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Abstract— Sparse representation has achieved great success in
various image processing and computer vision tasks. For image
processing, typical patch-based sparse representation (PSR) mod-
els usually tend to generate undesirable visual artifacts, while
group-based sparse representation (GSR) models lean to produce
over-smooth effects. In this paper, we propose a new sparse
representation model, termed joint patch-group based sparse
representation (JPG-SR). Compared with existing sparse rep-
resentation models, the proposed JPG-SR provides an effective
mechanism to integrate the local sparsity and nonlocal self-
similarity of images. We then apply the proposed JPG-SR to
image restoration tasks, including image inpainting and image
deblocking. An iterative algorithm based on the alternating
direction method of multipliers (ADMM) framework is developed
to solve the proposed JPG-SR based image restoration problems.
Experimental results demonstrate that the proposed JPG-SR is
effective and outperforms many state-of-the-art methods in both
objective and perceptual quality.

Index Terms—Sparse representation, JPG-SR, nonlocal self-
similarity, image restoration, ADMM.

I. INTRODUCTION

S A popular technique in image processing, sparse repre-
sentation has attracted significant interests of researchers
[1]-[14]. It is usually classified into two categories: analysis
sparse representation model [3], [7], [8] and synthesis sparse
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representation model [1], [2], [5], [6]. Analysis sparse repre-
sentation model represents a signal by multiplying it with an
analysis over-complete dictionary, leading to a sparse effect
[15]. In this work, we focus on synthesis sparse representation
model. Generally speaking, methods of synthesis sparse rep-
resentation in image processing can be further classified into
two categories: patch-based sparse representation (PSR) [1],
[2] and group-based sparse representation (GSR) [5], [6], [11],
[16]. PSR assumes that each patch of an image can be perfectly
modeled by a sparse linear combination of learnable basis
elements. These elements, called atoms, compose a dictionary
[2], [17]. The dictionary is usually learned from an image
or an image dataset. Compared with traditionally analytic
dictionaries, such as discrete cosine transform (DCT), wavelet
and curvelet, dictionaries learned directly from images are
superior to adapt to image local structures, and thus could
improve the sparsity which results in better performance.
For instance, the seminal work of KSVD dictionary learning
method [2] has not only achieved promising denoising result,
but also been extended to various image processing and
computer vision tasks [18], [19]. However, it has been shown
that the PSR with an over-complete dictionary usually tends
to generate undesirable visual artifacts in image restoration
[20], [21]. Moreover, the PSR model usually ignores the
correlation among similar patches [6], [10], [11] and thus leads
to degraded results in general.

Inspired by the success of the nonlocal self-similarity (NSS)
prior in images [22], [23], instead of using a single patch
as the basic unit in sparse representation, recent advances in
GSR consider similar patch group as the basic unit, while
similar to PSR, it can be sparsely represented by a set of
sparse codes in the group domain, i.e., each patch group can
also be precisely represented by a sparse linear combination
of basis elements of the dictionary [5], [6]. The GSR models
have demonstrated great potential in various image restoration
tasks [5], [6], [10], [23], [24]. For example, Dabov et al. [23]
proposed the BM3D method to combine NSS prior with
transform domain filtering, which is still one of the state-
of-the-art denoising methods. Mairal et al. [5] proposed the
learned simultaneous sparse coding (LSSC) to improve the
restoration performance of KSVD [2] via GSR. LPG-PCA
[24] utilized the nonlocal similar patches as data samples
to estimate statistical parameters based on PCA training.
Zhang et al. [6] proposed a group-based sparse representation
model for image restoration. Dong et al. [10] developed the
structured sparse coding with gaussian scale mixture prior
for image restoration. Though GSR models have shown great
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success in various image restoration tasks, the processed
images apt to suffer the over-smooth effects [25].

Bearing the above concerns in mind, we aim to address the
following questions in this paper.

1) Is it possible to mitigate the drawbacks of the PSR and
GSR models?

2) Is it possible to build a joint model to integrate the
PSR and GSR models? If yes, can we solve the model
effectively and efficiently?

We answer these questions by developing a new sparse
representation model, dubbed joint patch-group based sparse
representation (JPG-SR). Compared with previous sparse rep-
resentation models, the proposed JPG-SR is capable of inte-
grating the local sparsity with NSS of the image. To make
the optimization tractable, we develop an iterative algo-
rithm based on the alternating direction method of multipli-
ers (ADMM) framework to solve the proposed optimization
problem. Through applying the proposed JPG-SR model to
image restoration tasks, including image inpainting and image
deblocking, we demonstrate that the JPG-SR not only retains
the advantages of the PSR and GSR models, but also alleviates
their drawbacks, respectively. Extensive experimental results
demonstrate that the proposed JPG-SR outperforms several
state-of-the-art image restoration methods both quantitatively
and qualitatively.

The remainder of this paper is organized as follows.
Section II introduces the related works about sparse repre-
sentation. Section III introduces our new sparse representa-
tion model, i.e., the JPG-SR model. Section IV develops an
optimization method to solve the proposed JPG-SR model for
image restoration tasks. Section V presents the experimen-
tal results. Finally, several concluding remarks are given in
Section VI. The preliminary work has appeared in [4].!

II. BACKGROUND
A. Patch-Based Sparse Representation

Following the notations in [1], the basic unit of sparse
representation for images is patch. Mathematically, given
an (vectorized) image x € RV, let x; = Rix,Vi = 1,2, ...n,
denote an (vectorized) image patch of size +/b x +/b extracted
from location i. Given a dictionary D € ROM p < M,
the sparse representation of each patch x; is to find a sparse
vector where most coefficients are zero. Specifically, each
patch x; can be sparsely represented as x; ~ Da by solving
the following {p-norm minimization problem,

1
¢ = argmin (5 I — Dt |2 4 2 Hoc}"”o) Vi, ()
o

i
where || ||, denotes ¢»-norm and A is a regularization para-
meter. || || signifies the {p-norm (quasi-norm), i.e., counting

the nonzero entries in a:.“. In this manner, the entire image x

1Signiﬁcam changes have been made compared to our previous work in
[4]. Specifically, different from our previous work, the model in [4] has only
solved by an average of PSR and GSR models, the proposed JPG-SR model
in this paper is solved by an integral way. We have added the quantization
noise model, quantization constraint prior and the adaptive parameter setting
for image deblocking in Sec. IV-C. Moreover, extensive experiments have
been added to demonstrate the superiority, robustness and convergence of the
proposed JPG-SR model in Sec. V.
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can be sparsely represented by a set of sparse codes {a}}?_,
Concatenating n patches, let X = [x,...,x,] € Rbxn denote
all the patches extracted from the image. Since D is shared
across these patches, we have

1
P argmin (3 [X-Dat 44 fat],). @

where || || denotes the Frobenius norm, o* =
RM Xn

[a],...,a5] €
is the sparse coefficient matrix, and the {p-norm is
imposed on each column of ™ (corresponding to each patch).

B. Group-Based Sparse Representation

Instead of using a single patch as the basic unit in sparse
representation, recent studies have shown that GSR using patch
groups can produce more promising results for various image
processing tasks than typical PSR models [5], [6], [10], [11].
Hereby, we briefly introduce the GSR model.

To be concrete, image x is firstly divided into n overlapped
patches x; of size Vb x \/E,i =1,2,...,n. Then, different
from PSR, for each exemplar patch x;, the most similar m
patches (e.g., by the K-Nearest Neighbour (KNN) method
[26]) are selected from a W x W sized searching window
to form a set Sg,. Following this, all patches in Sg, are
stacked into a matrix Xg, € RP*™ which contains every patch
in Sg, as its column, ie., Xg, = {x;1,X;2,...,X;}. This
matrix Xg,; consisting of all patches with similar structures
is thus called a patch group, where x;; denote the j-th
patch (column) in the i-th patch group. Finally, similar to PSR,
given a dictionary D¢, € RP*K | each patch group X, can be
sparsely represented by solving

A

B, = argmin (%”XG; ~Dg, 8%, 13 + 118E, ||o) Vi, ()
Gi

where ﬂ*Gi represents the group sparse coefficient of each
patch group Xg;, and || ||y signifies the £o-norm, i.e., counting
the nonzero entries of each column in ﬁ*Gi. In order to put all
patch groups in one shot, let Q; € R"*"™ denote the searching
and extracting operations of the similar patches for the i-
th patch, ie., Xg, = XQ;. Concatenating n patch groups,
we have

XG :X[Ql;“-»Qn]

Due to the fact that each patch group has its own dictionary
and the dictionaries are not necessarily shared, let

= [Dg,, ..., Dg,] € RP*K) 5)
B =BG, .. Bg,1 € ROExtmm), ©)

where {BG Ji, € R*Exm is an expanded (longer with more
rows) version of S G, € REx™ with B G, in the corresponding
locations (from (i — 1)K +1)- th row to (l K)-th row) but zeros
elsewhere, i.e., corresponding to D¢, in Dg. The problem to
be solved now becomes

2 . 1 _ _
B = aremin (31X ~DGBGIE + 21510 ). )

G

= XQ € RP*(m), €

where the £p-norm is again imposed on each column and this
holds true for the following derivations in this paper. It is worth
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noting that both X in PSR and X in GSR are constructed
from the same original image x.

III. JOINT PATCH-GROUP BASED SPARSE
REPRESENTATION MODEL

As mentioned before, the PSR model usually generates
some undesirable visual artifacts, while GSR may lead to over-
smooth effect in various image processing tasks. To cope with
these problems, instead of using Eq. (2) or Eq. (7) individually,
we propose a joint patch-group based sparse representation
(JPG-SR) model in this section.

A. A Joint Model by Minimizing the Lower Bound

We first introduce some preliminary transformations to link
the PSR model in Eq. (2) with the GSR model in Eq. (7).
Recall that each patch (column) in the patch group X is from
X and it can be sparsely represented by Eq. (2). Therefore,
in addition to the sparse representation in Eq. (7), we can also
have

@)

where af, € RM>(mn) i composed of the corresponding
columns in o*; in other words, a*é is an expanded version of
a™ in Eq. (2), where each column is reproduced by m times
according to the patch searching in X¢. In this case, similar
to Eq. (1), acf; is solved by

1
&, = aemin (3 X6 D[} + 1o l,). O
%G

XG = DOC*G,

Comparing Eq. (7) with Eq. (9), we can see that both D,
and D¢ ﬂz are approximations of X. We can write the model
jointly as

2 1
6. B5) =z (5 %6 - Dug [+ o

ag.Bc
1 _ _
+51X6 - DeB 7 + p||ﬂ*c||o) ., (10)

where p is now playing the same role of 4 in Eq. (7).

Though the model in Eq. (10) can be solved by a sim-
ple average of PSR and GSR models [4], af, and B*G are
decoupled. In other words, this model may not faithfully
integrate the local sparsity and nonlocal self-similarity of
images. Therefore, we hereby employ the triangular inequality
(a + b)2 > a2 + b? given a > 0,b > 0 and thus
ming , (a + b)? = minajb(a2 + b?). Instead of minimizing the
right-hand side of Eq. (10), we minimize

2 1 _ 2
(&5, B} = argmin (5 X6 — Do + X - DGﬂ}}HF
oG
+2 | Ho+p||B*Gllo). (11
- 2
o p
= argmin | 2 | Xg _DTG —DGﬁTG
.G F
+2 ek, + plIBGlo (12)
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The minimization in Eq. (12) can be seen as minimizing the
upper bound of Eq. (10). Since a scalar does not change the
minimization, we propose the joint model below via defining
oc(;:‘%‘; andBG:TG.

Following the above definitions, we propose the JPG-SR
model to solve

- ! -
C = argmin - [Xg — UC||% + zllegllo + ¢ l1Bllo,

U= Dyl cz[‘i‘G}, (13)

Bs
where 7 = % and ¢ = % are the regularization parameters,
balancing the two sparsity inducing penalties (|jegllo and
IBGllo) and the fidelity term, i.e., 3[Xg — UC|%. llegllo
corresponds to the patch sparsity prior to retain the image local
consistency, reducing the over-smooth effect, while || BGHO is
associated with group sparsity prior to keep image nonlocal
consistency, suppressing undesirable visual artifacts. In this
way, the proposed JPG-SR provides an effective way to
integrate the local sparsity and non-local similarities. Here we
add the scalar % in the fidelity term to make the optimization
convenient. In our experiments, we notice that this joint
estimation plays a pivot role in the performance improvement
and shows good convergence behaviors (details in Section V).

In Eq. (13), after C is estimated, we can obtain Xg.
Following this, the original image x can be recovered by
aggregating the patches. It is worth noting that the desired
signal X is only updated when both the patch sparsity prior
(¢g) and the group sparsity prior (BG) are available and
therefore our model is a joint mechanism.

IV. JOINT PATCH-GROUP BASED SPARSE
REPRESENTATION FOR IMAGE RESTORATION

We now apply the proposed JPG-SR model to different
image restoration tasks, including image inpainting and image
deblocking.

A. Image Restoration

The goal of image restoration is to reconstruct a high quality
image x from its degraded observation y, which is a typical ill-
posed inverse problem and can be mathematically expressed as

y =Hx +n, (14)

where H is degradation operator and n is usually assumed to
be a zero-mean white Gaussian noise. With different settings
of H, various image restoration can be derived from Eq. (14),
such as image denoising [23], [27] when H is an identity
matrix, image inpainting [28]-[30] when H is a diagonal
matrix whose diagonal entries are either 1 or 0, keeping or
killing corresponding pixels. In this paper, we mainly focus
on the image inpainting and image deblocking problems. Note
that, we focus on image deblocking for JPEG compression
artifacts reduction [31]-[33], and then image deblocking
is regarded as image denoising problem, where n is the
quantization noise [34], [35], which is depicted by a Gaussian
model [33] in this paper given its simplicity and effectiveness.
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Algorithm 1 The ADMM Algorithm

1: Sett=0,u>0,Cyp=0,Zy=0and Jy =0.

2: for ¢t = 0 to Max-Iter do

3: Zt+1zargmzinf(Z)-l-%HZ—UCt—Jt||%.

4 CHl =arg méng(C) + %HZt+1 —UC - JY|3.
5 Jt+1 — Jt _ (Zt+1 _ UCt+1).
6: t<«t+1.
7: end for

Given the degraded image y in Eq. (14) and leveraging the
proposed JPG-SR in Eq. (13), we aim to recover the original
image x by solving the following minimization problem,

. 1 _
C=argmén§||YG—HGUCII%+T|Iacllo+f/)llﬁcllo, (15)

where Y is obtained from y in the same procedure of Xg,
and similarly to Hg, which is obtained from H.

B. ADMM Based Algorithm to Solve the Proposed
JPG-SR Model

Since Eq. (15) is a large-scale non-convex optimiza-
tion problem, in order to make the optimization tractable,
we employ the alternating direction method of multipliers
(ADMM) [36], [37] framework, whose underlying principle
is to split the unconstrained minimization problem into dif-
ferent constrained sub-problems. We give a brief introduction
to the ADMM method below by considering a constrained
optimization problem,

min  f(Z) + g(C), s.t. Z=UC,
ZeRN ,CeRM
where U € RM*N and f: RN — R, g : RM — R. The basic
ADMM is shown in Algorithm 1, where ¢ denotes the iteration
number.

Now, let us come back to Eq. (15) and invoke ADMM
to solve it. We first translate Eq. (15) into an equivalent
constrained form by introducing an auxiliary variable Z,

(16)

. 1 _
C= argmin —{|Y¢ — HGZ| 7 + tlleecllo + ¢ l1Bg o,

s.t. Z=1UC. 17

Through defining f(Z) = %HYG — HGZ|%, g(C) =
tllagllo + ¢llBgllo, and employing Line 3 in Algorithm 1,
we have,

Z'*! = argmin f(2) + %nz —uc -y %

1
= in =Yg — HGZ|3
argmzln2|| G GZ| %

Hily, g oy ?
+4|fe-w a5 -3

F

1
= in =Yg — HGZ|3
arng1n2|| G GL|%
//[ —
+ 5112 —Datf; — DGBG — % (18)

where u is a balance factor.
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Next, invoking Line 4 in Algorithm 1, we have
¢ Zarg min g(C)+% 1z —uce -y

=argmin z[legllo+¢llBgllo

oG.Bg
u o :
+ ||z~ D Dg] [ —G}—J’
2 ﬂG F
=argminz[egllo + ¢llBgllo
oG.Bg

+§||Z’+1—DaG—DGBG—J’||%. (19)

Then, we decouple the minimization problem of C in
Eq. (19) with respect to e and B, and solve them separately,
ie.,

! =argmin g llo+ 512" ~Dag ~DeBo 'l
(20)

B =argminglBglo+ 512+ ~Dag—DoBs I I}
) @

Following this, we update J* by invoking Line 5 in
Algorithm 1,

2i+1

Jt+1 — Jf _ (Zf+1 _ DutG+1 —DGﬂG ) (22)

In summary, it can be seen that the minimization of Eq. (15)
involves three minimization sub-problems, i.e., Z, o and BG.
Fortunately, there is an efficient solution to each sub-problem,
which will be discussed below. Furthermore, in the image
restoration problem considered in this work, each problem
can be solved patch by patch. Take the i-th patch x; as an
example, y; = H;x;, where H; denotes the degraded matrix
in the i-th patch. In the PSR model, recall that g is an
expanded version of & and we have x; = Da;. After «;
is solved, we can straightforwardly obtain ag. In the GSR
model, let Bi concatenate all the group coefficients including
the i-th patch; we thus have x; = Dgﬁi. In the following,
we consider to solve the problem for each patch or each
patch group and the superscript ¢ is omitted for conciseness.
More specifically, we translate the o sub-problem to {er;}?_,
subproblem, translate the BG sub-problem to {B¢,}7_, sub-
problem, and translate the Z sub-problem to {z;}7_; sub-
problem, respectively.

1) Z. Sub-Problem : Given ag and BG, Z. sub-problem in
Eq. (18) for each patch z;, becomes

. 1
minLi(z;) = min =~ [ly; — Hiz; (I3
Zi Zi 2
+ 5z = Doy —DGB; — il Vi (23)
This is a quadratic form and it has a closed-form solution,
-1 -
2= (H/Hi+u1)  (H]y; + uOar+ DeB; + j))) Vi,
(24)

where I is an identity matrix with the desired dimensions and
J; is the corresponding elements from J. Note that each z; is
Jjointly estimated in Eq. (24) using both PSR () in Eq. (20)
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and GSR (BG) in Eq. (21) in one shot. Therefore, this is
significantly different from the simple average of two results
using PSR and GSR independently in our previous work [4].
2) ag Sub-Problem: Recall that ag is an expanded version
of &, and thus the ag can be solved by the « sub-problem.
According to Eq. (20), for i-th patch, «; sub-problem can
be rewritten as

. e T )
min L (¢;) = min (—||Doti — ri||% + —||oti||0) Vi, (25
o; o \2 u

where r; = z; — Dgﬁi — Jj;- Obviously, this is a sparse
representation problem, and we hereby directly solve the
constrained form,

rrollin leeiflo  s.t. |ir — Doc,-||% <o Vi, (26)
where ¢ is a small constant, and apparently Eq. (26) can be
efficiently solved by the orthogonal matching pursuit (OMP)
algorithm [38]. For a given problem, OMP constructs a sparse
solution via iteratively building up an approximation, rather
than minimizing an objective function. The vector r; in
Eq. (26) is approximated as a linear combination of a few
columns in D, where the active set of columns to be used is
built column by column, in a greedy fashion. At each iteration
a new column is added to the active set of the column that
best correlates with the current residual. Although OMP is a
heuristic method, in most cases it works marvelously [39].

Moreover, for the dictionary D, at each iteration, we define
R = Z — DgB; — J in Eq. (20) as a good approximation
of Dag. Due to its effectiveness and efficiency, the KSVD
algorithm [2] is employed to learn the dictionary D from R
in each iteration.

3) BG Sub-Problem : Given Z and «ag, according to
Eq. (21), BG sub-problem can be rewritten as

min L3(B)=min (1”])6/30 - RG“%«"'Fﬂ”ﬂG”O) , @7

Bg Bo \2 H
where Rg =Z — Dag — J.

Recalling the relationship of [_3 G B and B, for each patch,
we can get the other two after solving any one of them. Now,
instead of considering each patch as in the a sub-problem,
we consider each patch group here. For i-th patch group,
we aim to solve

B¢, =argmin (l IRG, ~Dg, Be, I3+ 21186, llo) Vi (28)
Bs, \2 H

One important issue of solving sub-problem B, is the
selection of the dictionary. To adapt to the local image
structures, instead of learning an over-complete dictionary for
each patch group as in [5], we learn the principle component
analysis (PCA) based sub-dictionary D¢, [21] from each patch
group Rg,. Due to the orthogonality of the dictionary D¢, and
based on the orthogonal invariance, Eq. (28) can be rewritten
as

o 1 o
Be. :min(—||y — B>+ =18 ,||o)
Gi B 2 Gi GillF P Gi

G;

e ® .
= H};m (EIIVZ- —Bill; + ;Hﬂillo) vi, (29)

i
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Algorithm 2 Image Restoration Using JPG-SR Model

Require: The observed image y and measurement matrix H.

1: Set parameters ¢, Z, o, Bq, J, b, ¢, m, W, pu, 7, w, oy,
€, €.

2: for ¢t = 0 to Max-Iter do

3. Update Z'*! by Eq. (24);

4 R =7 DB, — I

5. Construct dictionary D by Rt with KSVD.

6:  for Each patch r; do

7 Update a!™ by computing Eq. (26);

8: end for

9. RY'=7Z""-Dag - I

10:  for Each patch group Rg, do

11: Construct dictionary D¢, from Rtgf using PCA;

12: Update ﬁtctl by computing Eq. (30);

13:  end for

14:  Update o**! by concatenating all o;;

15:  Update D’SG+1 by concatenating all Dg;;

16:  Update ,BtGH by concatenating all B¢,

17:  Update J**! by Eq. (22);

18: end for

19: Output: The final restored image X by aggregating patches
in Z.

where Rg; = Dg,pg,, and {y;, B;} denote the vectorization
form of the matrix {y,, B}, respectively.

We can achieve a closed-form solution of each $; in Eq. (29)
according to the so called hard thresholding [50]:

Bi=hard(y;,\/2¢/1)=y;©1(abs(y,)—/2p/u) Vi .

This process is performed across all n patch groups to
achieve B, which is the final solution for BG sub-problem
in Eq. (21).

After solving the above three sub-problems, we summarize
the overall algorithm to solve Eq. (15) in Algorithm 2.

Till now, we have applied the ADMM based algorithm to
solve the proposed JPG-SR model for image restoration in
detail. We exploit the case of image inpainting as an example
and the flowchart of the proposed JPG-SR model is illustrated
in Fig. 1. Note that the PSR (the top row in Fig. 1) and the GSR
(the bottom row in Fig. 1) are fed into an ADMM framework
to recover the image (right part in Fig. 1) in one shot.
Experimental results demonstrate that the proposed model is
effective and outperforms several state-of-the-art approaches
in Section V.

(30)

C. Quantization Noise Model

Different from the image inpainting task investigated above,
in image deblocking, the observed JPEG-coded image is
generally modeled as an image corrupted by the quantization

noise,
y=x+te, 31

where y is the JPEG-coded image with blocking artifacts, x,
e are the original image and quantization noise, respectively.
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Flowchart of the proposed JPG-SR model for image inpainting. The corrupted image (left) are fed into our JPG-SR model on two paths, i.e., PSR

on top and GSR in the bottom. These two paths are jointly optimized by the proposed ADMM framework producing the finally recovered image (right).

One important issue of image deblocking is how to set the
quantization noise model to describe e. There are many distinct
models about the quantization noise [34], [51], [52], and the
Gaussian model has been extensively used for estimating quan-
tization noise because of its simplicity and effectiveness, which
has also achieved excellent deblocking results [32], [34], [35].
Thus, in this paper, we adopt a Gaussian model to characterize
the quantization noise e in Eq. (31), and specifically the
approach proposed in [34] is utilized to estimate the noise
variance o,

q

02 =069 5)'3, { (32)

.1 3
s = § Zi,jZl M
where M7 is the 8 x 8 quantization matrix with quality fac-
tor (QF) of ¢, § is the mean value of the nine upper-left entries
in M4, corresponding to lowest-frequency DCT harmonics,
and we utilize Mﬁ., j) to represent the (i, j)'" element in MY,
It is noticed that the noise variance 0'3 obtained by Eq. (32)
is only the variance of the hypothetical Gaussian noise, which
determines the level of adaptive smoothing that is able to
reduce compression artifacts generated by the quantization
step with M7 [53]. Moreover, after obtaining the solution of
Z. sub-problem, the quantization constraint prior [32], [35] is
imposed to further improve the deblocking performance of the
proposed JPG-SR algorithm (For the details of the quantization
constraint prior, please refer to [35]). To make the proposed
algorithm more accurate and practical, according to [54], in the
t-th iteration, we set the ADMM balance factor u to
1
o (a2
where o is a scaling factor. One can observe that the estimation
of u' is dependent on the estimation of (¢2)’. Inspired by [55],
the iterative regularization strategy is exploited to update the
estimation of the noise variance o . Specifically, the standard
deviation of noise o in the 7-th iteration is computed as

(05) = ny/o2— 2" —y|3,

where 7 is a constant and this scheme has been widely used
in the Gaussian noise variance estimation.

Both 7 and ¢ are regularization parameters. In our algo-
rithm, 7 is set by using the same setting as in the KSVD
dictionary learning method [1]. For ¢, inspired by [56], for
each group sparse coefficient p,, it is set to

c 2\/50’%
0 +¢€

t

i (33)

(34)

9= ; (35)

Fig. 2. Test images in the experiments. Top row: Mickey, Lin, Leaves,
C. Man, Butterfly, F. Print, Haight, Foreman, Nanna, Straw. Middle row:
boat, Barbara, Pentagon, Girls, House, Lake, Elaine, Lena, Couple, Airplane.
Bottom row: Cowboy, Flower, Miss, Starfish, Corn, Penester, Mural, Barbara,
Fence, Plants.

where o, represents the noise variance. J; denotes the esti-
mated variance of p; [57], and € is a small positive constant.

D. Summary of the Proposed Algorithm

Till to now, we have solved the above three sub-problems
Z, ag and B;. We can achieve an efficient solution by
solving each sub-problem separately, which can ensure the
whole algorithm to be efficient and effective. Meanwhile,
the quantization noise model, the quantization constraint prior
and the adaptive parameter setting of ADMM balance factor
4 have been described in the task of image deblocking.

V. EXPERIMENTAL RESULTS

Extensive experiments are conducted in this section to
verify the performance of the proposed JPG-SR based image
restoration algorithm by two image restoration tasks, namely,
image inpainting and image deblocking. The experimental
test images are shown in Fig. 2. Both PSNR and structural
similarity (SSIM) [58] metrics are used to evaluate the quality
of the reconstructed images. The source codes of all competing
methods are obtained from their original authors. We used
the default parameters in their software packages.> Due to
the limited space, please enlarge the tables and figures on
the screen for better comparison. Throughout the numerical
experiments, we choose the following stopping criterion of
iteration for the proposed JPG-SR based image restoration
algorithm, i.e.,

sl at—1y2
" —x""l5

= - 2o (36)
at—172 >
x5
2The authors would like to appreciate the authors of [2], [23], [28],
[33]-[35], [40]-[49], [53], [59]-[63] for providing their source codes or
experimental results.
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Fig. 3.
(c) SALSA [40] (PSNR = 25.70dB, SSIM = 0.8086); (d) BPFA [28] (PSNR = 26.79dB, SSIM = 0.8379); (e) IPPO [41] (PSNR = 26.30dB, SSIM =
0.8243); (f) ISD-SB [42] (PSNR = 23.00dB, SSIM = 0.7035); (g) JSM [43] (PSNR = 27.07dB, SSIM = 0.8383); (h) Aloha [44] (PSNR = 26.33dB,
SSIM = 0.8217); (i) NGS [45] (PSNR = 26.17dB, SSIM = 0.8272); (j) BKSVD [46] (PSNR = 25.36dB, SSIM = 0.7741); (k) TSLRA [47]
(PSNR = 26.84dB, SSIM = 0.8311); (1) IRCNN [48] (PSNR = 27.02dB, SSIM = 0.8448); (m) IDBP [49] (PSNR = 26.88dB, SSIM = 0.8316); (n) JPG-SR
(PSNR = 27.86dB, SSIM = 0.8625).

where ¢ is a small constant. The source code of the
proposed JPG-SR is available at: https://drive.google.com/
open?id=1KMIERcJtZYKdGt2HvUySFtviAC5RprHu.

A. Image Inpainting

We first report the performance of the proposed JPG-SR for
image inpainting and compare it with several leading methods,
including SALSA [40], BPFA [28], IPPO [41], ISD-SB [42],
JSM [43], Aloha [44], NGS [45], BKSVD [46], TSLRA [47],
IRCNN [48] and IDBP [49] methods. Note that BKSVD is
a classical PSR method, and both JSM and NGS are based
on the GSR methods. TSLRA is a low-rank method that
delivers the state-of-the-art image inpainting result. IRCNN
and IDBP are the deep learning based methods, which employ
the strong deep convolutional neural networks (CNN) [64].
In this subsection, we conduct two interesting examples with
different masks for image inpainting, i.e., partial random
samples and text inlayed sample. The parameter setting of
our proposed JPG-SR for image inpainting is as follows. The
size of each patch b x /b is set to be 8 x 8. The size of
searching window W x W is set to 25 x 25 and the matched
patch number in each patch group m = 60. ¢ = 0.2, ¢ = 0.2,
o, = V2 and € = ¢ 4. The parameter ¢ is set to 0.0007,
0.00048, 0.00066, 0.0005 and 0.0003 when 80%, 70%, 60%,
50% pixels missing and text inlayed, respectively.

Table I presents the PSNR comparison for a collection
of 16 test images used in all competing methods. It can be
found that the proposed JPG-SR can outperform other compet-
ing methods in most cases. The average gains of the proposed
JPG-SR over SALSA, BPFA, IPPO, ISD-SB, JSM, Aloha,
NGS, BKSVD, TSLRA, IRCNN and IDBP methods are as
much as 4.22dB, 2.17dB, 0.96dB, 5.51dB, 1.16dB, 1.50dB,
2.95dB, 2.98dB, 1.48dB, 0.82dB and 1.55dB, respectively. The
SSIM comparison results are shown in Table II, where we can
also observe that the proposed JPG-SR achieves better results
than all competing methods in most cases.

Visual comparison of Starfish by image inpainting with 80% missing pixels. (a) Original image; (b) Degraded image with 80% pixels missing;

The visual comparisons of images Starfish and Flower
with 80% pixels missing are provided in Fig. 3 and Fig. 4,
respectively. Meanwhile, we show the visual comparisons of
the image Haight with text inlayed in Fig. 5. Obviously,
SALSA and ISD-SB could not reconstruct sharp edges and fine
details. The BPFA, IPPO, Aloha, BKSVD and IDBP methods
produce images with a much better visual quality than SALSA
and ISD-SB, but still suffer from some undesirable artifacts,
such as the ringing effects. Note that BKSVD produces the
obvious undesirable visual artifacts since it is a PSR method.
Although JSM, NGS, TSLRA and IRCNN methods can obtain
more visual results than BKSVD, they often generate over-
smooth effect. The proposed JPG-SR not only preserves
sharp edges and fine details, but also eliminates the ringing
effects. Furthermore, the proposed JPG-SR has a promising
performance for repairing multiple irregular scratch images.
We show two inpainted images from our proposed JPG-SR
and TSLRA methods for the application of multiple irregular
scratch removal in Fig. 6 and Fig. 7. Note that TSLRA is
a state-of-the-art inpainting method, which can be competent
to various image inpainting tasks [47]. It can be seen that
the proposed JPG-SR can effectively remove multiple irreg-
ular scratch of images with comparison to TSLRA method.
Therefore, these experimental findings clearly demonstrate the
effectiveness of our proposed JPG-SR model.

B. Image Deblocking

Next, we validate the performance of the proposed JPG-SR
for image deblocking, i.e., restoring JPEG-compressed images.
We compare it with popular or recently proposed state-of-the-
art deblocking methods: KSVD [2], field of experts (FoE) [35],
block matching and 3D filtering (BM3D) [23], shape adaptive
discrete cosine transform (SA-DCT) [34], patch clustering
and low-rank minimization (PC-LRM) [59], adaptive nonlocal
coefficients estimation (ANCE) [60], DicTV [53], weighted
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TABLE I

PSNR (dB) COMPARISON OF SALSA [40], BPFA [28], IPPO [41], ISD-SB [42], JSM [43], ALOHA [44], NGS [45], BKSVD [46], TSLRA [47],
IRCNN [48], IDBP [49] AND JPG-SR FOR IMAGE INPAINTING

Miss pixels Methods Cowboy | Mickey | Barbara | Butterfly | Fence | Haight | Lake | Leaves | Lena | Flower | Starfish | Nanna | Corn | Penester | Girls | Mural | Average
SALSA [10] 23.72 24.46 22.62 22.85 21.80 18.57 2494 [ 22.03 | 2820 | 26.57 25.70 24.12 | 24.28 27.42 2379 | 23.15 24.01
BPFA [28] 2493 24.53 25.11 24.04 26.24 19.42 25.82 23.78 29.50 27.30 26.79 24.71 25.54 27.93 24.830 24.13 25.29
IPPO [11] 2538 26.33 28.32 25.13 27.98 2090 | 2548 | 2556 | 30.64 | 2833 26.30 25.60 | 25.14 29.10 2531 [ 25.66 26.32
ISD-SB [47] 21.96 2225 22.35 18.57 21.39 17.00 22.57 18.70 26.01 24.53 23.00 2231 20.31 26.51 21.99 21.42 21.93
80% JSM [13] 25.40 26.09 26.95 25.57 28.59 2137 [ 2582 | 26.18 | 3046 | 27.99 27.07 2533 ] 2558 28.25 2518 [ 2540 26.33
Aloha [11] 25.06 2533 29.59 24.88 28.88 20.62 2532 25.90 30.89 27.70 2633 25.54 25.60 28.63 25.16 2523 26.29
NGS [*5] 24.21 24.50 23.88 23.85 25.26 1876 | 25.10 | 23.87 | 2887 | 27.08 26.17 2458 | 2474 27.86 2427 | 2378 24.80
BKSVD [40] 24.12 2372 2521 22.00 24.20 18.83 24.17 22.05 28.16 26.49 25.36 2397 23.69 27.53 23.82 23.02 24.15
TSLRA [47] 25.36 2571 2822 2532 28.83 20.85 | 2547 | 2547 | 3058 | 28.17 26.84 2555 ] 25.65 28.85 2515 | 2521 26.33
IRCNN [48] 25.47 26.45 26.21 25.34 27.76 20.43 25.24 2548 30.78 28.41 27.02 25.76 24.76 28.85 25.36 25.75 26.19
IDBP [49] 24.43 25.40 22.73 25.24 25.03 1951 2539 | 2584 | 29.69 | 28.12 26.88 2551 ] 26.05 27.90 25.03 [ 2526 2550
JPG-SR 2557 26.34 30.61 26.28 29.65 2142 [ 2592 | 27.36 | 3148 | 2897 27.86 25.65 | 26.80 29.16 25.61 | 26.17 2718
SALSA [40] 25.70 25.98 23.38 25.06 23.57 19.95 12676 | 2436 | 28.82 | 2835 21.55 2544 | 26.11 28.69 2547 | 25.00 25.64
BPFA [27] 26.76 26.16 2832 26.68 28.87 2146 | 27.93 | 2698 [ 31.62 [ 29.30 28.93 26.62 | 27.82 29.65 26.86 | 26.46 27.53
IPPO [1] 27.40 28.59 30.89 27.68 30.08 23.02 [ 2756 | 2858 | 32.97 | 30.28 2891 2744 1 2777 31.14 2743 [ 27.92 28.60
ISD-SB [42] 24.28 24.40 23.56 22.65 23.16 18.89 24.41 21.85 28.16 26.46 25.09 24.36 22.46 27.99 24.13 23.48 24.08
70% JSM [13] 27.11 28.25 30.48 2797 30.46 | 23.01 [ 27.88 | 29.28 | 32.69 | 29.83 29.36 2734 | 27.66 30.3T 2720 [ 2759 28.53
Aloha [+1] 27.24 27.11 3240 27.29 30.57 22.12 | 27.58 | 29.04 [ 32.80 | 29.58 28.22 2743 ] 27.95 30.78 27.08 [ 27.33 28.41
NGS [45] 26.19 26.68 26.11 26.36 2732 | 21.03 [ 27.01 | 2644 | 30.77 | 28.83 28.35 2635 | 26.77 29.49 26.18 [ 26.06 26.87
BKSVD [46] 25.99 26.17 27.58 25.00 28.35 21.12 [ 2635 | 2529 [ 3096 | 28.65 27.79 26.18 | 25.83 29.44 2582 | 2557 26.63
TSLRA [47] 27.12 27.64 30.79 27.76 30.75 2261 [ 2732 [ 28.03 | 32.64 | 29.92 2878 2732 | 27.66 30.82 27.09 | 2741 28.35
IRCNN [45] 27.54 29.66 29.31 28.34 30.54 22.52 | 27.59 | 29.06 [ 3339 | 30.77 29.79 28.27 | 27381 31.16 27.78 | 28.73 28.89
IDBP [49] 27.15 28.69 26.23 2829 29.24 | 2193 [ 27.87 | 28.99 | 3231 30.49 29.28 2724 | 28.09 30.33 2745 | 27.68 28.20
JPG-SR 27.51 2891 33.84 29.18 31.77 | 2358 [ 2799 | 30.92 | 3356 | 31.08 30.32 27.94 1 29.39 31.24 27.89 | 2829 29.59
SALSA [40] 26.99 27.41 24.57 26.79 25.45 2152 [ 2814 [ 2629 | 3149 | 29.65 29.09 2694 | 2775 30.08 27.02 | 26.66 27.24
BPFA 7] 28.42 27.83 31.06 28.88 30.79 2333 [ 2975 | 29.83 [ 3354 | 3135 30.98 28.63 | 30.07 31.60 2875 [ 2830 29.57
TPPO [*1] 29.58 30.76 33.55 29.85 32.14 25.34 29.30 30.88 34.89 32.17 31.09 29.41 29.75 32.89 29.32 29.57 30.66
ISD-SB [17] 26.00 26.59 24.86 25.07 25.30 21.02 | 2639 | 2455 [ 3052 | 2823 27.36 26.05 | 24.60 29.16 2580 | 2535 26.05
60% JSM [43] 28.89 29.85 33.21 29.83 32.23 24.70 29.49 31.47 34.56 31.59 31.40 29.09 29.45 32.10 29.01 29.24 30.38
Aloha [H1] 28.92 28.59 3513 29.16 32.33 2358 [ 2924 | 3141 3472 | 3147 30.19 29.5T 12983 3220 2891 [ 28.92 30.26
NGS [45] 27.78 28.09 28.24 28.37 30.11 22.81 28.68 28.87 32.81 30.53 30.26 28.06 28.55 31.12 27.83 27.99 28.76
BKSVD [46] 28.14 28.53 29.86 27.70 30.72 2339 [ 2845 | 28.61 3348 | 31.00 29.99 2835 | 2835 31.57 28.12 [ 27.90 29.01
TSLRA [47] 28.83 29.28 33.37 29.42 3232 2421 29.01 30.19 34.26 31.55 30.69 29.17 29.39 32.34 28.79 29.07 30.12
IRCNN [45] 29.95 31.82 31.87 30.41 3246 | 2490 [ 29.75 | 3210 | 3551 32.97 32.29 3049 | 3032 3321 30.10 | 30.58 3117
IDBP [49] 28.97 31.18 28.73 30.03 31.25 24.11 29.53 31.74 33.93 32.16 31.79 29.51 29.94 32.04 29.32 29.79 30.25
JPG-SR 29.57 30.93 36.11 31.19 3348 | 2579 [ 30.05 | 3326 | 3572 | 33.09 32.78 30.22 [ 31.33 32.93 29.86 | 29.96 31.64
SALSA [40] 28.59 28.98 25.66 28.52 27.25 23.06 [ 29.69 | 28.11 33.08 | 31.13 30.90 28.53 | 29.39 31.51 28.60 | 28.20 28.83
BPFA 28] 30.21 29.43 34.01 30.98 32.82 2540 [ 3178 | 3279 | 35.61 3341 33.13 30.68 | 32.10 3332 30.58 [ 30.46 31.67
IPPO [41] 31.30 32.74 3591 31.69 33.95 2753 3098 | 3332 | 3650 | 34.04 33.10 31.17 [ 31.76 34.55 31.05 [ 3111 32.54
ISD-SB [17] 27.80 27.96 26.57 27.76 27.60 | 2292 [ 2831 | 2697 | 32.04 | 30.05 29.16 27.50 | 26.65 30.42 27.56 | 26.95 27.89
50% JSM [43] 30.75 31.96 35.87 31.47 3375 26.67 | 31.18 | 3378 [ 3639 | 33.46 33.24 30.75 [ 31.33 33.94 30.68 [ 30.89 32.26
Aloha [+1] 30.46 30.33 37.46 30.78 33.79 2516 | 31.17 | 34.01 36.41 3333 31.85 31.24 [ 31.89 3385 30.59 | 30.28 32.04
NGS [45] 29.32 29.75 30.93 30.28 32.00 2450 13022 | 31.23 | 3456 | 3231 32.10 29.71 ] 3031 32.89 29.60 [ 29.88 30.60
BKSVD [40] 29.75 29.95 33.38 29.64 32.44 | 2523 [ 3045 | 3125 | 3544 | 3293 31.99 30.15 | 30.28 33.13 29.98 [ 29.59 30.99
TSLRA [47] 30.45 31.00 3574 31.01 33.89 26.02 | 30.53 | 3256 [ 3552 [ 3320 32.44 30.87 [ 31.25 33.68 30.48 | 30.62 31.83
IRCNN [48] 31.96 34.25 34.47 32.48 3432 | 2736 | 31.80 | 3544 | 3753 | 3528 34.50 3242 | 3271 35.16 3200 | 3220 3337
IDBP [49] 31.40 33.14 31.57 32.44 3324 26.71 31.47 | 3434 3625 [ 3415 33.81 31.35 [ 3161 33.68 31.09 [ 31.35 32.35
JPG-SR 31.64 33.71 38.31 32.93 35.04 | 2846 | 3191 | 3584 | 3740 | 3520 34.80 3227 3359 34.82 31.90 | 31.75 33.72
SALSA [40] 30.17 30.67 29.18 29.81 26.77 24.67 | 32.22 | 29.03 | 33.84 | 33.59 32.60 30.31 | 30.96 33.56 30.27 | 29.11 30.42
BPFA 28] 31.13 31.70 3427 31.71 32.23 26.64 | 3315 | 31.78 | 3527 | 35.18 33.88 31.76 | 32.16 34.73 31.28 | 30.88 32.36
TPPO [1] 32.61 34.04 37.65 33.98 35.10 20.10 | 3325 | 3526 | 3729 | 36.67 3535 33.01 | 32.48 36.93 32.65 | 3352 34.31
ISD-SB [42] 29.83 29.96 30.43 28.09 27.62 | 24.61 30.93 | 2764 | 3313 | 3272 31.38 2958 | 2832 33.52 29.77 | 2835 29.74
Text Inlayed JSM [13] 32.42 32.99 3779 33.19 3541 28.69 | 3324 | 3540 [ 3698 | 35.67 35.17 3240 [ 3226 36.56 3220 | 3275 33.94
Aloha [11] 30.94 30.49 39.16 31.58 34.94 26.21 31.98 34.74 36.03 34.47 32.06 31.91 32.04 35.17 30.84 31.59 32.76
NGS [*5] 30.80 31.10 33.57 31.78 28.73 26.16 | 32.32 | 30.05 | 3471 34.00 33.02 31.08 | 31.65 3355 31.04 | 3037 31.50
BKSVD [40] 31.20 31.43 35.16 29.09 31.69 26.59 31.86 29.74 34.66 34.01 32.83 31.39 29.70 34.46 30.81 30.51 31.57
TSLRA [47] 32.05 32.43 3778 32.64 3523 28.21 3238 | 3366 | 3276 | 3542 34.50 31.99 [ 31.96 36.30 3194 | 3243 3323
IRCNN [48] 32.34 32.96 34.94 33.01 32.94 26.88 32.77 35.52 37.09 36.33 34.46 33.10 32.14 36.59 32.27 32.82 3351
IDBP [19] 32.08 33.00 34.48 33.15 3120 | 2646 | 3318 | 34.66 | 36.97 | 36.08 34.50 3283 | 32.48 36.15 3223 [ 31.84 3320
JPG-SR 33.05 35.10 40.38 34.49 3711 30.08 | 33.78 | 36.74 | 37.88 | 36.69 36.54 3354 | 33.36 36.96 3259 [ 33.69 3512

o

(i) Q) (k) (m)
Fig. 4. Visual comparison of Flower by image inpainting with 80% missing pixels. (a) Original image; (b) Degraded image with 80% pixels missing;
(c) SALSA [40] (PSNR = 26.57dB, SSIM = 0.7964); (d) BPFA [28] (PSNR = 27.30dB, SSIM = 0.8234); (e) IPPO [41] (PSNR = 28.33dB, SSIM =
0.8587); (f) ISD-SB [42] (PSNR = 24.53dB, SSIM = 0.7059); (g) JSM [43] (PSNR = 27.99dB, SSIM = 0.8418); (h) Aloha [44] (PSNR = 27.70dB, SSIM
= 0.8402); (i) NGS [45] (PSNR = 27.08dB, SSIM = 0.8174); (j) BKSVD [46] (PSNR = 26.49dB, SSIM = 0.7804); (k) TSLRA [47] (PSNR = 28.17dB,
SSIM = 0.8460); (I) IRCNN [48] (PSNR = 28.41dB, SSIM = 0.8586); (m) IDBP [49] (PSNR = 28.12dB, SSIM = 0.8413); (n) JPG-SR (PSNR = 28.97dB,
SSIM = 0.8768).

nuclear norm minimization (WNNM) [61], structured sparse [62] and Coefficient Graph Laplacians (COGL) [63]. Note
representation and quantization constraint (SSR-QC) [33], that KSVD and DicTV exploit the PSR model for image
total generalized variation and shearlet transform (TGV-SH) deblocking, while SSR-QC is based on the GSR model.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.



ZHA et al.: IMAGE RESTORATION USING JOINT PATCH-GROUP-BASED SPARSE REPRESENTATION

Fig. 5.

7743

Visual comparison of Haight by image inpainting with text inlayed. (a) Original image; (b) Degraded image with text inlayed; (c) SALSA [40]

(PSNR = 24.67dB, SSIM = 0.9322); (d) BPFA [28] (PSNR = 26.64dB, SSIM = 0.9482); (e) IPPO [41] (PSNR = 29.10dB, SSIM = 0.9751); (f) ISD-SB
[42] (PSNR = 24.61dB, SSIM = 0.9358); (g) JSM [43] (PSNR = 28.69dB, SSIM = 0.9729); (h) Aloha [44] (PSNR = 26.21dB, SSIM = 0.9492); (i) NGS
[45] (PSNR = 26.16dB, SSIM = 0.9523); (j) BKSVD [46] (PSNR = 26.59dB, SSIM = 0.9423); (k) TSLRA [47] (PSNR = 28.21dB, SSIM = 0.9691);
(1) IRCNN [48] (PSNR = 26.88dB, SSIM = 0.9582); (m) IDBP [49] (PSNR = 26.46dB, SSIM = 0.9637); (n) JPG-SR (PSNR = 30.08dB, SSIM = 0.9770).

TABLE I

SSIM COMPARISON OF SALSA [40], BPFA [28], IPPO [41], ISD-SB [42], JSM [43], ALOHA [44], NGS [45], BKSVD [46], TSLRA [47], IRCNN

[48], IDBP [49] AND JPG-SR FOR IMAGE INPAINTING

Miss pixels Methods Cowboy | Mickey | Barbara | Butterfly | Fence | Haight Lake Leaves Lena Flower | Starfish | Nanna Corn | Penester Girls Mural | Average
SALSA [40] 0.7875 0.8145 0.6975 0.8252 0.6546 | 0.6961 | 0.8036 | 0.7948 | 0.8576 | 0.7964 0.8086 0.7819 | 0.7953 0.7721 0.7535 | 0.7155 0.7722
BPFA [28] 0.8459 0.8117 0.8042 0.8517 0.7960 | 0.7307 | 0.8360 | 0.8557 | 0.8899 | 0.8234 | 0.8379 | 0.80I1 [ 0.8334 | 0.7950 [ 0.7846 | 0.7402 | 0.8148
IPPO [11] 0.8642 0.8678 0.8834 0.8995 0.8614 | 0.8251 | 0.8297 | 0.9119 | 0.9085 | 0.8587 | 0.8243 | 0.8311 [ 0.828I 0.8378 | 0.8140 | 0.7885 | 0.8521
ISD-SB [47] 0.7456 0.7506 0.6442 0.7363 0.5994 | 0.6403 | 0.7166 | 0.6941 | 0.8071 0.7059 0.7035 0.6928 | 0.5688 0.7126 0.6737 | 0.6272 0.6887
80% JSM [43] 0.8615 0.8598 0.8354 0.9026 0.8530 | 0.8320 | 0.8357 [ 0.9213 [ 0.8988 | 0.8418 0.8383 0.8214 | 0.8380 0.7999 0.8031 | 0.7833 0.8454
Aloha [44] 0.8580 0.8300 09118 0.8805 0.8699 | 0.7955 | 0.8270 [ 0.9085 [ 0.9095 | 0.8402 0.8217 0.8314 | 0.8380 0.8375 0.8055 | 0.7842 0.8468
NGS [45] 0.8392 0.8230 0.7594 0.8635 0.7898 | 0.7351 | 0.8180 [ 0.8687 [ 0.8767 | 0.8174 0.8272 0.8015 | 0.8121 0.7967 0.7757 | 0.7535 0.8098
BKSVD [40] 0.8095 0.7713 0.7912 0.7817 0.7833 | 0.6951 | 0.7599 [ 0.7782 [ 0.8500 | 0.7804 0.7741 0.7603 | 0.7422 0.7622 0.7327 | 0.6903 0.7664
TSLRA [47] 0.8580 0.8536 0.8786 0.8928 0.8679 | 0.8119 | 0.8184 | 0.9029 | 0.9001 | 0.8460 | 0.8311 | 0.8228 | 0.8371 0.8272 [ 0.8030 | 0.7826 | 0.8459
IRCNN [48] 0.8622 0.8671 0.8270 0.9032 0.8454 | 0.8104 | 0.8278 | 0.9102 | 0.9036 | 0.8586 | 0.8448 | 0.8358 [ 0.8154 | 0.8201 0.8135 | 0.7923 | 0.8461
IDBP [17] 0.8400 0.8436 0.7629 0.8949 0.7978 | 0.7865 | 0.8203 | 09151 | 0.8794 | 0.8413 0.8316 0.8162 | 0.8481 0.7919 0.7999 | 0.7694 0.8274
JPG-SR 0.8760 0.8737 0.9249 0.9212 0.8780 | 0.8535 | 0.8506 | 0.9407 | 0.9195 | 0.8768 0.8625 0.8499 | 0.8745 0.8423 0.8366 | 0.8109 0.8745
SALSA [40] 0.8742 0.8621 0.7580 0.8838 0.7512 | 0.7773 | 0.8649 | 0.8746 | 0.8526 | 0.8556 0.8675 0.8369 | 0.8624 0.8280 0.8250 | 0.7917 0.8354
BPFA 28] 0.8950 0.8661 0.8919 0.9124 0.8726 | 0.8269 | 0.8929 [ 0.9276 [ 0.9269 | 0.8856 0.8942 0.8681 | 0.8979 0.8591 0.8588 | 0.8211 0.8811
IPPO [41] 09118 0.9151 0.9334 0.9356 0.9042 | 0.8878 | 0.8857 | 0.9538 | 0.9422 | 0.9088 0.8923 0.8876 | 0.9008 0.8955 0.8823 | 0.8581 0.9059
ISD-SB [42] 0.8270 0.8251 0.7259 0.8541 0.7131 | 0.7430 | 0.7947 | 0.8222 | 0.8647 | 0.7955 0.7957 0.7894 | 0.7143 0.7791 0.7636 | 0.7297 0.7836
70% JSM [43] 0.9075 0.9064 0.9228 0.9377 0.8996 | 0.8831 [ 0.8883 | 0.9581 | 0.9354 | 0.8935 0.8954 0.8827 | 0.8962 0.8728 0.8739 | 0.8519 0.9003
Aloha [11] 0.9056 0.8797 0.9505 0.9205 0.9105 | 0.8557 | 0.8872 | 0.9549 | 0.9420 | 0.8934 | 0.8793 | 0.8907 | 0.9009 | 0.8946 | 0.8728 | 0.8512 | 0.8993
NGS [15] 0.8903 0.8791 0.8556 0.9145 0.8607 | 0.8303 | 0.8756 | 0.9233 | 0.9145 | 0.8728 | 0.8856 | 0.8624 | 0.8794 | 0.8549 [ 0.8483 | 0.8291 | 0.8735
BKSVD [40] 0.8682 0.8509 0.8775 0.8753 0.8615 | 0.8013 | 0.8387 | 0.8896 | 0.9094 | 0.8579 0.8552 0.8425 | 0.8389 0.8400 0.8212 | 0.7918 0.8512
TSLRA [47] 0.9034 0.8993 0.9298 0.9347 0.9071 | 0.8717 | 0.8774 | 0.9452 [ 0.9367 | 0.8949 0.8862 0.8810 | 0.8943 0.8840 0.8679 | 0.8492 0.8977
IRCNN [48] 0.9163 0.9220 0.9107 0.9419 0.9035 | 0.8837 | 0.8914 [ 0.9574 [ 0.9434 | 0.9140 0.9085 0.9018 | 0.9014 0.8930 0.8910 | 0.8721 0.9095
IDBP [49] 0.8955 0.9023 0.8731 0.9353 0.8836 | 0.8652 | 0.8805 | 0.9515 | 0.9222 | 0.8943 0.8866 0.8727 | 0.8986 0.8592 0.8698 | 0.8388 0.8893
JPG-SR 0.9187 0.9209 0.9573 0.9494 0.9189 | 0.9025 | 0.9010 | 0.9708 | 0.9467 | 0.9196 | 0.9115 | 0.9037 [ 0.9272 | 0.8962 | 0.8982 | 0.8685 | 0.9194
SALSA [40] 0.9064 0.8977 0.8191 0.9191 0.8222 | 0.8392 | 0.9030 | 0.9173 | 0.9283 | 0.8934 0.9036 0.8823 | 0.9022 0.8755 0.8754 | 0.8483 0.8833
BPFA 28] 0.9281 0.9033 0.9394 0.9436 0.9125 | 0.8844 | 0.9263 | 0.9615 | 0.9498 | 0.9260 | 0.9280 | 0.9132 [ 0.9358 | 0.9067 [ 0.9053 | 0.8703 | 0.9209
TPPO [*1] 0.9438 0.9425 0.9598 0.9566 0.9346 | 0.9287 | 0.9219 | 0.9726 | 0.9601 | 0.9394 | 0.9290 | 0.9245 [ 0.9366 | 0.9289 [ 0.9226 | 0.8960 | 0.9374
ISD-SB [17] 0.8781 0.8749 0.7969 0.9017 0.7994 | 0.8260 [ 0.8533 | 0.8953 | 0.9049 | 0.8552 0.8587 0.8463 | 0.8140 0.8276 0.8297 | 0.8029 0.8478
60% JSM [43] 0.9368 0.9327 0.9554 0.9570 0.9296 | 0.9195 | 0.9229 | 0.9751 | 0.9557 | 0.9286 0.9293 0.9184 | 0.9304 0.9148 0.9156 | 0.8915 0.9321
Aloha [1] 0.9362 0.9127 0.9697 0.9428 0.9385 | 0.8968 | 0.9210 [ 0.9736 [ 0.9594 | 0.9288 0.9171 0.9273 | 0.9334 0.925T 0.9150 | 0.8910 0.9305
NGS [45] 0.9246 0.9119 0.9099 0.9451 0.9086 | 0.8842 | 0.9130 | 0.9556 | 0.9443 | 09115 0.9222 0.9046 | 09187 0.8996 0.8943 | 0.8821 0.9144
BKSVD [40] 0.9159 0.9050 0.9324 0.9266 0.9075 | 0.8780 | 0.8943 [ 0.9480 [ 0.9409 | 09121 0.9059 0.8988 | 0.9079 0.8940 0.8886 | 0.8602 0.9073
TSLRA [47] 0.9333 0.9263 0.9577 0.9531 0.9343 | 0.9104 | 0.9156 | 0.9666 | 0.9555 | 0.9282 0.9231 0.9173 | 0.9281 0.9201 0.9097 | 0.8900 0.9293
IRCNN [48] 0.9479 0.9474 0.9463 0.9597 0.9343 | 0.9283 [ 0.9302 | 0.9777 | 0.9621 | 0.9460 | 0.9413 | 0.9352 | 0.9419 | 0.9310 [ 0.9327 | 0.9091 | 0.9419
IDBP [19] 0.9273 0.9319 0.9194 0.9519 0.9147 | 0.9153 | 0.9155 | 0.9708 | 0.9441 | 0.9264 | 0.9239 | 0.9162 [ 0.9309 | 0.90I18 [ 0.9102 | 0.8824 | 0.9239
JPG-SR 0.9457 0.9431 0.9715 0.9641 0.9421 | 0.9348 | 0.9326 | 0.9829 | 0.9625 | 0.9464 0.9406 0.9350 | 0.9519 0.9283 0.9327 | 0.9037 0.9449
SALSA [40] 0.9344 0.9243 0.8651 0.9432 0.8705 | 0.8880 | 0.9304 | 0.9444 | 0.9474 | 0.9236 0.9335 0.9173 | 0.9310 0.9080 0.9108 | 0.8876 0.9162
BPFA [28] 0.9505 0.9312 0.9633 0.9617 0.9390 | 0.9226 | 0.9483 [ 0.9795 [ 0.9658 | 0.9516 0.9510 0.9432 | 0.9572 0.9344 0.9346 | 0.9041 0.9461
IPPO [41] 0.9611 0.9606 0.9749 0.9697 0.9550 | 0.9540 | 0.9463 | 0.9832 | 0.9723 | 0.9599 0.9531 0.9485 | 0.9586 0.9511 0.9477 | 0.9262 0.9576
ISD-SB [42] 0.9138 0.9077 0.8562 0.9364 0.8658 | 0.8792 | 0.8981 [ 0.9355 [ 0.9298 | 0.8989 0.9002 0.8884 | 0.8796 0.8700 0.8798 | 0.8536 0.8933
50% JSM [43] 0.9577 0.9537 0.9741 0.9695 0.9502 | 0.9459 | 0.9460 | 0.9846 | 0.9707 | 0.9528 0.9518 0.9440 | 0.9542 0.9437 0.9433 | 0.9229 0.9541
Aloha [11] 0.9547 0.9371 0.9815 0.9580 0.9555 | 0.9244 | 0.9465 | 0.9850 | 0.9719 | 0.9525 | 0.9418 | 0.9497 | 0.9554 | 0.9477 [ 0.9420 | 0.9200 | 0.9515
NGS [15] 0.9464 0.9386 0.9469 0.9630 0.9376 | 0.9190 | 0.9393 | 0.9734 | 0.9625 | 0.9408 | 0.9464 | 0.9338 [ 0.9450 | 0.9317 [ 0.9281 | 0.9166 | 0.9418
BKSVD [10] 0.9384 0.9302 0.9561 0.9487 0.9317 | 0.9146 | 0.9271 0.9713 | 0.9576 | 0.9409 0.9341 0.9294 | 0.9397 0.9223 0.9232 | 0.8972 0.9352
TSLRA [47] 0.9542 0.9480 0.9743 0.9672 0.9536 | 0.9395 | 0.9409 | 0.9803 | 0.9702 | 0.9518 0.9490 0.9433 | 0.9532 0.9448 0.9397 | 0.9220 0.9520
TIRCNN [48] 0.9660 0.9637 0.9678 0.9715 0.9541 | 0.9538 | 0.9535 | 0.9882 [ 0.9741 | 0.9661 0.9615 0.9567 | 0.9647 0.9546 0.9564 | 0.9361 0.9618
IDBP [49] 0.9522 0.9517 0.9481 0.9669 0.9409 | 0.9491 | 0.9421 | 0.9828 | 0.9621 0.9508 0.9484 0.9404 | 0.9531 0.9320 0.9371 | 0.9148 0.9483
JPG-SR 0.9638 0.9627 0.9812 0.9737 0.9585 | 0.9595 | 0.9531 [ 0.9896 | 0.9733 | 0.9646 0.9594 0.9558 | 0.9698 0.9515 0.9553 | 0.9311 0.9627
SALSA [40] 0.9567 0.9546 0.9312 0.9630 0.9136 | 0.9322 | 0.9597 | 0.9562 | 0.9612 | 0.9547 0.9588 0.9486 | 0.9552 0.9449 0.9435 | 0.9338 0.9480
BPFA [28] 0.9633 0.9605 0.9658 0.9695 0.9555 | 0.9482 | 0.9616 | 0.9721 | 0.9688 | 0.9660 0.9630 0.9583 | 0.9635 0.9552 0.9508 | 0.9363 0.9599
TPPO [*1] 0.9749 0.9778 0.9841 0.9850 0.9764 | 0.9751 | 0.9698 | 0.9892 | 0.9811 | 0.9771 0.9755 [0.9699 | 0.9707 | 0.9712 | 0.9676 | 0.9661 | 0.9757
ISD-SB [47] 0.9505 0.9502 0.9336 0.9586 0.9195 | 0.9358 | 0.9485 | 0.9501 | 0.9549 | 0.9456 | 0.9475 | 0.9384 [ 0.9233 | 0.9373 [ 0.9347 | 0.9233 | 0.9407
Text Inlayed JSM [43] 0.9735 0.9727 0.9828 0.9836 0.9747 | 0.9729 | 0.9689 | 0.9892 | 0.9792 | 0.9715 0.9732 0.9660 | 0.9677 0.9672 0.9637 | 0.9637 0.9732
Aloha [1] 0.9620 0.9530 0.9858 0.9653 0.9723 | 0.9492 | 0.9559 [ 0.9853 [ 0.9755 | 0.9630 0.9528 0.9638 | 0.9619 0.9612 0.9516 | 0.9483 0.9629
NGS [45] 0.9635 0.9527 0.9633 0.9759 0.9412 | 0.9523 | 0.9558 | 0.9558 | 0.9654 | 0.9551 0.9633 0.9511 | 0.9627 0.9525 0.9536 | 0.9508 0.9572
BKSVD [40] 0.9538 0.9474 0.9639 0.9463 0.9479 | 0.9423 | 0.9462 [ 0.9551 [ 0.9584 | 0.9524 0.9479 0.9477 | 09371 0.9416 0.9410 | 0.9324 0.9476
TSLRA [47] 0.9696 0.9690 0.9829 0.9801 0.9725 | 0.9691 | 0.9632 [ 0.9843 [ 0.9695 | 0.9696 0.9697 0.9616 | 0.9653 0.9654 0.9596 | 0.9612 0.9695
IRCNN [18] 0.9700 0.9657 0.9700 0.9764 0.9620 | 0.9582 | 0.9625 | 0.9880 | 0.9747 | 0.9709 | 0.9685 | 0.9659 [ 0.9647 | 0.9626 | 0.9597 | 0.9585 | 0.9674
IDBP [19] 0.9716 0.9732 0.9714 0.9828 0.9638 | 0.9637 | 0.9682 | 0.9873 | 0.9778 | 0.9733 | 0.9703 | 0.9672 | 0.9686 | 0.9649 [ 0.9640 | 0.9614 | 0.9706
JPG-SR 0.9757 0.9771 0.9870 0.9846 0.9773 | 0.9770 [ 0.9703 | 0.9911 | 0.9798 | 0.9760 0.9765 0.9714 | 0.9738 0.9692 0.9679 | 0.9654 0.9763

Moreover, SSR-QC, TGV-SH and COGL are the recently pro-
posed deblocking methods that deliver state-of-the-art results.
In particular, TGV-SH can effectively preserve the image
texture. For comparison, sixteen standard test images are firstly

encoded by a JPEG coder with different QFs, and then decoded
using the standard JPEG decoder. Following this, these JPEG-
compressed images are used to test different image deblocking
methods. The parameters of our proposed JPG-SR based image
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TABLE III

PSNR (dB) COMPARISON OF JPEG, KSVD [2], FOE [35], BM3D [23], SA-DCT [34], PC-LRM [59], ANCE [60], DICTV [53], WNNM [61], SSR-QC
[33], TGV-SH [62], COGL [63] AND JPG-SR FOR IMAGE DEBLOCKING

Quality Factor (QF) = 1
PC- | \NCE | DicTV | WNNM

LRM

23.33] 23.25 | 17.04 | 23.31
23.59] 23.31 | 16.38 | 23.45
24.49| 24.19 | 17.20 | 24.45
23.44]23.29 | 16.76 | 23.51
23.11] 23.11 | 17.72 | 23.10
25.46| 2529 | 17.51 | 25.45
23.17] 2291 | 16.27 | 23.17
23.17] 22.91 | 16.27 | 23.17
26.69] 26.35 | 18.76 | 26.65
26.94] 26.55 | 17.29 | 26.97
24.441 2433 | 17.15 | 24.40
25.85] 25.74 | 19.62 | 25.82
26.38] 26.15 | 18.24 | 26.26
21.94| 21.81 | 18.04 | 21.92
25.58] 2542 | 17.09 | 25.50
19.71] 19.65 | 14.75 | 19.63
24.02| 23.84 | 17.14 | 23.99
Quality Factor (QF) = 30

PC- | \NCE | DicTV | WNNM

LRM
32.54] 3248 | 32.20 | 32.55
32.87] 33.10 | 32.36 | 32.83
33.64] 33.56 | 32.73 | 33.68
30.71] 30.86 | 30.34 | 30.68
31.62| 31.63 | 30.86 | 31.64
35.67| 35.73 | 32.76 | 35.62
31.15] 31.16 | 30.40 | 31.16
28.70| 28.81 | 28.51 | 28.73
36.21] 36.31 | 35.07 | 36.16
35.29] 35.39 | 34.19 | 35.26
33.19( 33.31 | 32.45 | 33.19
35.11] 35.06 | 33.63 | 35.12
35.82{ 36.05 | 32.56 | 35.84
29.71] 29.61 | 28.97 | 29.74
35.18] 35.04 | 33.90 | 35.18
28.16 | 27.95 | 28.01

27.99
32.84| 32.89 | 31.81 | 32.84

Quality Factor (QF) = 20
PC- | \NCE | DicTV | WNNM

LRM

31.17] 31.09 | 31.03 | 31.20
31.13] 31.27 | 30.67 | 31.09
32.23] 32.13 | 31.66 | 32.26
29.40] 29.50 | 29.07 | 29.38
30.26] 30.18 | 29.73 | 30.27
34.30] 34.26 | 32.89 | 34.27
29.67] 29.71 | 29.16 | 29.68
29.67] 29.71 | 29.16 | 29.68
35.07] 35.06 | 34.09 | 35.02
34.41] 34.30 | 33.42 | 34.41
32.00] 32.01 | 31.46 | 32.00
33.84] 33.83 | 32.68 | 33.86
34.44] 34.60 | 33.59 | 34.49
28.60| 28.48 | 28.10 | 28.61
33.80] 33.65 | 32.94 | 33.82
26.81] 26.84 | 26.72 | 26.82
31.53] 31.53 | 30.91 | 31.54
Quality Factor (QF) = 40

PC- | \NCE | DicTV | WNNM

LRM
33.51] 33.52 | 33.00 | 33.51
34.11| 34.44 | 33.45 | 34.09
34.74] 34.66 | 33.52 | 34.76
31.62] 31.77 | 31.35 | 31.59
32.64] 32.68 | 31.65 | 32.68
36.56| 36.64 | 34.86 | 36.51
32.14] 32.12 | 31.24 | 32.16
29.58(29.75 | 29.31 | 29.60
36.93] 37.13 | 35.65 | 36.86
3590 36.15 | 34.68 | 35.89
34.14| 34.44 | 33.36 | 34.14
36.01] 35.94 | 34.29 | 36.01
36.74| 37.00 | 33.55 | 36.73
30.47| 30.42 | 29.67 | 30.51
36.11] 36.05 | 34.51 | 36.08
29.12 | 28.81 | 28.84

28.83
33.75| 33.86 | 32.68 | 33.75

SA-
DCT
23.27
23.30
24.27
23.37
23.11
25.46
22.80
22.80
26.38
26.61
24.32
25.73
26.27
21.80
25.56
19.54
23.83

SSR-
QC
23.22
23.79
24.47
23.49
23.11
25.53
23.19
23.19
26.85
27.00
24.61
25.55
26.30
22.00
25.66
19.86
24.07

TGV-
SH
22.67
23.21
23.49
22.88
22.66
24.98
22.36
2236
25.50
26.18
2391
25.50
25.01
21.56
25.36
19.67
2343

JPG-
SR
23.39
23.76
24.53
23.55
23.16
25.47
23.27
23.27
26.76
27.10
24.68
25.99
26.61
21.99
25.83
19.71
24.14

SA-
DCT
31.10
30.36
31.94
29.40
30.17
34.23
29.38
29.38
35.19
34.12
31.86
33.72
34.75
28.32
33.34
26.37
31.32

SSR-
QC
31.20
31.86
32.44
29.58
30.23
34.40
29.95
29.95
35.50
34.76
32.28
33.93
34.59
28.69
34.29
26.99
31.76

TGV-
SH
30.53
29.96
31.50
29.53
29.66
33.80
28.85
28.85
34.97
33.83
31.60
3345
34.29
28.16
33.38
26.51
31.01

JPG-
SR
31.31
32.58
32.48
29.80
30.30
34.51
30.33
30.33
35.63
34.66
32.25
34.02
35.07
28.78
34.39
27.28
31.93

JPEG

22.01
21.92
22.84
22.27
22.04
23.43
21.63
21.63
24.61
25.00
22.68
24.23
24.57
20.77
23.72
18.72
22.42

KSVD

23.02
22.95
23.65
23.37
22.76
24.92
22.23
22.23
25.96
26.13
24.01
25.63
25.09
21.41
25.09
19.26
23.46

FoE

22.52
22.49
2343
22.67
2251
24.22
22.11
22.11
25.36
25.63
23.34
24.83
25.22
21.22
24.42
19.08
22,99

BM3D

22.97
2297
24.02
23.17
22.83
2481
22.56
22.56
25.77
26.23
23.85
25.23
25.58
21.68
2481
19.56
23.48

COGL

23.20
22.88
23.82
23.22
22.94
24.74
22.57
22.57
26.06
26.16
24.11
25.82
25.67
21.69
2542
19.52
23.59

JPEG

30.11
29.36
30.82
28.59
29.38
32.66
28.51
28.51
33.56
33.02
30.68
32.73
33.46
27.65
3221
25.74
30.30

KSVD

31.01
30.60
31.77
29.11
29.95
33.50
29.38
29.38
34.58
34.10
31.59
33.39
34.39
28.27
33.08
26.70
31.17

FoE

30.91
30.10
31.68
29.11
30.03
33.73
29.18
29.18
34.51
33.83
31.46
33.47
34.42
28.13
33.05
26.16
31.04

BM3D

30.96
30.70
32.08
29.26
30.20
34.19
29.47
29.47
35.06
34.29
31.83
33.75
34.50
28.46
33.67
26.46
31.37

COGL

31.28
30.76
3221
29.97
30.28
34.53
29.68
29.68
3543
34.61
3227
33.94
35.20
28.66
34.01
26.85
31.67

Images

Airplane
Barbara
boats
C. Man
Couple
Elaine
Fence
F. Print
Foreman
House
Lena
Lin
Miss
Pentagon
Plants
Straw
Average

SA-
DCT
32.42
32.10
33.31
30.70
31.49
35.59
30.87
28.17
36.26
35.09
33.04
35.00
36.07
29.42
34.72
27.53
32.61

SSR-
QC
32.68
33.49
33.88
30.85
31.69
35.86
31.40
28.84
36.81
35.73
33.45
35.22
36.05
29.82
35.62
28.22
33.10

TGV-
SH
31.93
31.46
32.98
30.88
31.10
35.24
30.31
27.48
36.31
35.07
32.95
34.68
35.86
29.32
34.94
27.86
32.40

JPG-
SR
32.70
3430
33.96
31.16
31.74
35.98
31.69
28.93
36.96
35.80
33.61
35.26
36.48
29.97
35.84
28.63
3331

SA-
DCT
33.37
33.33
34.38
31.61
32.49
36.43
31.89
29.09
36.96
35.81
33.98
35.87
36.95
30.18
35.66
28.38
33.52

SSR-
QC
33.73
35.04
34.93
31.94
32.74
36.75
3248
29.83
37.59
36.48
34.54
36.10
36.92
30.66
36.63
29.20
34.10

TGV-
SH
32.97
32.65
34.13
31.77
32.13
36.16
31.33
28.41
37.23
35.81
33.93
35.62
36.72
30.19
35.97
28.77
33.36

JPG-
SR
33.78
3542
35.03
32.09
32.84
36.91
32.72
29.98
37.78
36.62
34.74
36.23
37.42
30.82
36.84
29.63
34.30

JPEG

31.52
31.24
32.32
29.94
30.78
34.16
30.09
27.80
34.87
34.20
32.03
34.09
34.96
28.84
33.67
27.03
31.72

KSVD

32.28
32.38
33.22
30.44
31.31
35.02
30.87
28.61
35.75
35.02
32.81
34.66
35.79
29.40
34.45
27.86
32.49

FoE

32.26
31.89
33.12
3042
31.39
35.11
30.70
28.25
35.63
34.85
32.72
34.71
35.80
29.23
3439
27.38
32.37

BM3D

3231
32.46
33.48
30.58
31.53
35.55
30.94
28.37
36.22
35.23
33.03
35.02
3591
29.53
35.03
27.62
32.68

COGL

32.70
32.53
33.55
31.25
31.73
35.92
31.26
28.36
36.69
35.72
33.59
35.20
36.62
29.80
3543
28.18
33.03

JPEG

32.58
32.56
33.42
30.89
31.81
35.18
31.17
28.78
35.73
35.07
33.03
35.01
35.95
29.65
34.63
27.96
32.72

KSVD

33.28
33.64
34.34
31.38
32.35
35.92
31.88
29.50
36.53
35.66
33.80
35.55
36.70
30.19
35.36
28.70
33.42

FoE

33.21
33.08
34.14
31.42
32.34
35.86
31.65
29.24
36.29
35.60
33.61
35.52
36.61
30.08
35.19
28.10
33.25

BM3D

33.30
33.71
34.54
31.50
32.53
36.42
31.95
29.26
36.94
35.95
33.97
35.89
36.81
30.28
35.92
28.47
33.59

COGL

33.70
33.82
34.63
32.15
32.80
36.80
32.20
29.30
37.54
36.43
34.68
36.07
37.52
30.61
36.35
29.09
33.98

Images

Airplane
Barbara
boats
C. Man
Couple
Elaine
Fence
F. Print
Foreman
House
Lena
Lin
Miss
Pentagon
Plants
Straw
Average

Fig. 7.
methods. (a) Image Cai containing a multiple irregular scratch denoted by a
mask; (b) result of TSLRA [47]; (c) result of proposed JPG-SR.

. . . . . . Comparison of multiple irregular scratch removal using different
Fig. 6. Comparison of multiple irregular scratch removal using different

methods. (a) Image Lisha containing a multiple irregular scratch denoted by
a mask; (b) result of TSLRA [47]; (c) result of proposed JPG-SR.

deblocking algorithm are as follows. The size of each patch
Vb x /b is 8 x 8. The searching window for similar patches
is W = 25. The searching matched patches m is set to 60 and
€ = e ' The parameters (1, o, ¢, ¢) are set to (0.04, 0.1,
1.4, 0.0031), (0.03, 0.2, 0.6, 0.0031), (0.02, 0.4, 1, 0.0027),
(0.09, 0.7, 0.7, 0.0008), (0.01, 0.9, 0.4, 0.00079) and (0.07,
0.8, 0.4, 0.0008) for QF < 1,1 < QF <5,5 < QF <10,
10 < QF <20,20 < QF <30 and QF > 30, respectively.

The PSNR and SSIM comparison results for all test images
in the case of QF = 1, 20, 30 and 40 are shown in Table III
and Table IV respectively, with the best results highlighted
in bold. One can observe that the proposed JPG-SR performs
competitively compared to other deblocking methods. In terms
of PSNR, we can see that the proposed JPG-SR outperforms

other competing methods in most cases. The average gains
of the proposed JPG-SR over JPEG, KSVD, FoE, BM3D,
SA-DCT, PC-LRM, ANCE, DicTV, WNNM, SSR-QC, TGV-
SH and COGL methods are as much as 1.63dB, 0.78dB,
1.01dB, 0.64dB, 0.60dB, 0.38dB, 0.39dB, 2.79dB, 0.39dB,
0.16dB, 0.87dB and 0.35dB, respectively. Regarding SSIM,
the proposed JPG-SR achieves 0.0391, 0.0241, 0.0269, 0.0152,
0.0123, 0.0096, 0.0101, 0.0784, 0.0108, 0.0056, 0.0145 and
0.0112 improvement on average over JPEG, KSVD, FoE,
BM3D, SA-DCT, PC-LRM, ANCE, DicTV, WNNM, SSR-
QC, TGV-SH and COGL methods, respectively. In particular,
under the conditions of QF = 30 and 40, the proposed JPG-
SR consistently outperforms other competing methods for all
test images in terms of SSIM. The visual comparisons in the
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TABLE IV

SSIM COMPARISON OF JPEG, KSVD [2], FOE [35], BM3D [23], SA-DCT [34], PC-LRM [59], ANCE [60], DICTV [53], WNNM [61], SSR-QC
[33], TGV-SH [62], COGL [63] AND JPG-SR FOR IMAGE DEBLOCKING

Quality Factor (QF) =1

Quality

Factor

QF) = 20

Tmages

JPEG

KSVD

FoE

BM3D

SA-
DCT

PC-
LRM

ANCE

DicTV

WNNM

SSR-
QC

TGV-
SH

COGL

JPG-
SR

JPEG

KSVD

FoE

BM3D

SA-
DCT

PC-
LRM

ANCE

DicTV

WNNM

SSR-
QC

TGV-
SH

COGL

JPG-
SR

Airplane

0.6601

0.7168

0.6938

0.7040

0.7298

0.7252

0.7269

0.5779

0.7220

0.7235

0.7177

0.7314

0.7376

0.8897

0.9104

0.9107

0.9133

0.9155

0.9152

0.9182

0.9120

0.9143

0.9160

0.9093

0.9217

0.9223

Barbara

0.5284

0.5790

0.5686

0.5806

0.6086

0.6161

0.6050

0.3312

0.6098

0.6335

0.6161

0.5929

0.6323

0.8831

0.9021

0.8964

0.9130

0.9089

0.9158

0.9119

0.8981

0.9152

0.9229

0.8976

0.9036

0.9331

boats

0.6134

0.6326

0.6454

0.6651

0.6749

0.6811

0.6691

0.4570

0.6794

0.6768

0.6449

0.6547

0.6858

0.8738

0.8860

0.8893

0.9038

0.8980

0.9032

0.9015

0.8861

0.9034

0.9095

0.8950

0.9035

C. Man

0.5993

0.6507

0.6184

0.6251

0.6364

0.6527

0.6441

0.5526

0.6531

0.6257

0.6653

0.6656

0.6734

0.8585

0.8659

0.8665

0.8781

0.8804

0.8766

0.8805

0.8647

0.8769

0.8809

0.8769

0.8837

0.9133
0.8846

Couple

0.5109

0.5177

0.5398

0.5432

0.5588

0.5515

0.5545

0.3637

0.5506

0.5589

0.5413

0.5444

0.5650

0.8545

0.8533

0.8624

0.8760

0.8722

0.8723

0.8728

0.8497

0.8715

0.8746

0.8609

0.8758

0.8814

Elaine

0.5915

0.6995

0.6552

0.6671

0.7189

0.7126

0.7085

0.4611

0.7109

0.7193

0.7106

0.6948

0.7184

0.8887

0.9013

0.9097

0.9194

0.9178

0.9177

0.9189

0.8953

0.9165

0.9180

0.9146

0.9207

0.9218

Fence

0.6240

0.5982

0.6403

0.6532

0.6604

0.6675

0.6576

0.4207

0.6670

0.6699

0.6415

0.6383

0.6774

0.8621

0.8657

0.8623

0.8789

0.8754

0.8774

0.8775

0.8603

0.8771

0.8831

0.8665

0.8752

0.8904

F. Print

0.6007

0.5797

0.6097

0.6397

0.6134

0.6497

0.6264

0.0895

0.6434

0.6717

0.6529

0.5796

0.6698

0.9270

0.9348

0.9250

0.9351

0.9326

0.9377

0.9356

0.9305

0.9380

0.9362

0.9148

0.9342

0.9386

Foreman

0.6789

0.7779

0.7318

0.7384

0.7846

0.7870

0.7824

0.6260

0.7819

0.7893

0.7755

0.7831

0.7943

0.8941

0.9133

0.9171

0.9235

0.9219

0.9221

0.9233

0.9094

0.9210

0.9253

0.9210

0.9249

House

0.7202

0.7487

0.7449

0.7563

0.7708

0.7762

0.7686

0.6106

0.7754

0.7756

Lena

0.5980

0.6848

0.6443

0.6559

0.6916

0.6918

0.6906

0.4976

0.6860

0.6981

0.7527
0.6852

0.7577

0.7816

0.8613

0.8680

0.8677

0.8770

0.8722

0.8742

0.8784

0.8706

0.8740

0.8804

0.8743

0.8803

0.9275
0.8805

0.6971

0.7066

0.8828

0.9003

0.8998

0.9140

0.9125

0.9135

0.9138

0.8984

0.9134

0.9178

0.9094

0.9157

0.9196

Lin

0.6606

0.7452

0.6975

0.7004

0.7368

0.7448

0.7463

0.6182

0.7406

0.7213

0.7505

0.7619

0.7605

0.8973

0.9047

0.9122

0.9197

0.9172

0.9172

0.9205

0.9045

0.9166

0.9243

0.9216

0.9225

0.9272

Miss

0.6807

0.7498

0.7240

0.7296

0.7685

0.7666

0.7696

0.5728

0.7598

0.7650

0.7435

0.7616

0.7804

0.8965

0.9128

0.9183

0.9201

0.9220

0.9189

0.9226

0.9093

0.9182

0.9210

0.9161

0.9265

0.9263

Pentagon

0.4160

0.3953

0.4404

0.4548

0.4464

0.4506

0.4419

0.2388

0.4472

0.4597

0.4384

0.4222

0.4536

0.8264

0.8253

0.8232

0.8439

0.8380

0.8428

0.8390

0.8173

0.8422

0.8458

0.8314

0.8454

0.8548

Plants

0.5819

0.6581

0.6287

0.6364

0.6812

0.6771

0.6756

0.4320

0.6747

0.6863

0.6758

0.6821

0.6957

0.8700

0.8850

0.8886

0.9074

0.8957

0.9047

0.9047

0.8841

0.9045

0.9138

0.9007

0.9077

Straw

0.3890

0.2913

0.3953

0.3931

0.3620

0.3704

0.3728

0.1206

0.3577

0.4185

0.4270

0.3567

0.4119

0.8597

0.8773

Average

0.5909

0.6266

0.6236

0.6339

0.6527

0.6575

0.6525

0.4356

0.6537

0.6621

0.6524

0.6453

0.6715

0.8766

0.8879

0.8527
0.8876

0.8751

0.8715

0.8819

0.8999

0.8970

0.8994

0.8778
0.8998

0.8721
0.8851

0.8817

0.8857

0.8745

0.8820

0.9181
0.8977

0.8990

0.9035

0.8928

0.9015

0.9086
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BM3D

SA-
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QC

TGV-
SH
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JPG-
SR

JPEG

KSVD

FoE

BM3D

SA-
DCT

PC-
LRM

ANCE

DicTV

WNNM

SSR-
QC

TGV-
SH

COGL

JPG-
SR

Airplane

0.9166

0.9280

0.9281

0.9357

0.9361

0.9361

0.9377

0.9257

0.9352

0.9379

0.9299

0.9393

0.9399

0.9306

0.9390

0.9354

0.9445

0.9446

0.9447

0.9483

0.9339

0.9433

0.9470

0.9419

0.9495

0.9510

Barbara

0.9173

0.9309

0.9253

0.9377

0.9345

0.9399

0.9387

0.9212

0.9393

0.9447

0.9250

0.9315

0.9526

0.9353

0.9461

0.9359

0.9507

0.9481

0.9525

0.9524

0.9334

0.9522

0.9572

0.9401

0.9463

0.9611

boats

0.9025

0.9127

0.9132

0.9251

0.9196

0.9254

0.9226

0.9024

0.9258

0.9307

0.9193

0.9228

0.9339

0.9196

0.9299

0.9255

0.9384

0.9342

0.9394

0.9368

0.9149

0.9394

0.9432

0.9343

0.9361

0.9454

C. Man

0.8828

0.8911

0.8844

0.9003

0.9011

0.8997

0.9015

0.8819

0.8992

0.9017

0.8981

0.9025

0.9054

0.8985

0.9057

0.9001

0.9132

0.9131

0.9123

0.9141

0.8951

0.9117

0.9144

0.9108

0.9151

0.9173

Couple

0.8922

0.8902

0.8951

0.9071

0.9039

0.9043

0.9068

0.8762

0.9039
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0.8972
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0.9125

0.9130

0.9115

0.9078

0.9249

0.9232

0.9230

0.9255

0.8923

0.9230

0.9255

0.9162

0.9266

0.9299

Elaine

0.9154

0.9240

0.9271

0.9362

0.9350

0.9345

0.9369

0.9030

0.9333

0.9359

0.9324

0.9372
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0.9291

0.9342

0.9323

0.9442

0.9431

0.9428

0.9452

0.9238

0.9419

0.9435

0.9412

0.9453

0.9469

Fence

0.8938

0.8980

0.8891

0.9055

0.9031

0.9053

0.9043

0.8808

0.9052

0.9082

0.8943

0.9031

0.9135

0.9124
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0.9035

0.9220
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0.9208

0.8947

0.9218
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Foreman
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0.8824
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0.8943

0.8807

0.9334
0.8852

0.9394
0.8959

0.9357

0.9375

0.9417

0.9283

0.9359

0.9340

0.9435

0.9405

0.9411

0.9449

0.9265

0.9404

0.9467

0.9437

0.9455

0.9489

0.8920

0.8965

0.8985

0.8981

0.8910

0.8954

0.9015

0.8988

0.8945

0.9056

0.8876

0.8943

0.9072

0.9033

0.9080

0.9104

Lena

0.9093

0.9213

0.9190

0.9319

0.9304

0.9314

0.9321

0.9124

0.9313

0.9348

0.9275

0.9329

0.9370

0.9247

0.9340

0.9259

0.9421

0.9414

0.9417

0.9437

0.9217

0.9415

0.9450

0.9389

0.9441

0.9474

Lin

0.9220

0.9245

0.9302

0.9387

0.9365

0.9362

0.9382

0.9181

0.9357

0.9403

0.9383

0.9381

0.9434

0.9350

0.9351

0.9354

0.9481

0.9462

0.9456

0.9473

0.9251

0.9451

0.9491

0.9477

0.9474

0.9521

Miss

0.9176

0.9269

0.9303

0.9333

0.9338

0.9307

0.9357

0.9030

0.9302

0.9338

0.9318

0.9393

Pentagon

0.8646

0.8683

0.8594

0.8784

0.8746

0.8797

0.8755

0.8458

0.8800

0.8819

0.8694

0.8810

0.9395
0.8889

0.9305

0.9365

0.9363

0.9418

0.9420

0.9395

0.9444

0.9188

0.9384

0.9421

0.9411

0.9471

0.9475

0.8857

0.8915

0.8850

0.8974

0.8950

0.8993

0.8962

0.8649

0.8999

0.9015

0.8913

0.9006

0.9068

Plants

0.9022

09116

0.9126

0.9292

0.9215

0.9274

0.9274

0.9012

0.9269

0.9337

0.9255

0.9293

0.9374

0.9190

0.9265

0.9223

0.9410

0.9350

0.9399

0.9402

0.9109

0.9389

0.9452

0.9384

0.9413

0.9487

Straw

0.8968

0.9106

0.8902

0.9076

0.9053

0.9139

0.9128

0.9047

0.9142

0.9179

0.9102

0.9153

0.9270

0.9163

0.9271

0.9030

0.9244

0.9225

0.9297

0.9308

0.9212

0.9298

0.9351

0.9274

0.9316

0.9421

Average

0.9049

0.9125

0.9100

0.9216

0.9192

0.9212

0.9222

0.9016

0.9208

0.9250

0.9165

0.9230

0.9291

0.9208

0.9265

0.9208

0.9337

0.9317

0.9332

0.9349

0.9137

0.9328

0.9368

0.9299

0.9353

0.9405

Fig. 8.
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Visual comparison results of image Barbara at QF = 20. (a) Original image; (b) JPEG compressed image (PSNR = 29.36dB, SSIM = 0.8831);

(c) KSVD [2] (PSNR = 30.60dB, SSIM = 0.9021); (d) FoE [35] (PSNR = 30.10dB, SSIM = 0.8964); (e) BM3D [23] (PSNR = 30.70dB, SSIM = 0.9130);
(f) SA-DCT [34] (PSNR = 30.36dB, SSIM = 0.9089); (g) PC-LRM [59] (PSNR = 31.13dB, SSIM = 0.9158); (h) ANCE [60] (PSNR = 31.27dB, SSIM =
0.9119); (i) DicTV [53] (PSNR = 30.67dB, SSIM = 0.8981); (j) WNNM [61] (PSNR = 31.09dB, SSIM = 0.9152); (k) SSR-QC [33] (PSNR = 31.86dB,
SSIM = 0.9229); (I) TGV-SH [62] (PSNR = 29.96dB, SSIM = 0.8976); (m) COGL [63] (PSNR = 30.76dB, SSIM = 0.9036); (n) JPG-SR (PSNR =

32.58dB, SSIM = 0.9331).

case of QF = 20 for images Barbara and C. Man are shown
in Fig. 8 and Fig. 9, respectively. It can be seen that the
blocking artifacts are obvious in the image decoded directly by
the standard JPEG. FoE and DicTV methods can only suppress
the blocking artifacts partially, but many blocking artifacts
are still existing in the restored images. KSVD, BM3D,
SA-DCT, PC-LRM, ANCE, WNNM and SSR-QC methods
obtain better results than FoE and DicTV. However, they often
generate zigzag artifacts and blur effects. SSR-QC and COGL3

3Compared with our proposed JPG-SR method, COGL has a higher PSNR
result for image C. Man. But COGL method markedly produces the over-
smooth effect in Fig. 9 (m).

methods are effective at capturing image textures and edges,
but they often produce over-smooth effects. Our proposed
JPG-SR method not only removes blocking artifacts across
the image, but also preserves sharp edges and fine details
effectively.

Recently, deep learning based techniques for image deblock-
ing have drawn considerable attention owing to its impressive
performance. We compare the proposed JPG-SR with the AR-
CNN [65] method, since it is the baseline of convolutional
neural network (CNN) based image deblocking algorithms.
As shown in Table V, it can be seen that our proposed
method is comparable with AR-CNN. Under different QFs,
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Fig. 9.

Visual comparison results of image C. Man at QF = 20. (a) Original image; (b) JPEG compressed image (PSNR = 28.59dB, SSIM = 0.8585);

(c) KSVD [2] (PSNR = 29.11dB, SSIM = 0.8659); (d) FoE [35] (PSNR = 29.11dB, SSIM = 0.8665); (e¢) BM3D [23] (PSNR = 29.26dB, SSIM = 0.8781);
(f) SA-DCT [34] (PSNR = 29.40dB, SSIM = 0.8804); (g) PC-LRM [59] (PSNR = 29.40dB, SSIM = 0.8766); (h) ANCE [60] (PSNR = 29.50dB, SSIM =
0.8805); (i) DicTV [53] (PSNR = 29.07dB, SSIM = 0.8647); (j) WNNM [61] (PSNR = 29.38dB, SSIM = 0.8769); (k) SSR-QC [33] (PSNR = 29.58dB,
SSIM = 0.8809); (I) TGV-SH [62] (PSNR = 29.53dB, SSIM = 0.8769); (m) COGL [63] (PSNR = 29.97dB, SSIM = 0.8837); (n) JPG-SR (PSNR =

29.80dB, SSIM = 0.8846).

TABLE V

PSNR IN dB (Top ENTRY IN EACH CELL) AND SSIM (BOTTOM ENTRY)
RESULTS OF AR-CNN [65] AND THE PROPOSED JPG-SR METHODS
FOR IMAGE DEBLOCKING

Images QF =10 QF =20 QF =30 QF =40

AR-CNN| ours |[AR-CNN| ours |AR-CNN| ours | AR-CNN| ours
Airplane 29.15 |28.67 | 31.71 |31.31| 33.19 [32.70 | 3420 |33.78
0.8841 [0.8751| 0.9242 [0.9223| 0.9426 [0.9399] 0.9520 [0.9510

Barbara 27770 |28.69 | 31.00 |32.58| 3275 [34.30| 3395 |3542
0.8306 [0.8642] 0.9105 [0.9331| 0.9373 |0.9526| 0.9499 [0.9611

boat 29.74 |29.58 | 3237 |3248| 33.86 |33.96| 3484 |35.03
0.8545 [0.8573| 0.9047 [0.9133| 0.9283 |0.9339| 0.9398 |0.9454

C. Man 27.63 |27.47 | 2939 |29.80| 30.76 |31.16 | 31.49 | 32.09
. 0.8305 [0.8375| 0.8684 |0.8846| 0.8922 [0.9054| 0.9032 [0.9173
Couple 2798 |27.77 | 3028 [3030| 31.86 |31.74| 3279 | 32.84
0.8033 [0.8052] 0.8744 [0.8814| 0.9107 |0.9125] 0.9268 [0.9299

Elaine 3192 |31.66 | 3446 |3451| 3598 [3598| 36.86 | 36.91
0.8801 [0.8792] 0.9177 [0.9218| 0.9363 [0.9388] 0.9453 [0.9469

Fence 27.05 |27.31 | 29.65 [3033| 31.14 |31.69| 32.09 | 3272
0.8161 [0.8238] 0.8790 [0.8904| 0.9060 |0.9135| 0.9223 |0.9287

E Print 2480 |24.97 | 27.14 |27.55| 2857 [28.93] 29.54 |29.98
0.8851 [0.8905] 0.9349 [0.9386| 0.9535 |0.9557| 0.9624 |0.9646

Foreman 33.38 |33.14 | 35.66 |35.63| 37.09 |3696| 37.87 |37.78
0.8995 [0.8969| 0.9251 [0.9275] 0.9408 [0.9417| 0.9481 |0.9489

House 32.53 [32.61 | 3452 |34.66 | 3562 |3580| 3632 | 36.62
0.8546 [0.8557| 0.8795 [0.8805| 0.8957 |0.8985| 0.9060 |0.9104

Lena 30.05 |29.68 | 3243 [3225| 33.92 [33.61| 3487 |34.74
0.8711 [0.8697| 0.9151 [0.9196| 0.9352 [0.9370| 0.9450 [0.9474

Lin 30.37 [31.50 | 31.46 |34.02| 3252 [3526| 33.16 | 36.23
0.8484 10.8863| 0.8713 [0.9272| 0.8890 |0.9434| 0.8984 [0.9521

Miss 32.65 [32.74| 3520 |35.07| 3646 |3648 | 37.11 |37.42
0.8944 [0.8919] 0.9241 [0.9263| 0.9387 |0.9395| 0.9470 |0.9475

Pentagon 2649 |26.64 | 28.60 |28.78| 29.74 |29.97 | 30.69 | 30.82
0.7631 [0.7705| 0.8479 |0.8548| 0.8833 [0.8889| 0.9035 [0.9068

Plants 31.66 |31.43 | 3432 [3439| 35.86 |35.84| 3673 | 36.84
0.8633 [0.8633| 0.9110 [0.9181| 0.9337 |0.9374| 0.9444 ]0.9487

Straw 2474 |24.81 | 2691 |27.28| 2831 [28.63| 29.17 | 29.63
0.8087 [0.8157| 0.8834 [0.8977| 0.9180 [0.9270| 0.9326 [0.9421

Average 29.24 12929 | 3157 [31.93| 3298 [33.31] 3386 | 34.30
0.8492 [0.8552] 0.8982 [0.9086| 0.9214 |0.9291| 0.9329 |0.9405

the proposed JPG-SR obtains better results than AR-CNN
in the majority of cases. The average PSNR and SSIM gain
of our proposed method over AR-CNN is up to 0.30dB and
0.0079, respectively. The visual comparison results of image
Fence and Straw with QF = 20 are presented in Fig. 10
and Fig. 11, respectively. One can observe that AR-CNN still

Fig. 10. Visual comparison results of image Fence at QF = 20. (a) Orig-
inal image; (b) JPEG compressed image (PSNR = 28.51dB, SSIM =
0.8621); (c) AR-CNN [65] (PSNR = 29.65dB, SSIM = 0.8790); (d) JPG-SR
(PSNR = 30.33dB, SSIM = 0.8904).

Fig. 11.
inal image; (b) JPEG compressed image (PSNR =

Visual comparison results of image Straw at QF = 20. (a) Orig-
25.74dB, SSIM =
0.8597); (c) AR-CNN [65] (PSNR = 26.91dB, SSIM = 0.8834); (d) JPG-SR
(PSNR = 27.28dB, SSIM = 0.8977).

suffers from undesirable artifacts, while the proposed JPG-SR
algorithm eliminates the blocking artifacts more effectively
than AR-CNN. These results further verify the superiority of
the proposed algorithm.

C. Suitable Setting of the ADMM Balance Factor

The ADMM balance factor x plays an important role in our
proposed JPG-SR based image restoration algorithm. In this
subsection, we discuss how to set the ADMM balance factor u
for the proposed algorithm. We firstly fix other parameters. For
image inpainting, the effects of x values on average algorithm
performance for five test images are shown in Fig. 12 (a)-(e).
One can observe that the best performance of each case (80%,

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.



ZHA et al.: IMAGE RESTORATION USING JOINT PATCH-GROUP-BASED SPARSE REPRESENTATION

7747

-2-80% pixels missing
25 - ->-Text Removal
) o o - —
T = ) o --60% pixels missing
o o = o . x »
Z s Z ->-70% pixels missing Z
[%2] [ n
o o o
2|
Z‘SU o 0z "L 0% o4 08 Uﬂ o1 02 03 04 05 290 0.1 0.2 /J 0.1 0.2 03 04 05
H Iz
(b) (c) O]
6 N T = 29.35 - .
~QF=5
203t
o —
s 8
o s ~
o o
2015
205 201
o oz o1 s s \ o 02 oe s os o 02 ot "
w w w
® (& () G

Fig. 12. Setting the different ADMM balance factor for the influence of image restoration tasks. Top row: the influence of different 4 upon inpainting results
under different pixels missing cases. Bottom row: the influence of different @ upon deblocked results under different QF cases.

TABLE VI

AVERAGE PSNR (dB) (TopP ENTRY) AND SSIM (BOoTTOM ENTRY) COM-
PARISON OF PSR, GSR AND THE PROPOSED JPG-SR FOR IMAGE
RESTORATION TASKS ON SET 11 DATASET [66]

Image Deblocking
QF 5 10 20 30 40 Average
PSR 25.90 28.48 30.78 32.08 33.03 30.06
0.7769 | 0.8508 | 0.8989 | 0.9188 | 0.9307 0.8752
GSR 26.13 28.90 31.50 32.64 33.73 30.58
0.7883 | 0.8646 | 09115 | 0.9269 0.9387 0.8860
JPG-SR 26.28 28.93 31.65 33.06 34.07 30.80
0.8005 | 0.8713 | 0.9174 | 0.9347 | 0.9443 0.8936
Image Inpainting
pixel | gng | 70% | 60% | 50% text | Average
missing removal
PSR 27.07 29.45 32.13 34.33 32.08 31.01
0.8645 | 0.8973 | 0.9464 | 0.9655 | 0.9188 0.9185
GSR 28.44 30.72 32.51 34.15 35.80 32.32
0.8807 | 0.9174 | 0.9383 | 0.9521 0.9728 0.9323
JPG-SR 28.35 31.03 32.92 34.90 36.20 32.68
0.8935 | 0.9316 | 0.9518 | 0.9656 | 0.9784 0.9442

70%, 60%, 50% pixels missing and text removal) is usually
achieved with x in the range [0.1, 0.3]. Therefore, in this
paper, u is set 0.2 for all image inpainting tasks. u is set by
Eq. (33) in image deblocking task, which is then dependent on
the scaling factor . We thus discuss the influence of scaling
factor w for the the proposed algorithm. The effects of w values
on average algorithm performance for five test images are
shown in Fig. 12 (f)-(j). It can be seen that the best deblocking
performance of the proposed JPG-SR algorithm is obtained
with @ in the range [0.09, 0.2], [0.1, 0.3], [0.3, 0.5], [0.6, 0.8]
and [0.3, 0.5] with QF = 1, 5, 10, 20 and 30, respectively.
Therefore, in image deblocking, we set v = 0.1, 0.2, 0.4,
0.7 and 0.4 for QF = 1, 5, 10, 20 and 30, respectively.

D. Ablation Study

In this subsection, we conduct an ablation study of the pro-
posed JPG-SR model, by prohibiting the PSR model and GSR
model in the JPG-SR image restoration algorithm, respectively.
The variants are reduced to PSR-based image restoration

algorithm [2] and GSR-based image restoration algorithm.
Table VI shows the average PSNR and SSIM results over all
test images from Set 11 (11 images) dataset [66], achieved
by our proposed JPG-SR based image restoration algorithm,
as well as its two variants. For image deblocking, the proposed
JPG-SR obtains the best performance with comparison to other
competing methods. For image inpainting, on average, our
proposed JPG-SR also achieves the best performance with
comparison to other competing methods. Under the condition
of 80% pixels missing, though the PSNR result of the proposed
JPG-SR is lower than GSR, the SSIM result of our proposed
JPG-SR is significantly better than GSR. This phenomenon
has been explained in [58]. Therefore, this experiment shows
that both the PSR and GSR models contribute significantly to
the success of the proposed JPG-SR model. This experiment
also further demonstrates that the proposed model is feasible.
Furthermore, in our proposed model, we can use the powerful
deep prior models [48], [49] to replace the PSR model, because
most of deep models focused on exploiting image local
properties. Then, the proposed model can provide a mutual
complementary between feature space and image space.

E. Convergence

Since the proposed model is non-convex, it is difficult
to give its theoretical proof for global convergence. Hereby,
we provide the empirical evidence to illustrate the good
convergence behavior of our proposed model in Fig. 13.
It shows the curves of the PSNR values versus the iteration
numbers for image deblocking with QF = 20 and image
inpainting with 80% pixels missing, respectively. It can be
seen that with the increase of iteration numbers, the PSNR
curves of the reconstructed images gradually increase and
eventually become flat and stable. Clearly, the proposed JPG-
SR algorithm enjoys a good convergence performance.

F. Running Time

In this subsection, we report the running time of the
proposed JPG-SR based image restoration algorithm with
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TABLE VII
RUNNING TIME (S) OF DIFFERENT IMAGE RESTORATION METHODS
Image Deblocking
SA- PC- . SSR- TGV- JPG-
Methods KSVD FoE BM3D DCT LRM ANCE | DicTV WNNM QC SH COGL SR
Time 25.48 36.46 0.74 3.47 14.63 57.21 16.59 63.84 20.65 118.74 129.20 105.07
Image Inpainting
Methods | SALSA BPFA IPPO Igg- JSM Aloha NGS BKSVD | TSLRA | IRCNN IDBP ng(g )
Time 3.46 1011.64 | 124.53 | 19.09 | 245.00 | 651.69 99.42 12156.18 691.55 12.72 23.87 1001.63
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Fig. 13. Convergence behavior. (a) PSNR results versus iteration number for
image deblocking with QF = 20. (b) PSNR results versus iteration number
for image inpainting with 80% pixels missing.

comparison to all competing methods. All experiments are
conducted on an Intel (R) Core (TM) i15-4570 with 3.20Hz
CPU PC under the Matlab 2016b environment. We use a
widely used image House as an example for all competing
methods. For image deblocking, the JPEG-compressed image
is generated by using the image House with QF = 5. As can
be seen in the upper part of Table VII, the proposed JPG-SR
requires less than 2 minutes for an image, which is faster
than TGV-SH and COGL methods. For image inpainting, 80%
pixels are missing for image House. According to lower part
of Table VII, the proposed JPG-SR method requires about
15-17 minutes for an image, which is faster than BPFA and
BKSVD methods. The proposed JPG-SR algorithm appears to
require more time because the block matching and dictionary
learning via SVD require a highly computational workload.
We are working on using GPU hardware to accelerate the
proposed algorithm since the block matching and SVD of each
patch group can be performed in parallel.

VI. CONCLUSION

A new sparse representation model, dubbed joint patch-
group based sparse representation has been proposed in this
paper. Compared to existing sparse representation models,
the proposed JPG-SR integrated both local sparsity and non-
local self-similarity of the image. We have developed an
iterative algorithm based on the ADMM framework to solve
the proposed model for image restoration tasks, including
image inpainting and image deblocking. Experimental results
have demonstrated that the proposed algorithm is effective and
outperforms many state-of-the-art methods both quantitatively
and qualitatively.

improve the manuscript.

REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736-3745, Dec. 2006.

[2] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” [EEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.

[3] B. Wen, S. Ravishankar, and Y. Bresler, “Structured overcomplete sparsi-
fying transform learning with convergence guarantees and applications,”
Int. J. Comput. Vis., vol. 114, nos. 2-3, pp. 137-167, Sep. 2015.

[4] Z.Zha, X. Yuan, B. Wen, J. Zhou, and C. Zhu, “Joint patch-group based
sparse representation for image inpainting,” in Proc. The 10th Asian
Conf. Mach. Learn., in Proceedings of Machine Learning Research,
vol. 95, J. Zhu and I. Takeuchi, Eds. Beijing, China: PMLR, Nov. 2018,
pp. 145-160.

[5] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 2272-2279.

[6] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation
for image restoration,” [EEE Trans. Image Process., vol. 23, no. 8,
pp. 3336-3351, Aug. 2014.

[7]1 R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary-
learning algorithm for the analysis sparse model,” IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 661-677, Feb. 2013.

[8] X. Li, H. Shen, L. Zhang, and H. Li, “Sparse-based reconstruction of
missing information in remote sensing images from spectral/temporal
complementary information,” ISPRS J. Photogramm. Remote Sens.,
vol. 106, pp. 1-15, Aug. 2015.

[91 X. Wei, H. Shen, and M. Kleinsteuber, “Trace quotient with spar-
sity priors for learning low dimensional image representations,” /EEE
Trans. Pattern Anal. Mach. Intell., early access, Jun. 5, 2019, doi: 10.
1109/TPAMIL.2019.2921031.

[10] W. Dong, G. Shi, Y. Ma, and X. Li, “Image restoration via simultaneous
sparse coding: Where structured sparsity meets Gaussian scale mixture,”
Int. J. Comput. Vis., vol. 114, nos. 2-3, pp. 217-232, Sep. 2015.

[11] Z. Zha, X. Yuan, B. Wen, J. Zhou, J. Zhang, and C. Zhu, “A benchmark
for sparse coding: When group sparsity meets rank minimization,” /[EEE
Trans. Image Process., vol. 29, pp. 5094-5109, Mar. 2020.

[12] X.Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, and G. Yang, “Recovering
quantitative remote sensing products contaminated by thick clouds and
shadows using multitemporal dictionary learning,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 11, pp. 70867098, Nov. 2014.

[13] Y. Sun et al, “Discriminative local sparse representation by robust
adaptive dictionary pair learning,” IEEE Trans. Neural Netw. Learn.
Syst., early access, Jan. 14, 2020, doi: 10.1109/TNNLS.2019.2954545.

[14] B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler, “Transform learning
for magnetic resonance image reconstruction: From model-based learn-
ing to building neural networks,” IEEE Signal Process. Mag., vol. 37,
no. 1, pp. 41-53, Jan. 2020.

[15] N. Qi, Y. Shi, X. Sun, J. Wang, B. Yin, and J. Gao, “Multi-dimensional
sparse models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 1,
pp. 163-178, Jan. 2018.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TNNLS.2019.2954545
http://dx.doi.org/10.1109/TPAMI.2019.2921031
http://dx.doi.org/10.1109/TPAMI.2019.2921031

ZHA et al.: IMAGE RESTORATION USING JOINT PATCH-GROUP-BASED SPARSE REPRESENTATION

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

X. Li, H. Shen, H. Li, and L. Zhang, “Patch matching-based mul-
titemporal group sparse representation for the missing information
reconstruction of remote-sensing images,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3629-3641, Aug. 2016.
J. Ling, Z. Chen, and F. Wu, “Class-oriented discriminative dictionary
learning for image classification,” IEEE Trans. Circuits Syst. Video Tech-
nol., early access, May 24, 2019, doi: 10.1109/TCSVT.2019.2918852.

Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learning
in face recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., Jun. 2010, pp. 2691-2698.

Budianto and D. P. K. Lun, “Robust fringe projection profilometry via
sparse representation,” IEEE Trans. Image Process., vol. 25, no. 4,
pp.- 1726-1739, Apr. 2016.

M. Elad and I. Yavneh, “A plurality of sparse representations is better
than the sparsest one alone,” IEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4701-4714, Oct. 2009.

W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-
resolution by adaptive sparse domain selection and adaptive regular-
ization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838-1857,
Jul. 2011.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, Jun. 2005, pp. 60-65.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.

L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising
by principal component analysis with local pixel grouping,” Pattern
Recognit., vol. 43, no. 4, pp. 1531-1549, Apr. 2010.

M. Li, J. Liu, Z. Xiong, X. Sun, and Z. Guo, “Marlow: A joint multi-
planar autoregressive and low-rank approach for image completion,” in
Proc. Eur. Conf. Comput. Vis. Amsterdam, The Netherlands: Springer,
Sep. 2016, pp. 819-834.

J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy K-nearest neighbor
algorithm,” [/EEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 4,
pp- 580-585, Jul. 1985.

W. Dong, P. Wang, W. Yin, G. Shi, FE. Wu, and X. Lu, “Denoising prior
driven deep neural network for image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 10, pp. 2305-2318, Oct. 2019.

M. Zhou et al., “Nonparametric Bayesian dictionary learning for analysis
of noisy and incomplete images,” IEEE Trans. Image Process., vol. 21,
no. 1, pp. 130-144, Jan. 2012.

Z. Xu and J. Sun, “Image inpainting by patch propagation using patch
sparsity,” IEEE Trans. Image Process., vol. 19, no. 5, pp. 1153-1165,
May 2010.

Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data
reconstruction in remote sensing image with a unified spatial-temporal—
spectral deep convolutional neural network,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 8, pp. 4274-4288, Aug. 2018.

X. Liu, X. Wu, J. Zhou, and D. Zhao, “Data-driven sparsity-
based restoration of JPEG-compressed images in dual transform-pixel
domain,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5171-5178.

J. Zhang, R. Xiong, C. Zhao, Y. Zhang, S. Ma, and W. Gao,
“CONCOLOR: Constrained non-convex low-rank model for image
deblocking,” IEEE Trans. Image Process., vol. 25, no. 3, pp. 1246-1259,
Mar. 2016.

C. Zhao, J. Zhang, S. Ma, X. Fan, Y. Zhang, and W. Gao, “Reducing
image compression artifacts by structural sparse representation and
quantization constraint prior,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 27, no. 10, pp. 2057-2071, Oct. 2017.

A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive
DCT for high-quality denoising and deblocking of grayscale and color
images,” IEEE Trans. Image Process., vol. 16, no. 5, pp. 1395-1411,
May 2007.

D. Sun and W.-K. Cham, “Postprocessing of low bit-rate block DCT
coded images based on a fields of experts prior,” IEEE Trans. Image
Process., vol. 16, no. 11, pp. 2743-2751, Nov. 2007.

B. He, L.-Z. Liao, D. Han, and H. Yang, “A new inexact alternating
directions method for monotone variational inequalities,” Math. Pro-
gram., vol. 92, no. 1, pp. 103-118, Mar. 2002.

S. Boyd, “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1-122, 2011.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655-4666, Dec. 2007.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

(58]

[59]

[60]

[61]

[62]

7749

D. L. Donoho and Y. Tsaig, “Fast solution of {|-norm minimization
problems when the solution may be sparse,” IEEE Trans. Inf. Theory,
vol. 54, no. 11, pp. 47894812, Nov. 2008.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An aug-
mented Lagrangian approach to the constrained optimization formulation
of imaging inverse problems,” IEEE Trans. Image Process., vol. 20,
no. 3, pp. 681-695, Mar. 2011.

I. Ram, M. Elad, and I. Cohen, “Image processing using smooth
ordering of its patches,” IEEE Trans. Image Process., vol. 22, no. 7,
pp. 2764-2774, Jul. 2013.

L. He and Y. Wang, “Iterative support detection-based split Bregman
method for wavelet frame-based image inpainting,” IEEE Trans. Image
Process., vol. 23, no. 12, pp. 5470-5485, Dec. 2014.

J. Zhang, D. Zhao, R. Xiong, S. Ma, and W. Gao, “Image restoration
using joint statistical modeling in a space-transform domain,” [EEE
Trans. Circuits Syst. Video Technol., vol. 24, no. 6, pp. 915-928,
Jun. 2014.

K. Hwan Jin and J. Chul Ye, “Annihilating filter-based low-rank Hankel
matrix approach for image inpainting,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 3498-3511, Nov. 2015.

H. Liu, R. Xiong, X. Zhang, Y. Zhang, S. Ma, and W. Gao, “Nonlocal
gradient sparsity regularization for image restoration,” IEEE Trans.
Circuits Syst. Video Technol., vol. 27, no. 9, pp. 1909-1921, Sep. 2017.
J. G. Serra, M. Testa, R. Molina, and A. K. Katsaggelos, “Bayesian
K-SVD using fast variational inference,” IEEE Trans. Image Process.,
vol. 26, no. 7, pp. 3344-3359, Jul. 2017.

Q. Guo, S. Gao, X. Zhang, Y. Yin, and C. Zhang, “Patch-based image
inpainting via two-stage low rank approximation,” IEEE Trans. Vis.
Comput. Graphics, vol. 24, no. 6, pp. 2023-2036, Jun. 2018.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 2808-2817.

T. Tirer and R. Giryes, “Image restoration by iterative denoising and
backward projections,” IEEE Trans. Image Process., vol. 28, no. 3,
pp. 1220-1234, Mar. 2019.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image
recovery using variable splitting and constrained optimization,” /EEE
Trans. Image Process., vol. 19, no. 9, pp. 2345-2356, Sep. 2010.

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Super-resolution
reconstruction of compressed video using transform-domain statistics,”
IEEE Trans. Image Process., vol. 13, no. 1, pp. 33—43, Jan. 2004.

M. A. Robertson and R. L. Stevenson, “DCT quantization noise in
compressed images,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
no. 1, pp. 27-38, Jan. 2005.

H. Chang, M. K. Ng, and T. Zeng, “Reducing artifacts in JPEG
decompression via a learned dictionary,” IEEE Trans. Signal Process.,
vol. 62, no. 3, pp. 718-728, Feb. 2014.

Z. Zha, X. Yuan, J. Zhou, C. Zhu, and B. Wen, “A hybrid structural
sparse error model for image deblocking,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 2493-2497.
S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation-based image restoration,” Multiscale
Model. Simul., vol. 4, no. 2, pp. 460-489, Jan. 2005.

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Trans. Image Process., vol. 9,
no. 9, pp. 1532-1546, Sep. 2000.

W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,” IEEE Trans. Image Process.,
vol. 22, no. 2, pp. 700-711, Feb. 2013.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” /EEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

J. Ren, J. Liu, M. Li, W. Bai, and Z. Guo, “Image blocking artifacts
reduction via patch clustering and low-rank minimization,” in Proc. Data
Compress. Conf., Mar. 2013, p. 516.

X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao, “Compression
artifact reduction by overlapped-block transform coefficient estimation
with block similarity,” IEEE Trans. Image Process., vol. 22, no. 12,
pp. 4613-4626, Dec. 2013.

S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang, “Weighted
nuclear norm minimization and its applications to low level vision,” Int.
J. Comput. Vis., vol. 121, no. 2, pp. 183-208, Jan. 2017.

Y. Gao and X. Yang, “A cartoon-texture approach for JPEG/JPEG 2000
decompression based on TGV and shearlet transform,” IEEE Trans.
Image Process., vol. 28, no. 3, pp. 1356-1365, Mar. 2019.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TCSVT.2019.2918852

7750

[63] S.I. Young, A. T. Naman, and D. Taubman, “COGL: Coefficient graph
Laplacians for optimized JPEG image decoding,” IEEE Trans. Image
Process., vol. 28, no. 1, pp. 343-355, Jan. 2019.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2012, pp. 1097-1105.

[65] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 576-584.

[66] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “ReconNet:

Non-iterative reconstruction of images from compressively sensed mea-
surements,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 449-458.

Zhiyuan Zha (Member, IEEE) received the Ph.D.
degree with the School of Electronic Science and
Engineering, Nanjing University, Nanjing, China,
in 2018. His current research interests include
inverse problems in image/video processing, sparse
signal representation, and machine learning. He was
a recipient of the Best Paper Award at the
IEEE International Conference on Multimedia and
Expo (ICME) in 2017.

Xin Yuan (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees from Xidian Univer-
sity in 2007 and 2009, respectively, and the Ph.D.
degree from The Hong Kong Polytechnic University
in 2012. He is currently a Video Analysis and a Cod-
ing Lead Researcher with Bell Labs, Murray Hill,
NJ, USA. Prior to this, he was a Postdoctoral Asso-
ciate with the Department of Electrical and Com-
puter Engineering, Duke University, from 2012 to
2015, where he was working on compressive sensing
- and machine learning. He has been an Associate
Editor of Pattern Recognition since 2019.

Bihan Wen (Member, IEEE) received the B.Eng.
degree in electrical and electronic engineering
from Nanyang Technological University, Singapore,
in 2012, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Illinois at Urbana—Champaign, USA, in 2015 and
2018, respectively. He is currently a Nanyang
Assistant Professor with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore. His research interests span
areas of machine learning, computational imaging,
computer vision, image and video processing, and big data applications.
He was a recipient of the 2016 Yee Fellowship and the 2012 Professional
Engineers Board Gold Medal.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Jiachao Zhang (Member, IEEE) received the M.S.
degree in electrical engineering from the Univer-
sity of Dayton, Dayton, OH, USA, in 2015, and
the Ph.D. degree from the Nanjing University of
Science and Technology, Nanjing, China, in 2011,
respectively. She is currently an Assistant Professor
with the Artificial Intelligence Institute of Indus-
trial Technology, Nanjing Institute of Technology,
Nanjing. Her research interests include color image
processing and computer vision.

Jiantao Zhou (Senior Member, IEEE) received
the B.Eng. degree from the Department of Elec-
tronic Engineering, Dalian University of Technology,
in 2002, the M.Eng. degree from the Department of
Radio Engineering, Southeast University, in 2005,
and the Ph.D. degree from the Department of Elec-
tronic and Computer Engineering, Hong Kong Uni-
versity of Science and Technology, in 2009. He held

\ various research positions with the University of
}‘ L Illinois at Urbana—Champaign, the Hong Kong Uni-
! . * versity of Science and Technology, and McMaster
University. He is currently an Associate Professor with the Department of
Computer and Information Science, Faculty of Science and Technology,
University of Macau. He holds four granted U.S. patents and two granted
Chinese patents. His research interests include multimedia security and
forensics, and multimedia signal processing. He has coauthored two articles
that received the Best Paper Award at the IEEE Pacific-Rim Conference
on Multimedia in 2007 and the Best Student Paper Award at the IEEE
International Conference on Multimedia and Expo in 2016. He has been an
Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING since
2019.

Ce Zhu (Fellow, IEEE) received the B.S. degree in
electronic and information engineering from Sichuan
University, Chengdu, China, in 1989, and the M.Eng.
and Ph.D. degrees in electronic and information
engineering from Southeast University, Nanjing,
China, in 1992 and 1994, respectively. He held a
postdoctoral research position with the Chinese Uni-
versity of Hong Kong in 1995, The City University
of Hong Kong, and the University of Melbourne,
Australia, from 1996 to 1998. He was with Nanyang
Technological University, Singapore, for 14 years
from 1998 to 2012, where he was a Research Fellow, a Program Manager,
an Assistant Professor, and then promoted to an Associate Professor in 2005.
He has been with the University of Electronic Science and Technology of
China, Chengdu, China, as a Professor since 2012. His research interests
include video coding and communications, video analysis and processing,
3D video, and visual perception and applications. He has served on the
editorial boards of a few journals, including as an Associate Editor of IEEE
TRANSACTIONS ON IMAGE PROCESSING, the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, the IEEE TRANS-
ACTIONS ON BROADCASTING, the IEEE SIGNAL PROCESSING LETTERS,
an Editor of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and
an Area Editor of Signal Processing: Image Communication. He has also
served as a Guest Editor of a few special issues in international journals,
including the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESS-
ING. He is an IEEE Distinguished Lecturer of Circuits and Systems Society
from 2019 to 2020.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


