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Figure 1: Reverse imagefiltering. (a) Original image. (b) Filtering the image using theBeFunkyPhoto Editorwith their provided
Smoothing service. (c) By only access the interface of the smoothing function (i.e., the provided smoothing service is treated
as a black-box), our method could successfully remove the smoothing effects, and restore a sharpen image that is very close
to the original image. Part of the image is enlarged for better visual comparison.

ABSTRACT
In this paper, we study an unconventional but practically mean-
ingful problem reverse image filtering, which aims at removing the
filtering effects with the given image filter. We propose an iterative
first-order reverse image filtering algorithm based on the Newton-
Raphson method. The convergence of the proposed iterative proce-
dure is verified via extensive experiments. The experimental results
show that our method could effectively reverse many prevalent
image filters. Our method finds its practical usage in many ap-
plications, such as non-blind image deblurring and image details
recovery. Furthermore, our method could probe the behaviors of
black-box image filtering systems, which poses security concerns
on the protection for the privately commercial image filters.
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1 INTRODUCTION
Image filtering is one of the fundamental operations in image pro-
cessing and computer vision systems. Over the past several decades,
a variety of filters have been designed for fulfilling different pur-
poses, e.g., image noise suppression [2, 4], texture removal [12, 13]
and edge-perverse smoothing [5, 10].

Unlike the previous works, we here do not intend to develop a
new image filter. Instead, we study an unconventional problem of
reverse image filtering, which aims at

removing part or even all the filtering effects, with the
accessible but not necessarily known image filter.

To better understand this emerging problem, we illustrate in Fig.1
with a concrete example. The original image is retouched by the
BeFunky Photo Editor using their provided Smoothing function1.
As shown in Fig.1-(b), the photo editing system softens the original
image by suppressing the fine details. Given the retouched image,
onemaywant to recover the original image, i.e., reverse the filtering.
One straightforward way is to compute the inverse function of the
filter, and then apply it to the filtered image. However, the photo

1Available online: https://www.befunky.com/create/.
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editor only provides the service interface, and we are definitely not
clear how this smoothing function is implemented. It is therefore
impossible to calculate the inverse of the filter explicitly. In contrast,
without requiring the exact form of the filter, our method could
successfully remove the smoothing effects, and restore a sharpen
image that is very close to the original image (see Fig.1-(c)).

The topic of reverse image filtering is a less explored area. To
the best of our knowledge, the most relevant work might be Tao
et al. [9]. They proposed a generic reverse filtering scheme called
zero-order reverse filtering. The validity of this method was in-
terpreted via Banach fixed point theorem. The experiments have
shown their approach works well on a number of commonly used
filters. However, the experimental results have also revealed that,
for the most typical linear image filters that are based on convolu-
tion, e.g., Gaussian filter, zero-order reverse filtering is less effective
or even failed, especially for the filter with the small support range.

As a well known fact, the convolution-based linear image filter-
ing is a crucial building block of many prevalent image processing
systems, from the simple Gaussian filtering to the complicated
convolution neural network. Thus, in this work, we focus on the
reverse of the convolution-based linear image filtering. Specifically,
we propose an iterative first-order reverse image filtering algorithm
based on the Newton-Raphson method. Our algorithm is simple but
effective, and its convergence is validated via extensive experiments.
Notably, we find that the seminal work [9] can be included into
our method as a special case. The experiential results show that the
proposed method could effectively reverse many commonly used
image filters. The practical usage is demonstrated with non-blind
image deblurring and image detail recovery applications.

Beforemoving on, wewould like to clarify the difference between
reverse image filtering with the conventional image deconvolution.
First, traditional blind/non-blind image deconvolution methods
often require some prior knowledge on the convolution kernel,
e.g., the centro-symmetric property of the point spread function
(i.e., the convolution kernel) [3]. Even for the blind image deconvo-
lution, the kernel still shall be estimated beforehand. In contrast,
our method could treat the image filtering process as a black-box
and requires no prior information about the kernel. Second, most
of existing image deconvolution methods only suitable for some
specifc filters, e.g., motion bluring; while we experimentally find
that, our method could even work properly for some image filtering
operations that cannot be strictly expressed in convolutional form,
e.g., image guided filter [6].

The rest of this work is organized as follows. In Section 2, we
present the proposed iterative reverse image filtering method. In
Section 3, the effectiveness of our algorithm is verified on the com-
monly used filters, along with the demonstration on two real appli-
cations. We finally discuss the limitations and make a conclusion
in Section 4.

2 PROPOSED METHOD
In principle, an image filtering operation can be expressed as

Y = f (X), (1)

where X and Y are the original and the filtered images, respectively.
The function f (·) is the image filter. It can be linear or non-linear,
local or global.

Algorithm 1 Iterative first-order reverse image filtering

Input: Filtered image Y, filter f (·), number of iterations N .
Output: Estimate of the original image X̂.
1: X̂(0) ← Y.
2: for t = 0 to N − 1 do

3: X̂(t+1) ← F −1
(
F(Y)·F(X̂(t ))

F

(
f (X̂(t ))

) )
.

4: end for
5: return X̂(N ) .

Our goal is to estimate the original image X without computing
f −1(·). To be more specific, we focus on the widely-used linear im-
age filtering based on convolution operation, which can be written
as

Y = f (X) = X ⊗ K, (2)
where K is the convolution mask, i.e., the kernel. Alternatively, (2)
can be reformulated as a compact vector form y = Ax, where x and
y are the vectorized original and the filtered images, respectively;
and A is the Toeplitz matrix describing the filtering process. In this
context, our goal becomes to find the root of the following equation

f (x) − y = 0. (3)

Clearly, in the case of convolution, the filter f (·) is a continuously
differentiable function. We can thus apply the Newton-Raphson
method [1] to successively solve (3) as follows

Jf (x̂
(t )) · x̂(t+1) = Jf (x̂

(t )) · x̂(t ) + y − f (x̂(t )), (4)

where x̂(t ) denotes the estimate of x at the t-th iteration; and Jf (x) is
the Jacobian matrix that is evaluated at x. Since the Jacobian matrix
is the first-order partial derivatives of a vector-valued function, we
therefore call our method the iterative first-order reverse filtering.
Interestingly, we find that, if fix the Jacobian as unity matrix, (4)
can be simplified as

x̂(t+1) = x̂(t ) + y − f (x̂(t )), (5)

which is exactly the zero-order reverse filtering [9]. In this light,
[9] can be incorporated into our method as a special case.

However, the direct calculation of Jacobian requires extensive
computation and huge memory resources. For instance, for an
image of size 100 × 100, its Jacobian matrix is in size of 104 × 104.
Fortunately, we notice the fact that

Jf (x) · x = lim
ϵ→0

f (x + ϵx) − f (x)
ϵ

= Ax = f (x). (6)

Then, (4) can be simplified as

Jf (x̂
(t )) · x̂(t+1) = y, (7)

which is equivalent to

X̂(t+1) ⊗ K(t+1) = Y. (8)

Here K(t+1) is the kernel used in (t + 1)-th iteration, which can
be derived from the estimate of X in the previous iteration. More
specifically, K(t+1) is the solution of the following optimization
problem

K(t+1) = argmin
K
∥X̂(t ) ⊗ K − f (X̂(t ))∥22 , (9)
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Table 1: Comparison of the reversed image quality (PSNR in dB) with Tao et al. [9] on the BSD500 image dataset. For each cell
of the last two rows, the top number is for [9], and the bottom one is for ours. The best results are highlighted in bold. N/A
indicates that the PSNR value is smaller than 0, which means the method is failed.

Filters GS DK LOG MT UMF BF GF AWF L0 MF

Init 24.89 22.97 5.12 23.88 30.35 31.74 31.44 35.93 36.17 29.39

Final
16.92 N/A N/A N/A 51.17 40.59 42.03 27.63 37.06 N/A
211.68 242.09 43.04 251.43 59.02 41.34 43.54 29.67 34.14 19.04

Best
26.40 23.28 N/A 23.91 51.27 41.43 42.03 36.62 37.87 29.32
214.37 246.45 54.42 258.24 60.40 42.52 44.20 36.86 36.89 26.34

which permits a closed-form solution

K(t+1) = F −1
©­­«
F

(
f (X̂(t ))

)
F (X̂(t ))

ª®®¬ , (10)

where F (·) and F −1(·) denote the 2D forward and inverse Fourier
transforms, respectively. Note that here the division (and the multi-
plication used later) between Fourier transformed coefficients are
element-wise. By plugging (10) into (8), one can readily obtain

X̂(t+1) = F −1
©­­«
F (Y) · F (X̂(t ))

F

(
f (X̂(t ))

) ª®®¬ . (11)

From (11), we can observe that the updated estimate of X̂(t+1)

merely depends on the previous estimate X̂(t ) and the given filtered
image Y. In addition, (11) involves the image filter f (·) as a black-
box. It does not need to know the exact form of f (·).

The whole procedure is summarized in Algorithm 1. To boot up
the algorithm, X̂(0) is initialized as Y. The only required algorith-
mic parameter is the number of iterations. In our experiments, the
default setting of this parameter is 20. This setting will be experi-
mentally justified in Section 3.1.

Remarks on the convergence of Algorithm 1: Essentially, our
method solve the root-finding problem in the context of f (·) being
convolution, which based on the Newton-Raphson method shown
in (4). The convergence property of Newton-Raphson method has
been well studied, and the detailed theoretical analysis can be found
in [1]. We thus omit this analysis here. In Section 3.2, we validate
the convergence of the Algorithm 1 through extensive experiments.

3 EXPERIMENTAL RESULTS
All the experiments are conducted on a PC with Intel Core i5-4570
3.2 GHz CPU and 4G RAM. In the following, we first verify the
effectiveness of the proposed method on some common filters, and
then demonstrate the practical usage with two real applications.
The source code is publicly available at: https://github.com/
nbudongli/reversefiltering.

3.1 Evaluation on Some Common Filters
We collect all the 500 images from the Berkeley segmentation
dataset [8] as the test image set BSD500. In order to observe how
the quality of the reversed image varies along with iteration, the

iteration number N in Algorithm 1 is first intentionally set as a
large value, e.g., 50.

Our method is evaluated and compared with the relevant work
Tao et al. [9] on 10 commonly used image filters, which includes
Gaussian Filter (GS), Disk Filter (DK), Laplacian of Gaussian Filter
(LOG), Motion Blurring (MT) and Unsharp Masking Filter (UMF),
Bilateral Filter (BF) [10], Guided Filter (GF) [6], Adaptive Wiener
Filter (AWF) [7], L0 Smooth (L0) [11] and Median Filter (MF) [7].
Note that the first five filters perform linear image filtering based
on convolution operation2. while the last five filters are more so-
phisticated and may beyond the image convolution. Nevertheless,
we also include the last five filters in the experiments to test the
applicable scope of our proposed method.

The PSNR value is adopted as the metric to measure the differ-
ence between two images. In the following, we report three PSNRs:
1) the initial PSNRs (Init), which indicates the PSNR between the
filtered image (i.e., the image before applying our method) and
the original image; 2) the final PSNRs (Final), which indicates the
PSNR between the reversed image (i.e., the image after applying our
method for 50 iterations) and the original image; 3) the best PSNRs
(Best) attained over the entire iterative process. The quantity Best
is provided here because we observe the PSNR values yielded by
some filters may oscillate.

The results are complied in Table 1, from which we can make
several observations. First, for the convolution-based image filters
such as GS, DK, LOG, MT and UMF, our method could effectively
removing the filtering affects. In particular, for the filters GS, DK
and MT, the PSNRs achieved by our method are all larger than
200dB, which implies that the restored image is nearly the same
as the original one. In contrast, Tao et al. [9] often fail to reverse
the filtering (denoted by N/A). Second, for the two sophisticated
filters BF and GF, our method could also recover the original image
to some extent, with slightly better results (improves around 1dB)
compared with that of Tao et al. [9]. Finally, for the filters consisting
of discontinuous operations such as MF, AWF and L0, both Tao et
al. [9] and our method cannot reverse the image filtering. We claim
that those filters cannot be reversed by our algorithm.

3.2 Convergence of Algorithm 1
To investigate the convergence properties of our method on differ-
ent filters, we compute and record the PSNR value at each iteration.

2All those filters can be found in software MATLAB. Please refer to the functions
imfilter and imsharpen for more details.

https://github.com/nbudongli/reversefiltering
https://github.com/nbudongli/reversefiltering
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Figure 2: PSNR-iteration curves for 10 commonfilters. (a) Re-
sults for Gaussian Filter (GS), Disk Filter (DK), Laplacian of
Gaussian Filter (LOG), Motion Blurring (MT) and Unsharp
Masking Filter (UMF). (b) Results for Bilateral Filter (BF)
[10], Guided Filter (GF) [6], Adaptive Wiener Filter (AWF)
[7], L0 Smooth (L0) [11] and Median Filter (MF) [7].

The PSNR-iteration curves are shown in Fig.2. It can be seen that
our method often converges after around 20 iterations. Specifically,
in Fig.2-(a), one can observe that, for the filters GS, DK, LOG, MT
and UMF, the PSNR values can be significantly improved in several
iterations, and converge in less 10. This verifies the convergence
of the Algorithm 1 on those filters. For the filters BF, GF, AWF, L0
and MF, our method still converges, but typically after 20 iterations
(see Fig.2-(b)). As we already analyzed in above, for the filter BF
and GF, our method is only partially effective. This can be observed
from the fact that the converged PSNRs only improve around 10dB
compared with the initial PSNRs. For the filters AWF, L0 and MF,
our method also converges, but with a general decrement of PSNRs.
This phenomenon again shows that our method cannot be applied
to reverse those filters.

3.3 Real Applications
In this subsection, we illustrate the practical usage of our method
with two real applications. The first application is the non-blind
image deblurring. With the provided or estimated image kernel,
one can readily construct the blurring process, which plays the role
of the filtering function f (·) in Algorithm 1. As shown in Fig.3, by

(a) Input Image (b) Our Results

Figure 3: Non-blind image deblurring using our method. (a)
Input images with the blur kernels (shown in the right-
bottom rectangle). (b) The restored sharp images. Part of the
image is enlarged for better visual comparison.

(a) Original (b) Filtered (c) Recovered

Figure 4: Recover the image details that are suppressed by
bilateral image filtering. (a) Original image. (b) Filtered im-
age. (c) Recovered image. Part of the image is enlarged for
better visual comparison.

applying our algorithm to those blurred images, we could restore
the underlying sharp image structures (e.g., the small characters).

Another practical application is to recover the details suppressed
by the image filter. To illustrate this, we take the widely-used bi-
lateral filtering as an example. As can be seen from Fig.4-(b), the
filtered image appears to be much smoother than the original one.
Many textural structures and fine-details turn out to be invisible.
Interestingly, our method could bring back such lost fine-details.
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This can be observed from texture of the roof and the forehead
wrinkles of the old man in Fig.4-(c).

4 CONCLUSION
In this work, we study an unconventional but interesting problem:
reverse image filtering. We tackle this problem by employing the
Newton-Raphson method, and propose an iterative first-order re-
verse image filtering algorithm. The convergence of the proposed
method is verified via extensive experiments. The experimental
results show that our method could significantly outperforms the
previous zero-order reverse filtering technique, especially on the
reversing the convolution-based linear image filtering task. The
practical usage of our method is illustrated on two real applications,
and we believe the proposed method could be applied to many
other potential applications, e.g., image forensics.

Although our method has demonstrated the effectiveness on
reversingmany image filters, it still has several limitations. First, our
method works well for the convolution-based linear filtering, but
for some filters consisting of many discontinuous operations, e.g.,
the median filter, the effectiveness of our method would degrade
or even completely fail. Second, the image filter can be treated as a
black-box in our method, but it still requires the filter available as a
deterministic component, which might not be satisfied sometimes.
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