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ABSTRACT

Nonlocal image representation has achieved great success in various
image processing tasks such as image denoising, image deblurring
and image deblocking. Particularly, by exploiting the image nonlo-
cal self-similarity (NSS) prior, many nonlocal similar patches can be
searched across the whole image for a given patch, which has sig-
nificantly boosted the performance of image restoration. To the best
of our knowledge, most existing methods only consider the NSS pri-
or of the input degraded image, while few methods exploit the NSS
prior from external clean image corpus. However, how to utilize the
NSS priors of input degraded image and external clean image corpus
simultaneously is still an open problem. In this paper, we propose
a novel approach for image denoising, which exploits simultaneous
nonlocal self-similarity (SNSS) by integrating the NSS priors of both
the input degraded image and external clean image corpus. Firstly,
we search and group nonlocal similar patches from a clean image
corpus, and a group-based Gaussian Mixture Model (GMM) learn-
ing algorithm is developed to learn an external NSS prior. Then, an
optimal group is selected from the best suitable Gaussian component
for a group of the noisy image. By integrating the group of the noisy
image and the corresponding group of the Gaussian component with
a low-rank constraint, an iterative algorithm is developed to solve
the proposed SNSS model. Experimental results demonstrate that
the proposed SNSS-based denoising method produces superior re-
sults compared with many state-of-the-art denoising methods in both
objective and perceptual quality.

Index Terms— Image denoising, simultaneous nonlocal self-
similarity, gaussian mixture model, low-rank.

1. INTRODUCTION

Image denoising is an old-line problem in the field of image pro-
cessing, which has still attracted keen interests for researchers of
different areas due to its practical significance [1–28]. The goal of
image denoising is to recover the original image x from its noisy
observation y as precisely as possible, while preserving important
details such as edges and textures. The degradation model for image
denoising can be mathematically modeled as y = x + n, where n is
usually assumed to be additive white Gaussian noise. Evidently, im-
age denoising is an ill-posed inverse problem, it is critical to employ
the prior knowledge of the original image x so that we can regular-
ize the solution space more feasible and finally obtain high-quality
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denoised image. To tackle this ill-posed inverse problem, numer-
ous image prior models have been proposed in the past few decades,
including transform based methods [1–5], sparse coding based meth-
ods [6–8] and nonlocal self-similarity based methods [9–23], etc.

Transform based methods assume that natural images can be
sparsely represented by some fixed basis (e.g., DCT and wavelet).
Inspired by this, various wavelet shrinkage based methods have
been proposed [1–3]. For instance, Chang et al. [1] modeled the
wavelet transform coefficients as a generalized Gaussian distribu-
tion. Portilla et al. [2] utilized the scale mixtures of Gaussian in the
wavelet domain for image denoising. Though wavelet-based meth-
ods present remarkable performance in de-correlation for image
signals, these methods sometimes occur noise residuals and artifacts
in the denoised image owing to unproper wavelet basis selected.
Another well-known transform based method is total variation (TV)
[4, 5], which assumes that image gradients obey Laplacian distri-
bution. TV-based methods have shown promising performance in
noise remove, while they are apt to over-smooth the images.

Instead of modeling image statistics in transform domains (e.g.,
wavelet domain and gradient domain), another approach is to model
the prior on image patches. One representative work is sparse coding
based method [6–8], which assumes that each patch of an image can
be represented as a linear combination of a subset of bases from a
dictionary. The well-known dictionary learning method, K-SVD has
demonstrated promising performance in various applications, rang-
ing from image denoising to computer vision [7, 29, 30]. Consid-
ering that natural images are non-Gaussian and image patches are
regarded as samples of a multivariate vector, Gaussian mixture mod-
el (GMM) has emerged as favored prior for natural image patches
[24–27, 31]. For instance, Zoran et al. [24] utilized GMM model
to learn image patches from natural images and recovered the de-
noised image through maximizing the expected patch log likelihood
(EPLL). Niknejad et al. [26] recovered the clean image by using G-
MM model with spatially constraint patch clustering.

Inspired by the invention of nonlocal means (NLM) denoising
[9], perhaps the most remarkable property of natural images is non-
local self-similarity (NSS) prior [10–23], which characterizes the
repetitiveness of textures and structures globally position in images.
The NSS-based methods have achieved better empirical results com-
paring to some local regularization methods. One of the most suc-
cessful NSS-based methods is BM3D [10], which exploited the NSS
prior by constructing 3D arrays and tackled these arrays through s-
parse collaborative filtering. Mairal et al. [13] further generalized
the idea of NSS by learning simultaneous sparse coding (LSSC) to
achieve impressive denoising performance. Zhang et al. [12] pro-
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posed a group-based sparse representation method for image restora-
tion. Xu et al. [15] proposed a patch group based on NSS scheme to
learn a NSS prior from natural image groups. Assuming that a data
matrix constructed by nonlocal similar patches is of low-rank, low-
rank minimization methods [17–22] have achieved state-of-the-art
denoising performance.

Most existing methods mentioned above only investigated the
NSS prior of the input degraded image, while few methods utilize
the NSS prior from external clean image corpus. However, how to
exploit the NSS priors of input degraded image (Internal) and clean
image corpus (External) simultaneously is still an open problem.
Bearing this in mind, this paper proposes the simultaneous nonlo-
cal self-similarity (SNSS) prior for image denoising. To the best
of our knowledge, few works have simultaneously investigated two
NSS priors to image restoration. The proposed SNSS is composed
of the following steps. Firstly, we extract nonlocal similar patches
from a clean image corpus to construct groups, and a group-based
Gaussian mixture model (GMM) learning algorithm is developed to
learn an external NSS prior. Secondly, we select an optimal group
from the best suitable Gaussian component for a group of the noisy
image. Thirdly, by integrating the groups of the noisy image and
Gaussian component with a low-rank constraint, we develop an iter-
ative algorithm to solve the proposed SNSS-based model. Our ex-
perimental results validate that the proposed SNSS-based denoising
outperforms many state-of-the-art denoising methods both quantita-
tively and qualitatively.

2. LEARNING THE NSS PRIOR FROM NATURAL IMAGES

Different from traditional NSS-based image restoration methods,
which have only considered a single NSS prior but ignored another
one, this paper exploits the NSS priors of input degraded image and
external clean image corpus simultaneously for image denoising.
We first develop a group-based Gaussian mixture model (GMM)
learning algorithm to learn the NSS prior from the groups of a clean
image corpus.

2.1. Group Construction

Since the basic unit of the proposed GMM learning algorithm is im-
age group, we will give a brief introduction on how to construct it.
Specifically, an image x with sizeN is first divided into n overlapped
patches xi of size

√
b×
√
b, i = 1, 2, ..., n; then for each patch xi, its

m similar patches are selected from a searching window with L×L
pixels to form a set Si. Following this, all patches in Si are stacked
into a matrix Xi ∈ Rb×m, i.e., Xi = {xi,1, xi,2, ..., xi,m}. This ma-
trix Xi consisting of patches with similar structures is thereby called
a group, where {xi,j}mj=1 denotes the j-th patch (column vector) in
the i-th group.

2.2. Group-based GMM Learning

As mentioned above, we extractM groups from a given clean image
corpus, and denote a group is

Zi = {zi,j}mj=1, i = 1, 2, ...,M, (1)

where zi,j denotes the j-th similar patch of the i-th group. Consid-
ering that GMM model has been successfully exploited to model the
image patch or group priors such as EPLL [24] and PGPG [15], in
this subsection, we learn a finite GMM over natural image groups
{Zi} as an external NSS prior. To be concrete, by invoking GMM
learning algorithm, the likelihood of the given groups {Zi} is

P (Zi) =
∑K
k=1 πk

∏m
j=1N (zi,j |µk,Σk), (2)

where K is total number of mixture components, and the GMM
model is parameterized by mean vectors {µk}, covariance matrices
{Σk} and mixture weights of mixture components {πk}. By assum-
ing that all groups are independent and applying log to the overall
objective likelihood function L = ΠM

i=1P (Zi), then we maximize
it, namely,

ln L =
∑M
i=1 ln

(∑K
k=1 πk

∏m
j=1N (zi,j |µk,Σk)

)
, (3)

We then collect three represent parameters µk,Σk and πk
through Θ = {µk,Σk, πk}Kk=1, and Θ can be learned by using
Expectation Maximization algorithm (EM) [15, 24, 25].

Specifically, in the E-step, we calculate the posterior probability
for the component k as:

P (k|zi,j ,Θ) =
πk
∏m
j=1N (zi,j |µk,Σk)∑K

l=1 πl
∏m
j=1N (zi,j |µl,Σl)

, (4)

Mk =
∑M
i=1 P (k|zi,j ,Θ), (5)

In the M-step, for each group Zi, we update the model parameters as
follows:

πk = Mk/M, (6)

µk =

∑M
i=1 πk

∑m
j=1 zi,j∑M

i=1 πk
, (7)

Σk =

∑M
i=1 P (k|zi,j ,Θ)

∑m
j=1 zi,jzTi,j

Mk
, (8)

We iterate over the E-Step and M-Step until convergence. For more
details about EM algorithm, please refer to [24].

3. SIMULTANEOUS NONLOCAL SELF-SIMILARITY
PRIOR FOR IMAGE DENOISING

In this section, we propose a novel SNSS-based method for image
denoising. We first introduce how to combine the NSS priors of input
degraded image (Internal) and a clean image corpus (External).

3.1. Combine Internal and External NSS Prior

Similar to subsection 2.1, we extract each patch yi ∈ R
√
b×
√
b from

the noisy image y ∈ RN , and search for its m similar patches to
generate n groups, where the size of each group Yi is b×m, i.e.,
Yi = {yi,1, yi,2, ..., yi,m}. Then, based on the above group-based
GMM learning, the best suitable Gaussian component k is selected
for each noisy group Yi. Specifically, by assuming that the image
is corrupted by the Gaussian white noise with variance σn2, then
the covariance matrix of the k-th Gaussian component will translate
into Σk + σn

2I, where I is the identity matrix. The selection that
Yi belongs to the k-th Gaussian component can be obtained by the
following poster probability,

P (k|Yi) =

∏m
j=1N (yi, j|0,Σk + σn

2I)∑K
l=1

∏m
j=1N (yi, j|0,Σl + σn2I)

, (9)

Through maximizing Eq. (9), the k-th Gaussian component with
the highest probability is selected for each group Yi.

Then, based on this noisy group Yi, for each group of the k-th
selected Gaussian component, we compute the distance between Yi
and Zk,i,

ki = arg mink ‖Yi − Zk,i‖2, (10)

where Zk,i represents the i-th group of the k-th Gaussian compo-
nent. By computing Eq. (10), the ki-th group of the k-th Gaussian
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component will be selected and assigned to the noisy group Yi. We
then combine the noisy group Yi and clean image group Zki to con-
struct a new (expanded) group,

YZi = [Yi,Zki ], (11)

where the size of YZi is b × 2m. Obviously, it can be seen that the
new construction group YZi integrates the NSS information of the
input degraded image and external clean image corpus simultane-
ously.

3.2. Low Rank Minimization for Image Denoising

According to Eq. (11), through using the NSS priors of noisy image
and clean natural images together, one can observe that each col-
umn of Eq. (11) should have similar structures, and thus the matrix
YZi exhibits the low-rank property. Recently, low-rank minimiza-
tion based methods have achieved great success for various image
and video restoration [17–22]. The representative low-rank mini-
mization method, nuclear norm minimization (NNM) [18], has been
adopted for video denoising. However, NNM usually tends to over-
shrink the rank components, and therefore limits its capability and
flexibility. Compared with NNM, the weighted nuclear norm min-
imization (WNNM) [19] assigns different weights to different sin-
gular values such that the matrix rank approximation becomes more
accurate. In this subsection, inspired by the success of WNNM mod-
el for image restoration [3, 19], we develop an iterative algorithm to
solve the proposed SNSS with WNNM (SNSS-WNNM) model for
image denoising. Specifically, according to degradation model of
additive Gaussian noise, we have YZi = XZi + NZi , where XZi and
NZi are the group matrices of the original and noise, respectively.
Note that, here we only assume the front half of YZi contains noise,
while the whole part of YZi has a low-rank property. Then, we apply
the WNNM model to solve XZi for image denoising, and XZi can be
estimated by solving the following optimization problem,

X̂Zi = min
XZi

(
1
σn2 ‖YZi − XZi‖2F + ‖XZi‖wi,∗

)
, (12)

where ‖XZi‖wi,∗ =
∑
j wi,jδi,j , j = min(b, 2m), δi,j is the j-th

singular value of YZi . wi = [wi,1, wi,2, ..., wi,j ] and wi,j > 0 is
a non-negative weighted assigned to δi,j . Obviously, Eq. (12) can
be effectively solved by the weighted singular value thresholding
algorithm [3]. Let YZi = Ui∆iVTi , the closed-form solution of
Eq. (12) is given by [3],

X̂Zi = Ui(∆i − diag(wi))+VTi , (13)

where (x)+ = max(x, 0). For the weight wi of each group XZi ,
given that fact the singular values have physical meanings of each
group, i.e., large singular values of each group usually contain ma-
jor edge and texture information, we usually shrink large singular
values less, while shrinking smaller ones more [3, 19, 32]. In other
words, the weight wi of each group XZi should set to be inverse to
the singular values, and therefore, the weight is heuristically set as
wi,j = c/(δi,j + ε) in [19], where c and ε are the constant. How-
ever, because of this weight setting, WNNM in [19] sometimes pops
out error in the operation of SVD. In order to avoid this error, in
this paper we present an adaptive weight setting scheme. To be con-
crete, inspired by [1, 17, 22], the weight wi of each group XZi is set
as wi = c ∗ 2

√
2σn

2/(γi + ε), where γi represents the estimated
standard variance of the singular values of each group X̂Zi in each
iteration. Please refer to [1] on the robustness analysis of this weight
setting.

Following this, according to the solution of X̂Zi in Eq. (13), then
the final estimated clean group X̂i is equal to X̂Zi(:, 1 : m). Af-
ter obtaining all estimated groups {X̂i}, we get the full image x̂ by
putting the groups back to their original locations and averaging the
overlapped pixels. In practice, we could perform the above denois-
ing procedure for several iterations to achieve better results. Specif-
ically, in the t-th iteration, the iterative regularization strategy [5]
is used to update the estimation of the noise standard variance, i.e.,
the standard deviation of noise σn in the t-th iteration is adjusted as
σn

t = µ
√
σn2 − ‖y− xt−1‖22, where µ is a constant. Furthermore,

we choose the following stop criterion of iteration for the proposed
denoising algorithm, i.e., ‖x̂t − x̂t−1‖22/‖x̂t−1‖22 < ρ, where ρ is a
small constant.

Till now, we have been explained the whole procedure of the
proposed scheme. The complete description of the proposed SNSS-
WNNM for image denoising is provided in Algorithm 1.

Algorithm 1 The Proposed SNSS-WNNM for Image Denoising.
Require: Noisy image y and Group-based GMM learning model.

1: Initialize x̂0 = y, y0 = y, σn, b, c, m, L, K, µ, η, ρ and ε.
2: for t = 1, 2, ..., Iter do
3: Iterative Regularization yt = x̂t−1 + η(y− yt−1).
4: for Each patch yi in yt do
5: Find nonlocal similar patches to form a group Yi.
6: The best Gaussian component is selected by Eq. (9).
7: Choosing the optimal group Zki for noisy group Yi by E-

q. (10).
8: Constructing the new group YZi by Eq. (11).
9: [Ui,∆i,Vi] = SVD(YZi);

10: Estimate the weight wi by wi = c ∗ 2
√

2σn
2/(γi + ε);

11: Get the estimation of X̂Zi by Eq. (13);
12: Get the estimation: X̂i = X̂Zi(:, 1 : m);
13: end for
14: Aggregate Xi to form the denoised image x̂t.
15: end for
16: Output: The final denoised image x̂.

Fig. 1. All test images.

4. EXPERIMENTAL RESULTS

In this section, extensive experiments of the proposed SNSS-
WNNM method are conducted for image denoising. We evaluate all
competing methods on 12 widely used images shown in Fig. 1. Zero
mean additive white Gaussian noises are added to those test images
to generate the noisy observations. The source code of the proposed
SNSS is available at: https://drive.google.com/open?
id=15z6M5dfrxNUm1MFyXI2bofW6xYQMQqAJ.

4.1. Parameter Setting

There are several parameters in the proposed denoising algorithm.
In the Group-based GMM learning stage, the training groups used in
our experiments were sampled from the Kodak photoCD dataset 1,
which includes 24 natural images. We extract each patch in every 10
pixels along both horizontal and vertical directions for an image and
construct about 150,000 groups from the Kodak photoCD dataset.
The size of each patch

√
b×
√
b is set to be 7×7, 8×8 and 9×9 for

1http://r0k.us/graphics/kodak/.
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Table 1. PSNR (dB) results of different denoising methods.
σn = 40 σn = 50

Images BM3D EPLL LPCA Plow NCSR PGPD aGMM OGLR INSS- SNSS- BM3D EPLL LPCA Plow NCSR PGPD aGMM OGLR INSS- SNSS-
WNNM WNNM WNNM WNNM

Airplane 26.88 27.08 26.24 26.70 26.78 27.12 26.95 26.82 27.15 27.26 25.76 25.96 25.08 25.64 25.63 25.98 25.83 25.67 26.00 26.22
boats 27.76 27.42 26.73 27.55 27.52 27.90 27.60 27.69 27.86 27.91 26.74 26.31 25.58 26.38 26.37 26.82 26.50 26.41 26.88 26.90

C.Man 27.18 27.03 26.50 26.56 27.10 27.34 26.91 26.93 27.34 27.45 26.13 26.01 25.43 25.62 26.13 26.46 25.88 25.93 26.30 26.61
Monarch 26.72 26.89 26.06 26.43 26.81 27.02 26.87 27.00 27.27 27.34 25.82 25.78 24.76 25.41 25.73 26.00 25.82 25.78 26.17 26.27
Foreman 31.29 30.28 30.23 30.90 31.52 31.55 30.95 31.64 31.80 31.84 30.36 29.20 28.97 29.60 30.41 30.45 29.80 30.00 30.87 30.67
House 30.65 29.89 29.72 30.25 30.79 31.02 30.40 30.68 31.37 31.46 29.69 28.79 28.50 28.99 29.61 29.93 29.28 29.17 30.43 30.47
Leaves 25.69 25.62 25.02 25.45 26.20 26.29 25.76 26.06 26.97 26.97 24.68 24.39 23.48 24.28 24.94 25.03 24.42 24.63 25.61 25.71
Lena 27.82 27.78 27.23 27.78 28.00 28.22 27.91 28.04 28.07 28.18 26.90 26.68 26.05 26.70 26.94 27.15 26.85 26.78 27.12 27.12
Man 25.49 25.63 24.93 25.37 25.40 25.68 25.45 25.47 25.54 25.65 24.55 24.70 23.92 24.47 24.46 24.74 24.57 24.44 24.63 24.78

Pentagon 25.10 24.79 24.31 25.10 24.93 25.11 24.75 25.14 25.16 25.22 24.21 23.83 23.28 24.18 23.94 24.17 23.81 24.13 24.30 24.37
Plants 29.14 28.96 28.26 28.90 28.73 29.36 29.12 29.27 29.40 29.48 28.11 27.83 27.18 27.75 27.65 28.25 28.00 27.94 28.32 28.36

Starfish 26.06 26.12 25.52 25.70 26.17 26.21 26.16 26.00 26.52 26.54 25.04 25.05 24.32 24.71 25.06 25.11 25.09 24.84 25.33 25.46
Average 27.48 27.29 26.73 27.22 27.50 27.74 27.40 27.56 27.87 27.94 26.50 26.21 25.55 26.14 26.40 26.67 26.32 26.31 26.83 26.91

σn = 75 σn = 100

Images BM3D EPLL LPCA Plow NCSR PGPD aGMM OGLR INSS- SNSS- BM3D EPLL LPCA Plow NCSR PGPD aGMM OGLR INSS- SNSS-
WNNM WNNM WNNM WNNM

Airplane 23.99 24.03 23.23 23.67 23.76 24.15 23.95 23.79 24.13 24.17 22.89 22.78 22.02 22.30 22.60 23.02 22.67 22.31 23.00 22.98
boats 24.82 24.33 23.64 24.23 24.44 24.83 24.51 24.40 24.93 25.02 23.47 23.01 22.34 22.69 22.98 23.47 23.14 22.74 23.51 23.63

C.Man 24.33 24.18 23.46 23.64 24.20 24.64 24.13 24.00 24.75 24.86 23.08 22.84 22.13 22.22 22.91 23.23 22.86 22.50 23.36 23.38
Monarch 23.91 23.73 22.41 23.34 23.67 24.00 23.85 23.73 24.37 24.44 22.52 22.24 20.79 21.83 22.10 22.56 22.42 21.87 22.90 22.79
Foreman 28.07 27.24 26.72 27.15 28.18 28.39 27.67 27.96 28.66 28.79 26.51 25.91 25.14 25.55 26.55 26.81 26.20 26.11 27.31 27.46
House 27.51 26.70 26.19 26.52 27.16 27.81 27.11 27.10 28.45 28.62 25.87 25.21 24.51 24.72 25.49 26.17 25.55 25.07 26.81 26.97
Leaves 22.49 22.03 20.83 22.02 22.60 22.61 21.96 22.20 23.39 23.45 20.90 20.26 19.13 20.43 20.84 20.95 20.29 20.28 21.74 21.76
Lena 25.17 24.75 23.98 24.64 25.02 25.30 25.02 24.90 25.32 25.37 23.87 23.46 22.54 23.19 23.63 24.02 23.73 23.18 24.23 24.30
Man 23.03 23.06 22.16 22.76 22.80 23.09 22.98 22.80 22.90 23.05 22.00 21.97 20.95 21.55 21.68 22.03 21.91 21.40 21.93 22.05

Pentagon 22.59 22.18 21.57 22.40 22.04 22.55 22.11 22.58 22.66 22.69 21.45 21.12 20.52 21.12 20.92 21.50 21.02 21.16 21.45 21.65
Plants 26.25 25.90 25.33 25.57 25.75 26.33 26.05 25.89 26.21 26.35 24.98 24.65 24.13 24.14 24.46 25.06 24.75 24.30 24.83 24.96

Starfish 23.27 23.17 22.37 22.82 23.18 23.23 23.22 23.00 23.35 23.42 22.10 21.92 21.16 21.48 21.91 22.08 21.95 21.52 22.09 22.17
Average 24.62 24.28 23.49 24.07 24.40 24.74 24.38 24.36 24.93 25.02 23.30 22.95 22.11 22.60 23.00 23.41 23.04 22.70 23.60 23.67

10 < σn ≤ 50, 50 < σn ≤ 75 and 50 < σn ≤ 100, respectively.
The number of Gaussian components K is set to 256. The searching
window L×L is set to be 25×25 and the similar patchesm is set to
30. In the denoising stage, there are four parameters including η, µ,
c and ρ. The parameters (η, µ, c, ρ) are set to (0.1, 0.6, 1.8, 0.0026),
(0.1, 0.5, 1.7, 0.0013), (0.1, 0.5, 1.6, 0.0015), (0.1, 0.5, 1.3, 0.0011),
(0.1, 0.4, 2, 0.0011), (0.1, 0.5, 1.3, 0.0011) and (0.1, 0.4, 2, 0.0014)
for σn ≤ 10, 10 < σn ≤ 20, 20 < σn ≤ 30, 30 < σn ≤ 40,
40 < σn ≤ 50, 50 < σn ≤ 75 and 75 < σn ≤ 100, respectively.

(b) (c) (d) (e) (f) 

(h) (i) (j) (k) (l)

(a)

(g) 

(b) (c) (d) (e) (f) 

(h) (i) (j) (k) (l)

(a)

(g) 

(b) (c) (d) (e) (f) 

(h) (i) (j) (k) (l)

(a)

(g) 

Fig. 2. Denoising results on image Pentagon by different methods (noise
level σn = 100). (a) Original image; (b) Noisy image; (c) BM3D [10] (P-
SNR = 21.45dB); (d) EPLL [24] (PSNR = 21.12dB); (e) LPCA [14] (PSNR =
20.52dB); (f) Plow [33] (PSNR = 21.12dB); (g) NCSR [11] (PSNR = 20.92d-
B); (h) PGPD [15] (PSNR = 21.50dB); (i) aGMM [27] (PSNR = 21.02dB);
(j) OGLR [34] (PSNR = 21.16dB); (k) INSS-WNNM (PSNR = 21.45dB); (l)
SNSS-WNNM (PSNR = 21.65dB).

4.2. Comparison with State-of-the-Art Methods

In this subsection, we evaluate the effectiveness of the proposed
SNSS-WNNM by comparing it with several state-of-the-art denois-
ing methods including BM3D [10], EPLL [24], LPCA [14], Plow
[33], NCSR [11], PGPD 2 [15], aGMM [27] and OGLR [34]. Note
that, the single nonlocal redundancies are utilized for all competing
methods, while two NSS priors together are exploited to the pro-
posed SNSS model. We also compare the proposed SNSS-WNNM
with internal NSS-WNNM (INSS-WNNM) method, which selects
the similar patches from noisy image as same as the proposed SNSS-
WNNM to generate a group and solves it by WNNM [3] algorith-
m. Due to the page limit, we only present the denoising results at
four noise levels, i.e., Gaussian white noise with standard deviations

2A well-known state-of-the-art image denoising method by using external
NSS prior.

{σn = 40, 50, 75, 100}. The PSNR results for all competing meth-
ods are shown in Table 1, with the best results highlighted in bold.
Obviously, the proposed SNSS-WNNM achieves better results than
all competing methods in most cases. It is clear that the proposed
SNSS-WNNM consistently outperforms the INSS-WNNM method
(the only exception is that the image Foreman with σn = 50 and
image Monarch σn = 100 are slightly better than the proposed
SNSS-WNNM). The average gains of the proposed SNSS-WNNM
over BM3D, EPLL, LPCA, Plow, NCSR, PGPD, aGMM, OGLR
and INSS-WNNM methods are as much as 0.41dB, 0.71dB, 1.42dB,
0.88dB, 0.56dB, 0.25dB, 0.60dB, 0.65dB and 0.08dB, respectively.
The visual comparison of image Pentagon with σn = 100 is shown
in Fig. 2. It can be seen that LPCA, NCSR and INSS-WNNM meth-
ods often generate over-smooth effect, while BM3D, EPLL, PLow,
PGPD, aGMM and OGLR methods still suffer from some undesir-
able artifacts. The proposed SNSS-WNNM is able to preserve the
fine image details and suppress undesirable artifacts more effective
than other competing methods. Therefore, these results validate that
the effective and superior of the proposed SNSS model.

5. CONCLUSION

We have proposed a novel method for image denoising, termed si-
multaneous nonlocal self-similarity (SNSS), to exploit the NSS pri-
ors in both the degraded image and external clean image corpus. We
have first extracted nonlocal similar patches from a clean image cor-
pus to construct groups, and then we have developed a group-based
GMM learning algorithm to learn an external NSS prior. Following
this, we have selected an optimal group of the best suitable Gaussian
component for a group of the noisy image. By integrating the group-
s of the noisy image and the Gaussian component with a low-rank
constraint (i.e., WNNM), we have developed an iterative algorithm
to solve the proposed SNSS-WNNM model. Experimental result-
s have demonstrated that the proposed SNSS-WNNM outperforms
many state-of-the-art denoising methods in terms of PSNR and vi-
sual perception.
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