]. As a result, the HSI
has grown increasingly popular over the past ten years in
various fields, such as military, industrial, and scientific arenas.
The HSI has also boosted the performance of applications
in computer vision, e.g., binary partition tree-based HSI
segmentation [4], graph convolutional neural network-based
HSI classification [5], an augmented linear minxing model
for hyperspectral unmixing [6], hierarchical analysis-based
object tracking in HSIs [7], semi-supervised HSI segmen-
tation via the Bayesian approach and multinomial logistic
regression [8], [9], etc.

However, due to the hardware limitation of existing imaging
systems, there is an inevitable trade-off between the spectral
and spatial resolution [10]. For a specific optical system,
it could only record the image with either high spatial resolu-
tion together with very limited spectral bands, e.g., the high
resolution multispectral image (HR-MSI), or dense spectral
bands with reduced spatial resolution, e.g., the low resolution
HSI (LR-HSI). Hence, as illustrated in Fig.1, HSI super-
resolution (a.k.a MSI/HSI fusion) that merges an HR-MSI and
an LR-HSI has being become a promising way to obtain HR-
HSIs [10]–[12].

To tackle this challenge, various methods have been
proposed in the last few decades. From the perspective of
signal processing, multi-scale decomposition-based methods
that only consume very limited computation resources have
demonstrated their abilities in information fusion [13],
e.g., pyramid-based [14] and wavelet decomposition-based
[15], [16]. Based on the prior knowledge of HSIs, e.g.,
the sparse prior and the low-rank prior, plenty of matrix
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Fig. 2. (a) The overall flowchart of the proposed PZRes-Net for HSI super-resolution that merges an LR-HSI and an HR-MSI. (b) The network architecture
of a stage contained in the zero-centric residual learning module. (c) The network architecture of the refinement module.

factorization based-methods have emerged [17]–[19].
Recently, owing to the remarkable representation learning
ability, deep neural network (DNN)-based methods have been
introduced [10]–[12], [20], [21], whose performance exceeds
that of traditional/non-DNN methods to a large extent (see
Section II for more details). However, the reconstruction
quality of the current state-of-the-art methods is still not
satisfactory, due to the insufficient utilization/modeling of the
cross-modality information.

Inspired by the classic wavelet decomposition-based meth-
ods [15], [22], we propose a novel DNN-based framework,
namely Progressive Zero-centric Residual Network (PZRes-
Net), to achieve HSI super-resolution in both efficient and
effective ways. As shown in Fig. 2, the input LR-HSI is first
up-sampled in a mean-value invariant manner. Following that,
a zero-centric residual image is progressively learned along the
spectral dimension from both the up-sampled LR-HSI and HR-
MSI with a zero-centric residual learning module, in which
spectral-spatial separable convolutions with dense aggregation
extract spectral-spatial information efficiently and effectively.
Moreover, zero-mean normalization is applied for promoting
the zero-centric characteristic of the learned residual image.
The resulting residual image is further superimposed on the
up-sampled LR-HSI, leading to a coarse HR-HSI, which is
finally refined through exploring the coherency among all
spectral bands simultaneously. We conduct various and exten-
sive experiments and comparisons to evaluate and analyze
the proposed PZRes-Net comprehensively. It is concluded
that our PZRes-Net remarkably outperforms state-of-the-art
methods both quantitatively and qualitatively across multi-
ple real and synthetic benchmark datasets. Especially, our

PZRes-Net improves the PSNR more than 3dB, while saving
2.3× parameters and consuming 15× less FLOPs.

The rest of this paper is organized as follows. Section II
briefly reviews existing methods. Section III presents the
proposed method, namely PZRes-Net, followed by extensive
experimental results as well as comprehensive analyses on
both synthetic and real data in Section IV. Finally Section V
concludes this paper.

II. RELATED WORK

We classify existing methods into two categories, i.e.,
(1) traditional methods, including multi-scale decomposition-
based [14], [16], [23]–[26] and optimization-based [27]; and
(2) deep learning-based methods [10]–[12]. In the following,
we will review them in detail.

A. Traditional Methods

Multi-scale decomposition-methods focus on representing
the image spatial structures with multiple layers. Various
wavelet decomposition (WD)-based methods have been pro-
posed in the past few decades [14]–[16], [28]–[30]. For
example, Nunez et al. [15] proposed two types of WD-
based methods for MSI pansharpening: the additive method
and the substitution method. Specifically, the former con-
sists of the following steps: (1) register an LR-MSI with
an HR-panchromatic image and upsmaple it to the same
resolution in order to be superimposed; (2) decompose the
HR-panchromatic image to several wavelet planes containing
high-frequency spatial information which follows zero-mean
distribution; and (3) add the wavelet planes to the up-sampled
LR-MSI. However, the latter decomposes both inputs, then
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replace wavelet planes of the up-sampled LR-MSI with those
of the HR-panchromatic images. They also experimentally
demonstrated that the additive method preserves spatial infor-
mation better than the substitution method. Gonzalo and Lillo-
Saavedra [22] also proposed an adaptive WD-based method,
which fuses the wavelet planes with different weights.

Based on the prior knowledge of HSIs [11], a considerable
number of traditional machine learning-based methods have
been proposed. For example, matrix factorization-based meth-
ods assume that each spectrum can be linearly represented with
several spectral atoms [31]. Under the assumption that an HSI
lies in a low-dimensional subspace, Wei et al. [32] used the
spatial dictionaries learned from the HR-MSI to promote the
spatial similarities. Fang et al. [33] proposed a super-pixel-
based sparse representation. Han et al. [34] utilized a self-
similarity prior as the constraint for the sparse representation
of the input HSI and MSI. Akhtar et al. [27] first learned
a non-negative dictionary, then introduced a simultaneous
greedy pursuit algorithm to estimate coefficients for each local
patch. Dong et al. [18] proposed a matrix factorization-based
method which imposes joint sparsity and non-negativity con-
straints on the learned representation coefficients. Through ten-
sorization techniques, an image in the form of the conventional
2D matrix can be converted to a 4D or even higher-order tensor
without loss of information. Thus, some tensor factorization-
based methods have also been proposed to address the fusion
problem. For example, Kanatsoulis et al. [35] established a
coupled tensor factorization framework. Xu et al. [36] utilized
the high-order coupled tensor ring representation with graph-
Laplacian regularization to realize HSI super-resolution.

However, these traditional methods were usually constructed
based on some priors, e.g., sparse prior, low-rank prior, and
global similarity prior, which may not be consistent with the
complex real world scenarios [11].

B. DNN-Based Methods

Powered by the strong representations learning ability,
DNNs have become an emerging tool for HSI super-
resolution [31]. Palsson et al. [37] proposed a 3D convolu-
tional neural network (CNN)-based MSI/HSI fusion approach
and reduced the computational cost by using principal com-
ponent analysis (PCA). Dian et al. [10] used deep priors
learned by residual learning-based DNNs and reconstructed
HR-HSI by solving optimization problems. Mei et al. [38]
proposed a 3D CNN to exploit both the spatial context and the
spectral correlation. Arun et al. [39] explored DNNs to jointly
optimize the unmixing and mapping operations in a supervised
manner. Xie et al. [11], [40] proved that an HR-HSI could be
represented by the linearly transformed HR-MSI and a to-be-
estimated residual image, then unfolded an iterative algorithm,
which solves aforementioned two components within a deep
learning framework for HSI/MSI fusion. Zheng et al. [41]
proposed an unsupervised coupled CNN with an adaptive
response function for HSI super-resolution. Arun et al. [42]
proposed a 3D CNN-based HSI super-resolution, where novel
hypercube-specific loss functions are used to augment the
learning capability of the network. Wang et al. [43], [44]
tried to solve the HSI reconstruction using compressive sens-

ing based methods. Xiong et al. [45] proposed CNN-based
methods to achieve the recovery of HSIs from RGB images.
Qu et al. [46] solved the HSI super-resolution problem using
an unsupervised encoder-decoder architecture.

Most of the above-mentioned methods are not blind, mean-
ing that they are trained with the knowledge of HR-HSIs or
degradation models. Although Wang et al. [12] proposed a
blind fusion model similar to [11], their performance leaves
much to be desired. Moreover, due to the iterative HSI
refinement, their computation burdens are very high, which
may restrict practical implementations.

III. THE PROPOSED METHOD

Let X ∈ R
H W×S be an S-spectral bands HR-HSI to be

reconstructed, each column of which is the vectorial represen-
tation of a spectral band of spatial dimensions H × W . The
degradation models for the observed HR-MSI with s (s � S)
spectral bands denoted by Y ∈ R

H W×s and LR-HSI of spatial
dimensions h × w denoted by Z ∈ R

hw×S (h � H , w � W )
from X can be formulated as:

Y = XR + Ny, (1)

Z = DBX + Nz, (2)

where R ∈ R
S×s is the camera spectral response function that

integrates over the spectral dimension of the HSI to produce
the MSI; B ∈ R

H W×H W represents the blurring matrix applied
on the HR-HSI before performing spatial decimation via the
matrix D ∈ R

hw×H W ; Ny ∈ R
H W×s and Nz ∈ R

hw×S are the
noises in Y and Z, respectively. From Eqs. (1) and (2), it can be
known that Y contains high-resolution spatial context, while Z
keeps dense spectral details. Thus, the challenge of HSI super-
resolution, i.e., reconstructing X from Z under the assistance
of Y, boils down to “how to leverage the spatial advantage of
Y and propagate it across the densely sampled spectral bands
of Z effectively.”

A. Motivation and Overview

Multi-scale decomposition-based methods have demon-
strated their effectiveness in image fusion [13], [47], [48].
Particularly, the classic wavelet decomposition-based scheme
for enhancing an LR-image with an HR-image from another
modality contains the following procedures: the LR-image
is first up-sampled to the same resolution as the HR-image
in order to be superimposed; and wavelet planes containing
zero-centric/mean high-frequency details are then obtained
by decomposing the HR-image with a shift-invariant wavelet
transform, which are further superimposed onto the up-
sampled LR-image. Such a scheme is able to utilize the spatial
detail information from both images. Moreover, as the wavelet
planes are designed to have zero mean-values, the total flux
of the enhanced LR-image will be preserved. Inspired by
the principles of traditional multi-scale decomposition-based
methods, we will study the HSI super-resolution by exploring
the powerful representation capabilities of DNNs to learn
such zero-centric high-frequency details adaptively. In addi-
tion to inheriting the advantage of the traditional methods,
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Fig. 3. Statistics of the difference between the mean-values of 800 and
40K pairs of HR and LR RGB images respectively from DIV2K [49], and
COCO datasets [50]. All images are normalized to [0,1]. For each dataset,
the LR-images were obtained by downsampling the corresponding HR ones
with factor 8.

it is expected that the data-adaptive characteristic of such a
learning manner can boost the performance, compared with
the pre-defined and data-independent decomposition process
in traditional frameworks.

As shown in Fig. 2, the proposed framework, namely
progressive zero-centric residual network (PZRes-Net),
is mainly composed of three modules: a mean-value invariant
up-sampling module, a progressive zero-centric residual
learning module, and a refinement module. Specifically,
the up-sampling module first lifts the input LR-HSI to
the same resolution as the input HR-MSI in a mean-value
invariant manner. Then, the residual learning module estimates
a residual image from both the input HR-MSI and up-sampled
LR-HSI progressively along the spectral dimension in which
zero-mean normalization is applied on the input of each
convolutional layer to enforce the mean-value of each band
of the predicted residual image to be zero. The resulting
zero-centric residual image is further superimposed onto
the up-sampled LR-HSI, leading to a coarse HR-HSI,
which is finally fed into the refinement module, where the
coherence across all spectral bands of the coarse HR-HSI is
simultaneously explored in a residual learning manner for
further augmenting reconstruction quality. In what follows,
we will introduce each module in detail.

Remark: It is worth pointing out the residual learning
manner of our framework is essentially different from the
well-known residual learning [51] that is widely exploited in
various networks and image/video applications [52], [53]. The
traditional residual learning was introduced with the purposes
of facilitating neural network optimization or enhancing fea-
ture extraction, while such a manner of our PZRes-Net mimics
the classic multi-scale decomposition-based fusion methods to
realize information fusion. Moreover, our PZRes-Net learns a
zero-centric residual, while there are no such constraints for
traditional residual learning.

B. Mean-Value Invariant Up-Sampling

This module aims to lift the input LR-HSI into the same
spatial resolution as the HR-MSI for subsequent residual
superimposition. The Law of Large Numbers dictates that the
observation average for a random variable should be close
to its expectation value when it’s based on a large number of
trials. Generally, image pixels from LR and HR captures are
repetitive samples of the same real scene, and are expected to
have an approximately identical mean-value which is aligned

with the expectation value. Such an observation was also
experimentally validated in Fig. 3, where the histograms refer
to the statistics of the difference between the mean values
of 800 and 40K pairs of LR and HR RGB images respec-
tively from DIV2K [49] and COCO [50], two commonly-used
benchmark image datasets.

Recall that in our framework, a zero-mean residual image
predicted by our zero-centric residual learning module will be
superimposed on the up-sampled LR-HSI to form the HR-HSI.
Therefore, to avoid distortion, the up-sampling process should
be mean-value invariant, i.e., each band of the up-sampled
LR-HSI will have an approximately identical mean-value to
the corresponding band of the input LR-HSI. In order to
achieve the objective, the widely-used transposed layer in
image super-resolution could be employed but with additional
restrictions on the learnable kernel installed in the layer,
i.e., the sum of the elements of the kernel, which simultane-
ously convolve with the pixels of the input LR-image, should
be equal to 1 while the kernel slides over the interpolated
LR-image. For simplicity, in this paper we adopt the bi-linear
interpolation to realize the mean-value invariant up-sampling,
which has experimentally demonstrated to work very well.

C. Progressive Zero-Centric Residual Learning

In this module, a zero-centric residual image contain-
ing high-frequency spatial details of the captured scene is
regressed by deeply extracting spatial context information
from both the input HR-MSI and up-sampled LR-HSI. Inspired
by the success of the progressive reconstruction strategy in
image super-resolution [54]–[56], we embed the spectral bands
of the up-sampled LR-HSI in a progressive fashion, rather than
feed all of them into the network at the beginning. That is,
as shown in Fig. 2, the spectral bands of the up-sampled LR-
HSI that are embedded into the network at different stages are
regularly decimated with strides that decrease exponentially
with the number of stages increasing. Taking an HSI with
31 spectral bands as an example, the numbers of decimated
spectral bands from the first to the third stage are 8, 16, and
31, respectively.

Specifically, at each stage, 1D convolution is first applied
on the HR-MSI over the spectral domain to lift the number
of feature channels to the same level as the input spec-
tral bands decimated from the up-sampled LR-HSI, during
which high-order details will be scattered to all channels.
Then, the resulting feature maps from the HR-MSI and the
decimated spectral bands from the up-sampled LR-HSI are
concatenated along the spectral dimension, which are further
fed into a sequence of spectral-spatial separable convolutional
layers aggregated with densely connections [52], [57] for
efficient and comprehensive spectral-spatial feature extraction.
During the feature extraction, the spatial details are mainly
provided by the HR-MSI and propagated to all spectral bands
with reference to the spectral information by the LR-HSI.
Moreover, to obtain a zero-centric residual image, zero-mean
normalization is applied on the input feature maps of each
convolutional layer over the spatial dimension independently.
In addition, an identity mapping which directly connects the
output of the first spectral convolutional layer to the output of
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the stage in an additive manner to further enhance the flow of
the high-frequency spatial details. Note that for stage-i (i > 1),
the output of stage-(i − 1) is also concatenated as its input.

Table I outlines the architecture details of the first stage.
In the following, we will give more detailed elaborations
towards the spectral-spatial separable convolution and zero-
mean normalization.

1) Spectral-Spatial Separable Convolution With Dense Con-
nections: As mentioned earlier, the input to the residual
learning module is a 3D tensor, i.e., the concatenation of the
3D HR-MSI and up-sampled LR-HSI. In order to comprehen-
sively explore the information from both spectral and spatial
domains, 3D convolution is an intuitive choice to construct the
residual learning module, which has demonstrated its effec-
tiveness [38], [58]. However, compared with conventional 2D
convolution, 3D convolution results in a significant increase
in the parameter size, which may potentially cause over-fitting
and consumption of huge computation resources. Analogy to
the approximation of a high-dimensional filter with multi-
ple low-dimensional filters in the field of signal processing,
we use spectral-spatial separable (3S) convolutions to process
the 3D tensor for efficient spectral-spatial feature extraction.
Note that separable convolutions have also demonstrated its
effectiveness and efficiency in other deep learning-based image
processing [59]–[61].

Specifically, the 3S convolution conducts 1D spectral con-
volution (i.e., 1D convolution over the spectral domain) and
2D spatial convolution (i.e., independent 2D convolution over
the spatial domain of each feature map) sequentially. Also,
there is an activation layer inserted between the two kinds
of convolutions. The spectral convolution is equipped with a
kernel of size 1 × C with C being the number of feature
channels, while the spatial convolution with a group of 2D
kernels of size 3×3. Moreover, to enhance the feature extrac-
tion ability of the network for residual learning, we densely
connect the 3S convolutional layers within a stage [57]. That
is, the feature maps obtained from all the preceding layers
are concatenated along the spectral dimension and passed
to the current layer. Additionally, such dense connections
could potentially improve the information flow and reduce
overfitting [57].

2) Zero-Mean Normalization: Our objective is to learn
a zero-centric residual image. However, non-linear activa-
tion layers (e.g., ReLU and Swish) involved in the residual
learning module make the output feature maps to be non-
negative, resulting in that their mean-values deviate from zero
and likewise the estimated residual image. Besides, without
additional constraints on the learned convolutional kernels,
the convolution operation may also affect the mean-values of
the output of each layer.1

To achieve the objective, we propose a novel feature normal-
ization process, namely Zero-Mean normalization (ZM-norm),
which is performed on the spatial domain of each feature
channel involved in the residual learning module. Specifically,
in the forward propagation, the ZM-norm denoted by Z(·)

1Generally, the mean-value of a feature map will be preserved after a
convolution operation only if the sum of the elements of the involved kernel
is equal to 1.

behaves as

Z(mb,k,c) = mb,k,c − E(M)b,c,

E(M)b,c = 1

H W

H W∑
k=1

mb,k,c, (3)

where mb,k,c is the (b, k, c)-th entry of M ∈ R
B×H W×C ,

the input feature maps to a typical convolutional layer (1 ≤
b ≤ B , 1 ≤ k ≤ H W , 1 ≤ c ≤ C). Here b, k, and c indicate
the mini-batch number, the spatial location, and the channel
number, respectively. The gradient of the training loss L can
be back propagated through ZM-norm according to Eq. (4).

∂L
∂mb,k,c

=
H W∑
j=1

∂L
∂Z(mb, j,c)

∂Z(mb, j,c)

∂mb,k,c

= ∂L
∂Z(mb,k,c)

−
H W∑
j=1

∂L
∂Z(mb, j,c)

∂E(M)b,c

∂mb, j,c

= ∂L
∂Z(mb,k,c)

− 1

H W

H W∑
j=1

∂L
∂Z(mb, j,c)

. (4)

The proposed ZM-norm can be easily and efficiently imple-
mented and integrated with existing deep learning archi-
tectures. Moreover, ZM-norm also introduces an additional
advantage, i.e., it accelerates the training process. The under-
lying reason is that during backpropagation, gradients are
related to their corresponding feature values, and a zero-centric
feature distribution could limit the gradient magnitude [62],
[63], therefore leading to more stable updates which speeds
up convergence.

Remark: We would like to point out that our ZM-norm is
different from existing feature normalization methods, such
as Layer Normalization [64], Group Nomarlization [65], and
Instance Normalization [66]. Those normalization methods
were mainly proposed to speed up the training process and
improve the model generalization ability. Generally, they
enforce the intermediate feature maps into a certain learn-
able distribution, through calculating the standard deviation
and rescaling the feature magnitudes accordingly, which may
cause loss of scale information [67]. Our ZM-norm, however,
is focused on eliminating the mean value of feature maps for
regressing a zero-centric residual image that captures the high-
frequency spatial details.

D. Refinement Module

In the residual learning module, the residual image of each
spectral band is independently synthesized, which is then
superimposed on the corresponding band of the up-sampled
LR-HSI, leading to a coarse HR-HSI denoted by X̂ ∈ R

H W×S .
However, the coherence among the bands of X̂ cannot be
well preserved. Therefore, as shown in Fig. 2(c), we further
introduce a refinement module, in which all the spectral bands
of X̂ are simultaneously explored to enhance the reconstruction
quality.

The overall process of the refinement module Fr (·) can be
formulated as

X̃ = Fr (X̂, θr ) + X̂, (5)
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TABLE I

THE ARCHITECTURE DETAILS OF THE FIRST STAGE OF THE RESIDUAL LEARNING MODULE AND THE REFINEMENT MODULE.
“3S CONVOLUTION j ” INDICATES THE j -TH SPECTRAL-SPATIAL CONVOLUTIONAL LAYER IN THE STAGE

where θr is the weights to be learned, and X̃ ∈ R
H W×S is

the finally reconstructed HR-HSI. More specifically, three 3S
convolutional layers are employed to achieve feature extrac-
tion. Note that ZM-norm is no longer used in this module.
The detailed implementation of this module is summarized
in Table I.

E. Loss Function for Training

Our PZRes-Net is end-to-end trained with the following loss
function:

L(X, X̃) = 1

H W S

(∥∥Z(X) − Z(X̂)
∥∥

1 + λ
∥∥X − X̃

∥∥
1

)
, (6)

where λ > 0 is the parameter to balance the two terms, which
is empirically set to 1, and � · �1 is the �1-norm of a matrix,
which returns the sum of the absolute of elements. The first
term enforces PZRes-Net to learn the zero-centric residual
image, while the second term encourages the reconstructed
HR-HSI to be close to the ground-truth one in sense of the
mean absolute error.

IV. EXPERIMENTS

A. Experiment Settings

1) Implementation Details: We adopted ADAM [68] opti-
mizer with the exponential decay rates β1 = 0.9 and
β2 = 0.999 for the first and second moment estimates,
respectively. The learning rate of our PZRes-Net was initial-
ized as 1e − 3 and the cosine annealing decay strategy was
employed to decrease it gradually, ended with 1e − 5. During
training, we kept the same number of iterations to be 32000.
We implemented the model with PyTorch, and the batch size
was set to 10 for CAVE and 30 for HARVARD. All the
experiments were conducted on Linux 18.04 with Intel Xeon
E5-2360 CPU and NVIDIA 2080TI GPUs. The code will
be publicly available. Table I summarizes the implementation
details of our network architecture.

2) Compared Methods: We compared our PZRes-Net with
8 state-of-the-art HSI super-resolution approaches, includ-
ing 4 traditional methods, i.e., hyperspectral super-resolution
(HySure) [69], nonnegative structured sparse representation
(NSSR) [18], the clustering manifold structure-based method
(CMS) [70], and the low tensor-train rank-based method
(LTTR) [31], and 4 DNN-based methods, i.e., cross-attention
in coupled unmixing nets (CUCaNets) [71], deep HSI sharp-
ening (DHSIS) [10], multispectral and hyperspectral image
fusion network (MHF) [11], and deep blind HSI fusion net-
work (DBIN+) [12]. For fair comparisons, the same data
pre-processing was implemented in all methods, the DNN-
based methods under comparison were trained with the codes
provided by the authors with suggested parameters over the
same training data as ours, and the same protocol in [12], [31]
was used to evaluate the experimental results of all methods.

3) Quantitative Metrics: For a comprehensive evaluation,
we adopted four commonly-used quantitative metrics:

• Peak Signal-to-Noise Ratio (PSNR):

PSNR(X, X̃) = −10

S

S∑
k=1

log(MSE(Xk, X̃k)), (7)

where X̃k ∈ R
H×W and Xk ∈ R

H×W are the k-th
(1 ≤ k ≤ S) spectral bands of X̃ and X, respectively,
and MSE(·) returns the mean squares error between the
inputs.

• Average Structural Similarity Index (ASSIM):

ASSIM(X, X̃) = 1

S

S∑
k=1

SSIM(Xk, X̃k), (8)

where SSIM(·, ·) [72] computes the SSIM value of a
typical spectral band.

• Spectral Angle Mapper (SAM):

SAM(X, X̃) = 1

H W

H W∑
j=1

arccos

(
x̃T

j x j

�̃x j�2�x j�2

)
, (9)
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Fig. 4. Illustration of the testing images from CAVE (the 12 images in the 1st row) and HARVARD (the 20 images in the 2nd and 3rd rows) in the evaluation
on synthetic data.

where x̃ j ∈ R
S and x j ∈ R

S are the spectral signatures of
the j -th (1 ≤ j ≤ H W ) pixels of X̃ and X, respectively,
and � · �2 is �2 norm of a vector.

• Erreur Relative Global Adimensionnelle Synthese
(ERGAS):

ERGAS(X, X̃) = 100

r

√√√√ 1

S

S∑
k=1

MSE(Xi , X̃i )

μ2
X̃i

, (10)

where μ̃k is the mean-value of the k-th spectral band of
X̃, and r is the scale factor.

In addition to the above-mentioned quantitative metrics for
evaluating the output image quality, we also added up the num-
ber of neural network parameters (# Param) and the number
of floating number operations per-inference (FLOPs) of the
four DNN-based methods to compare their efficiency. Note
that the unsupervised CUCaNet was trained on each testing
sample independently. For a fair comparison, we multiplied
the FLOPs of a single inference with the number of training
epochs N , which was set to 10000 in our experiments.

B. Evaluation on Synthetic Data

In this scenario, two commonly used benchmark HSI
datasets, i.e., CAVE 2 [73] and HARVARD3 [74], were used
to generate synthetic hybrid inputs. Specifically, the CAVE
dataset contains 32 indoor HSIs of spatial dimensions
512 × 512 and spectral bands 31 captured by a generalized
assorted pixel camera with an interval wavelength of 10nm in
the range of 400-700nm. Following [11], [40], we randomly
selected 20 images for training and the remaining 12 images
for testing. The HARVARD dataset contains 50 indoor and
outdoor HSIs recorded under the daylight illumination, and
27 images under the artificial or mixed illumination. Each
HSI consists of 31 spectral bands of spatial dimensions
1024 × 1392, whose wavelengths range from 420 to 720 nm.
Following [10], [12], only the 50 daylight illumination images
were used in our experiments. Moreover, the first 30 HSIs are
used for training, and the last 20 ones for testing. Fig. 4 shows
all the testing images used in the evaluation on synthetic data
(the remaining ones are training data). Following [11], [12],
[31], all the LR-HSIs (with down-sampling scale r ) used in
this scenario were acquired through following two steps: (1) an

2http://www.cs.columbia.edu/CAVE/databases/
3http://vision.seas.harvard.edu/hyperspec/

r ×r Gaussian kernel is used to blur HSIs; and (2) the blurred
HSIs were regularly decimated every r pixels in the spatial
domain. We simulated the HR-MSI (RGB image) of the same
scene by integrating the spectral bands of an HSI with the
widely used response function of the Nikon D700 camera.4

All the DNN-based methods were trained separately on the
CAVE and HARVARD datasets.

1) Results on the CAVE Dataset: As listed in the left side
of Table II, we can see that the proposed method with only
0.7M parameters consistently surpasses all the methods under
comparison significantly in terms of all the four metrics under
both up-sampling scales. Although the parameter sharing strat-
egy in DBIN+ could help to save parameters to some extent,
its iterative refinement manner costs much more computation
resources as demonstrated by the high FLOPs value. To be
specific, DBIN+ consumes the FLOPs of 4095G, which is
15× of that of the proposed method, and thus its utilization in
practice may be severely restricted. The traditional methods,
e.g. NSSR, LTTR, show good reconstruction performance in
the 8× reconstruction. However, as the up-sampling scale
rises to 32, the matrix/tensor factorization-based method LTTR
show a sharp deterioration, which is caused probably by the
model’s limited representation ability or by the failure of prior
knowledge. Through exploring the clustering structure in HSIs,
CMS outperforms the other traditional methods and even beats
all the compared DNN-based methods in the 32× experiment.
When the performance of all the compared methods drops for
a larger up-sampling scale, the proposed PZRes-Net model still
maintains the highest performance in terms of the 4 metrics.

2) Results on the HARVARD Dataset: The experimental
results on the HARVARD dataset of different methods are
listed in right side of Table II. Note that the HARVARD
dataset is more challenging than the CAVE dataset due to the
higher resolution and more complex scenario. The significant
superiority of our method over state-of-the-art methods is fur-
ther validated. Specifically, CMS, MHF, and DBIN+ produce
comparable performance, which exceeds other methods not
significantly. However, our PZRes-Net with PSNR of 47.52 dB
(resp. 45.47 dB) and SAM of 2.83 (4.19) greatly pushes
forward the limits at the scale of 8× (resp. 32×). Moreover,
compared with the CAVE dataset, the SAM values of all
methods on the HARVARD dataset are smaller, which may
be caused by the dark background in the CAVE dataset. With

4http://www.maxmax.com/spectral_response.htm
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Fig. 5. Comparisons of the error maps between the spectral bands of reconstructed HR-HSIs by different methods and the corresponding ground-truth ones.
(a)-(c): spectral bands of images from the CAVE dataset at wavelength 600 nm; (d) the spectral band of the image from the HARVARD dataset at wavelength
420 nm; (e)-(f): spectral bands of images from the HARVARD dataset at wavelength 520 nm.

the same absolute error, the pixels with low intensities are easy
to output high SAM values.

3) Visual Comparisons: The error maps between the spec-
tral bands of reconstructed HR-HSI by different methods
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Fig. 6. Quantitative comparisons of the proposed PZRes-Net with state-of-the-art methods in terms of the PSNR value of each spectral band of the
reconstructed HR-HSI. Note that these 6 results correspond to the 6 images illustrated in Fig. 5.

TABLE II

QUANTITATIVE COMPARISONS OF DIFFERENT METHODS IN TERMS OF 4 METRICS OVER THE 12 AND 20 TESTING SAMPLES FROM THE CAVE
AND HARVARD DATASETS, RESPECTIVELY. FOR PSNR AND ASSIM, THE LARGER, THE BETTER. FOR SAM AND ERGAS, THE SMALLER,

THE BETTER. NOTE THAT ERGAS CAN BE COMPARED ONLY UNDER THE SAME SCALE. FOR FLOP AND # PARAMETERS, THE SMALLER,
THE MORE EFFICIENT. N DENOTES THE NUMBER OF TRAINING EPOCHS FOR CUCANET. THE TOP FOUR ARE TRADITIONAL

METHODS, AND THE BOTTOM FOUR AS WELL AS OURS ARE DNN-BASED. THE BEST RESULTS ARE BOLD

and the ground-truth ones are shown in Fig. 5. Accordingly,
Fig. 6 provides the PSNR values of each spectral band of the
visualized images in Fig. 5 for reference. For the images from
the CAVE dataset, i.e., Figs. 5(a)-(c), the traditional methods,
e.g. NSSR, LTTR, and CMS, have comparable performance to
the two state-of-the-art DNN-based methods, i.e., DBIN+ and
MHF, but the shapes of objects can be easily inferred from
the error maps of all the compared methods due to the large
errors at the boundaries. However, our PZRes-Net consistently
produces the smallest errors over all the images at a low
computational cost, and there are only subtle errors, which
are nearly invisible. Similar observations can be obtained for
the images from the HARVARD database, i.e., Figs. 5.(d)-(f).
The results convincingly demonstrate the advantage of our
method.

C. Evaluation on Real Data

In this scenario, we evaluated our PZRes-Net over two real
datasets named WorldView-25 (WV-2) and National Center for

5https://www.harrisgeospatial.com/Data-Imagery/Satellite-Imagery/High-
Resolution/WorldView-2

Airborne Laser Mapping6 (NCALM). WV-2 has been widely
adopted in previous works [11], [12], [40], [75]–[77], which
contains an 8-band HSI of spatial dimensions 418×685 and a
3-band MSI of spatial dimensions 1677 × 2633, and the data
were captured on a commercial satellite. NCALM provided
by the 2018 IEEE GRSS Data Fusion Contest [78] contains
a 3-band MSI of spatial dimensions 24040 × 83440, which
was captured with the DiMAC ULTRALIGHT+ with the
focal length equal to 70mm, and a 48-band HSI of spatial
dimensions 1202 × 4172 covering the spectral range from
380 to 1050 nm, which was captured with the ITRES CASI
1500. The sensors were placed on a Piper PA-31- 350 Navajo
Chieftain aircraft. As the ground-truth data are not available,
following [11], we generated the training data in the following
way. Specifically, for the WV-2 dataset, we first downsampled
the 3-band RGB and 8-band MSI images leading to an Hr-
MSI of spatial dimensions 416×656 and an Lr-HSI of spatial
dimensions 104 × 164, and then trained all models equally
on the top half part of the resulting HR-MSI and LR-HSI.

6http://www.grss-ieee.org/community/technical-committees/data-
fusion/2018-ieee-grss-data-fusion-contest/
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Fig. 7. Experimental results on the real dataset, WV-2, and the visualized image corresponds to the bottom left part of WV-2. The scale factor is equal to
4. We zoomed in the selected regions within the colored boxes with the ’nearest’ interpolation 5 times for a better comparison.

During training, the corresponding part of the original HSI
was used as supervision. The bottom half part of the original
data excluded in the training process was used for testing. For
the NCALM dataset, as the huge spatial dimensions of the
original data cause a memory issue, we first extracted an HSI
patch of spatial dimensions 1200 × 600 and an MSI patch
of spatial dimensions 24000 × 12000 from the rightmost of
the original data, which were then spatially downsampled to
60 × 30 and 1200 × 600 to form the training data. We then
selected a patch from the remaining left part of the original
data for testing. Here we only show the results of the three
methods, i.e., DBIN+, MHF, and CMS, which always achieve
the top performance among all the compared methods in the
previous scenario, due to the space limitation.

The three sub-images in Fig. 7 visualize three spectral bands
of the reconstructed HR-HSI of different methods, where it

can be observed that in the 4th spectral band, our PZRes-
Net is able to reconstruct both high-frequency details (eaves
in the magenta box of the 2nd spectral band) and smooth
parts (the roof in the magenta and green boxes of the 4th

and 7th spectral bands, respectively) very well. However, both
DBIN+ and MHF fail to reconstruct high-frequency spatial
details, resulting in blurring boundaries, and unexpected visual
artifacts also appear in the smooth regions. The non-deep
learning-based method CMS produces indistinct results, which
may be caused by the misalignment due to the limited model
representation learning ability. Fig. 8 illustrates the results
of different methods on the NCALM dataset. Due to the
large scale factor, i.e., 20×, the performance of the three
compared methods decreases significantly; however, the pro-
posed method still works well and produces much better
results. All these visually pleasing results of our method
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Fig. 8. Experimental results on the real dataset, NCALM, and the visualized image corresponds to a patch from the right part of NCALM. The scale factor
is equal to 20. We zoomed in three selected regions within the colored boxes with the ’nearest’ interpolation 5 times for a better comparison.

are credited to its advantage on modeling the cross-modality
information.

D. Ablation Study

We carried out extensive ablation studies to comprehen-
sively analyze the three key components of our PZRes-Net
model over the CAVE dataset.

1) The Refinement Module: As aforementioned, we used
a refinement module to boost the reconstruction performance
by simultaneously exploring the coherence among all spectral
bands of the resulting coarse HR-HSI. We trained PZRes-Net
without (w/o) such a module. By comparing the 1st and the
3rd rows of Table III, the effectiveness of this module can be
validated.
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TABLE III

ABLATION STUDIES TOWARDS THE REFINEMENT MODULE AND THE
RESIDUAL-DENSE ARCHITECTURE. THE BEST RESULTS ARE BOLD

TABLE IV

COMPARISONS OF OUR PZRES-NET WITH DIFFERENT NUMBERS

OF STAGES IN THE RESIDUAL LEARNING MODULE.
THE BEST RESULTS ARE BOLD

TABLE V

COMPARISONS OF OUR PZRES-NET EQUIPPED WITH DIFFERENT

KINDS OF CONVOLUTIONAL LAYERS FOR FEATURE

EXTRACTION. THE BEST RESULTS ARE BOLD

2) The Residual-Dense Architecture: To facilitate feature
extraction, residual dense aggregation is embedded in our
network. Here we investigated the contribution of such an
architecture by training our PZRes-Net without the all the
identity mapping and dense connections of each stage. Addi-
tionally, we also widened the network such that the modified
network has approximately the same number of parameters
for a fair comparison, i.e., for the first stage we increased
the widths of the three stages from 16, 32, 62 to 24, 48,
and 93, respectively. As shown in Table III, compared with
full PZRes-Net, the PSNR and ASSIM values of PZRes-Net
w/o residual-dense aggregation decreases about 0.5 dB and
0.003, respectively, and the SAM and ERGAS values increases
0.32 and 0.04, respectively, validating the advantage of the
residual-dense architecture.

3) The Progressive Spectral Embedding Scheme: Inspired
by the progressive strategy in image super-resolution, in our
framework the spectral information of the input HSI is pro-
gressively fed into the network to reconstruct HR-HSI. In order
to validate the advantage of such a progressive manner,
we trained our PZRes-Net with different numbers of stages.
“One stage” means all the spectral bands of the up-sampled
LR-HSI are fed into the network at the beginning. Note that
we kept the modified models under different settings with
the same number of parameters though varying the width
of the networks for fair comparisons. As shown in Table IV,
the reconstruction quality gradually improves with the increas-
ing the number of stages, and the growth rate is getting smaller.
Thus, the advantage of the proposed progressive embedding
scheme is convincing validated. Based on this observation,
we use 3 stages in our framework.

TABLE VI

COMPARISONS OF THE PROPOSED METHOD EQUIPPED WITH KERNELS
OF DIFFERENT SIZES IN THE SPATIAL CONVOLUTION

OF THE 3S CONVOLUTIONAL LAYER

TABLE VII

ILLUSTRATIONS OF THE NECESSARILY OF THE MEAN-VALUE

INVARIANT UP-SAMPLING AND ZM-NORM IN OUR FRAMEWORK.
A RESTRICTION-FREE TRANSPOSED CONVOLUTIONAL LAYER IS

LEARNED W/O THE MEAN-VALUE INVARIANT PROPERTY FOR

UP-SAMPLING WHEN THE MARKER IS “×” UNDER THE 1st

COLUMN. ZM-NORM WAS NOT APPLIED WHEN THE
MARKER IS “×” UNDER THE 2nd COLUMN.

THE BEST RESULTS ARE BOLD

TABLE VIII

INVESTIGATIONS OF THE UP-SAMPLING PROCESS ON
RECONSTRUCTION QUALITY. THE BEST RESULTS ARE BOLD

4) The 3S Convolution: In our PZRes-Net, 3S convolu-
tion enables efficient HSI processing. To investigate its effi-
ciency and effectiveness, we trained our model by respec-
tively replacing the 3S convolutional layers with 2-D and 3D
convolutional layers while keeping approximately the same
amount of parameters or FLOPs. The experimental results are
listed in Table V. From Table V, it can be seen that when
using 2D convolution, the performance drops sharply from
50.94 dB to 48.77 dB because 2D convolution has a very
limited ability to capture spectral information. Although 3D
convolution is able to achieve good performance, it consumes
much more computation resources. Moreover, it is quite time-
consuming. Our PZRes-Net with 3S convolution is capable
of well balancing the efficiency and effectiveness. Moreover,
we investigated how the kernel size of the spatial convolution
involved in the proposed 3S convolutional layer affects the
overall performance. Specifically, we varied the kernel size in
the range of 1 × 1, 3 × 3, and 5 × 5. The results are listed
in Table VI, where it can be seen that a larger kernel size
is able to produce better reconstruction quality, but accord-
ingly the computational complexity increases dramatically.
Considering the trade-off between reconstruction accuracy and
computational complexity, the kernel of size 3 × 3 is the best
choice.

5) ZM-Norm and Mean-Value Invariant Up-Sampling: To
predict a zero-mean residual image, ZM-norm is applied on
feature maps. Also, the input LR-HSI is up-sampled with a
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Fig. 9. The introduced advantages of our ZM-norm by illustrating the
behaviors of the testing PSNR and training loss under different epochs of
our PZRes-Net with or w/o ZM-norm.

Fig. 10. Performance evaluation of the proposed method with different
depths. The depth refers to the total number of 3S convolutional layers in
PZRes-Net, i.e., the sum of 3S convolutional layers in all the three stages
and the refinement module. Different stages have the same number of layers,
and the number of 3S convolutional layers in the refinement module was
fixed to 3.

mean-value invariant up-sampling process to avoid distortion.
Here we experimentally verified the necessarily of such a
combination by either removing ZM-norm during training
or using a learned restriction-free transposed convolutional
layer w/o the mean-value invariant property for up-sampling.
From Table VII, we can observe that our method achieves the
best performance when both the ZM-norm and mean-value
invariant up-sampling were applied. By comparing the 3rd and
4th rows, we can see that the ZM-norm affects the performance
of our framework severely because our PZRes-Net is built
upon the classic wavelet decomposition-based fusion method
which focuses on extraction of the zero-mean high-frequency
residual image, and without ZM-norm, it is hard to maintain
this unique property of the high-order residual image, thus
leading poor performance. Meanwhile, by comparing the 2nd

and 4th rows, we can conclude that the mean-value invariant
characteristic of the up-sampling process is necessary because
without such a property, it is hard to keep the mean-values
of spectral bands close to the ground-truth ones, and thus
distortion is introduced. Last but not least, Fig. 9 also indicates
that ZM-norm can accelerate the training process.

6) The Choice of the up-Sampling Process: We used the bi-
linear operator to realize the mean-value invariant up-sampling
for its simplicity. We also investigated another mean-value
invariant interpolation operator, i.e., the bi-cubic interpola-
tion operator. Experimental results in Table VIII indicate
that PZRes-Net with the bi-cubic and bi-linear interpolations
achieve comparable performance, demonstrating the robust-
ness of our framework. Compared with the bi-cubic inter-
polation, the bi-linear interpolation is more computationally
efficient.

7) The Depth of the Proposed PZRes-Net: We varied the
total number of 3S convolutional layers in PZRes-Net from
15 to 39 with a regular interval of 6 to evaluate how the
network depth affects the overall performance as well as the
overfitting risk of our method. As shown in Fig. 10, we can see
that the performance of our method in terms of four metrics
gradually improves with the depth increasing. However, when
the depth rises from 33 to 39, the performance decreases,
indicating that overfitting of our method on the training dataset
occurs.

V. CONCLUSION

In this paper, we have presented a progressive zero-
centric residual network (PZRes-Net), which is capable of
efficiently and effectively restoring HR-HSIs from hybrid
inputs, including an LR-HSI and an HR-MSI. Our PZRes-
Net is mainly inspired by the classic wavelet decomposition-
based image fusion method and mimics it in an adaptive
learning manner. That is, our PZRes-Net mainly aims to learn a
zero-centric residual image from both inputs, which contains
high-frequency spatial details of the scene all spectral bands.
we have proposed using ZM-norm, mean-value invariant up-
sampling, spectral-spatial separable convolution with dense
aggregation, and progressive spectral information embedding
to achieve the objective. Extensive experimental results as well
as comprehensive ablation studies on both synthetic and real
benchmark datasets demonstrate that our PZRes-Net improves
the current state-of-the-art performance to a new level both
quantitatively and qualitatively. Moreover, our PZRes-Net is
a lightweight network, which is much more computationally
efficient than state-of-the-art deep learning-based methods,
which validates it practicality.

Encouraged by the impressive reconstruction quality,
it raises our interests to investigate the potential of
our zero-centric residual learning scheme in other high-
order feature extraction tasks, e.g., reference-based image
super-resolution.
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