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Abstract
Consumers can only choose to see a movie if it is available in theaters. Explic-
itly taking into account movie theater availability, we estimate a structural model 
of movie demand with the use of U.S. movie data from 1995 to 2017. Estimation 
results indicate that the impact of theater availability on movie demand is both sta-
tistically and economically significant. We also find that movie budget predictions 
based on the model that incorporates theater availability is more consistent with the 
data, while the model that ignores theater availability on average over-predict pro-
duction budgets.

Keywords  Movie demand · Theater availability · Demand estimation

1  Introduction

Consumers can choose to see a movie only if it is available in theaters; hence theater 
availability is an important determinant of movie box-office performances. For 
example, two movies—Everyone Says I Love You and My Best Friend’s Wedding—
share the same release year (1997), star actress (Julia Roberts), and genre (Roman-
tic Comedy), as well as a similar storyline. Despite having a less positive review,1 
the latter was released in far more theaters—2134—compared to 268 for the former 
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1  Everyone Says I Love You has a rating of 6.8/10 on IMDb, compared to 6.3/10 for My Best Friend’s 
Wedding.
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in the opening weeks and had a significantly higher box-office revenue—$127 mil-
lion—compared to $10 million. Through its impact on movie demand, theater avail-
ability could significantly affect movie production and investment decisions.2

To study the impact of theater availability on movie demand, we construct a 
structural model that explicitly incorporates theater availability. We estimate the 
demand model with the use of U.S. movie data from 1995 to 2017. Estimation 
results indicate that the impact of theater availability on movie demand is both sta-
tistically and economically significant. We find that ignoring theater availability can 
significantly bias the estimated impact of movie production budgets on box-office 
performances. The demand model that ignores theater availability would mis-attrib-
ute a movie’s box-office success largely to its perceived quality. This bias can inflate 
the importance of movie production budgets, which are used by movie studios to 
increase movie qualities.

To quantify the importance of theater availability, we simulate movie studios’ 
budget decisions based on the estimated demand models. The predicted budgets—
with and without considering theater availability—are then compared to the actual 
movies budgets in the data. We find that the model that takes into account theater 
availability is more consistent with the data, which indicates that movie studios are 
mindful of the impacts of theater availability in their budget decisions. Furthermore, 
the model that ignores theater availability would over-predict the production budget 
of an average movie by $111 million.

Our paper adds to the growing list of papers studying movie industry demands, 
including De Vany and Walls (1996, 1997), Einav (2007), Moul (2007a, b), Moretti 
(2011), Ferreira et al. (2012), and Dalton and Leung (2017). Our structural demand 
model is akin to that of Einav (2007). The identification assumptions and estimation 
techniques are similar to those in Moul (2007b). The production budget prediction 
model is similar to that of Ferreira et al. (2012).

2 � Theater Availability

A consumer’s choice of movie is bounded by what is available in theaters. A mov-
ie’s theater availability depends upon theater owners’ exhibition decisions. Exhibi-
tion decisions, according to Filson et al. (2005) who study movie theater contracts, 
are completely up to individual theater owners, and can be adjusted according to 
past movie performances.

To illustrate the mechanism through which theater availability can affect movie 
demand, consider two hypothetical towns: A and B; each has only one theater. The 
theater in town A can play only one movie, while the theater in town B can play two 
movies at the same time. The two towns are otherwise identical. The townspeople 
can only go to their respective in-town theater to watch movies. Suppose two mov-
ies—one of high quality (H) and one of low quality (L)—are released in the same 

2  Theatrical box-office revenue is the largest income source for movie studio, see https​://steph​enfol​lows.
com/how-movie​s-make-money​-holly​wood-block​buste​rs/.

https://stephenfollows.com/how-movies-make-money-hollywood-blockbusters/
https://stephenfollows.com/how-movies-make-money-hollywood-blockbusters/
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week. Town A’s theater owner plays only movie H, because the high quality movie 
draws a larger audience. In Town B, both movies are played. Movie L can draw 
audiences when played in Town B, but it does not enter consumers’ considerations 
in Town A. Therefore, the difference in the two movies’ box-office revenues is not 
only a result of their quality difference, but also reflects the different constraints of 
theater availability.3

Movies’ shares of theaters are used to proxy theater availability in the ensuing 
analysis. A movie’s share of theaters in a particular week is defined as the ratio of 
the number of theaters that play the movie in that week to the total number of theat-
ers in the market.

A few caveats are worth noting here: First, we assume that every theater has the 
same number of screens. Due to data limits, we cannot account for variations of 
theaters in size and number of screens. Second, a movie is assumed to have the same 
number of showings per theater for any week in which it is available. It is certainly 
possible that a movie has more showings per theater in the beginning than at the end 
of its release. Third, we cannot differentiate the size and quality of screens. Some-
times, a movie is played on screens that can accommodate larger audiences in the 
beginning of its release, but relegated to smaller screens in later weeks.

As a consequence of the second and third assumptions, the decline in a mov-
ie’s box-office revenue over time due to a loss of theater availability can be mis-
attributed to consumers losing interest in the movie. Therefore, our analysis tends to 
underestimate the importance of theater availability because of these assumptions.

In addition, we are implicitly assuming that the changes in theater shares are 
proportional across different geographic locations. This assumption is reasonable 
as long as all movie distributors and exhibitors across the country follow profit 
maximization.

3 � Data

The main data source is The Numbers, which is a movie industry data website. The 
weekly data cover all movies that were released in the United States between Fri. 
Dec. 30, 1994, and Fri. May 19, 2017. For each movie released, the data report its 
official release date, weekly box-office revenues, weekly number of theaters, as well 
as information on movie distributor, genre, and estimated production budget. The 
Numbers also reports the total annual admissions in the industry.

3  A related concept to theater availability is the concept of “stock-out”. For example, Mortimer (2008) 
finds that video rental stores often experience inventory problems, and some movie titles are unavail-
able to consumers because they are out of stock. An equivalent phenomenon in movie theaters would be 
sold-out performances of blockbuster movies. Under the assumption that every theater screen’s seating 
capacity is at least 100 people, and each screen has at least 3 showings a day, we find no movie in our 
data reaches more than 55% of the total aggregate seating capacity in any week. It is still possible that 
the sold-out performances happen in opening nights or are restricted to certain local theaters. However, 
because our movie data are weekly national level data, we do not have a reliable way to identify sold-out 
performances.
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Other industry aggregate data are obtained from several sources. Average movie 
ticket prices, total numbers of U.S. movie theaters and screens by year are obtained 
from the Encyclopedia of Exhibition of the National Association of Theater Owners. 
Annual population figures are obtained from the U.S. Census. Linear interpolations 
are used to estimate ticket prices, aggregate numbers of theaters and screens, as well 
as the U.S. population for each week in the sample period.

The initial data sample comprises 10,787 movie titles. Some observations are 
dropped in the analysis. First, we drop small movies that are never in wide-release. 
Wide-release refers to a movie that played in more than 600 theaters for at least one 
week during its theatrical run. We follow the literature in making this restriction, 
because limited-release movies have very different box-office performances and 
release patterns.

Second, movies are considered only for their first ten full weeks of release, and 
all observations thereafter are dropped.4 For a vast majority of movies, box-office 
revenues become very small after the tenth week in release: They average only 4.3% 
of their opening-week earnings.

In addition, we drop movies that do not have at least three consecutive weeks 
of observations. The final data contain 3283 movie titles and 30,432 movie-week 
observations. These movie observations account for 92.4% of the total box-office 
revenues in the raw data. Table 1 presents general industry trends over the sample 
period.

Overall, an average of 147 movies were widely released in the industry each year. 
We use in the analysis the national average ticket prices. Compared to the Consumer 
Price Index consisting “of other recreational services”, the average movie ticket 
price increased starting in the late 2000s. Meanwhile, the annual admissions per 
capita decreased during the same period compared to the years before 2010. The 
annual admission per capita is the ratio of total annual admissions (total box-office 
revenue divided by average ticket price) and the U.S. population.

3.1 � Summary Statistics

Table 2 summarizes approximated admissions per released movie per week in the 
sample from 1995 to 2016.5 Per movie admissions are approximated using the ratio 
of box-office revenues and the national average ticket prices.6

The table is organized by a movie’s release year. For example, if released on 
December 31, 2010, a movie would be counted in 2010, even if most of its theat-
rical run is in 2011. Columns two to five show the mean, median, minimum, and 

5  The sample covers only a fraction of weeks in the years 1994 and 2017; consequently they are 
excluded from the tables of summary statistics.
6  The movie prices used are the national annual average prices. We follow Einav (2007) and use linear 
interpolation to obtain weekly average prices. The data do not have price variations by geographic areas 
or age groups. Therefore, in the calculation of weekly admissions per movie, we are implicitly assuming 
that all movies have the same proportional exposures to different geographic regions and age groups.

4  In our data, about 13% of the movies were released on a day other than Fridays. For those movies, we 
used the eleventh week as the last full week.
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maximum of box-office revenues by release year. Weekly admissions vary greatly 
among movies: They range from less than a million to more than 100 million. A 
consistent feature is that the median is much smaller than the mean in any given 
year. This indicates that the box-office admissions across movies are highly skewed, 
such that a few blockbusters earn a large portion of the total admission in any given 
week.

Average weekly admissions by week are presented in Fig. 1, in which all of the 
major holidays are labeled. The left panel of Fig. 1 shows the industry seasonal pat-
tern. The peak seasons are in the summer and during the winter holidays. The sum-
mer peak season extends from Memorial Day to Labor Day. The winter holiday sea-
son starts at Thanksgiving and ends roughly at New Year. Spring and autumn are 
traditionally the low seasons.

Examining weekly admissions in three different time periods, 1995–2000, 
2001–2009, and 2010–2016, the right panel of Fig. 1 shows that the underlying sea-
sonal patterns remain largely the same over the sample period.

Table 1   Industry trends

Ticket prices and revenues are in December 2016 U.S. dollars, adjusted using the CPI for “Other Recrea-
tion Services”

Year # of movies 
released

Avg. ticket price Total box-office revenues 
($ billions)

Annual admis-
sions (per 
capita)

1995 139 $7.37 8.3 4.25
1996 131 $7.26 8.2 4.22
1997 135 $7.34 8.9 4.48
1998 134 $7.24 8.7 4.37
1999 143 $7.42 9.6 4.65
2000 145 $7.61 9.8 4.57
2001 137 $7.68 10.0 4.58
2002 148 $7.64 10.5 4.79
2003 141 $7.68 10.6 4.77
2004 151 $7.76 10.8 4.77
2005 146 $7.78 9.8 4.26
2006 171 $7.65 10.2 4.47
2007 178 $7.86 10.5 4.44
2008 162 $8.02 10.2 4.19
2009 149 $8.36 11.5 4.50
2010 133 $8.72 10.7 4.00
2011 142 $8.70 10.4 3.83
2012 140 $8.52 10.8 4.06
2013 147 $8.61 10.9 4.01
2014 144 $8.58 10.4 3.81
2015 149 $8.61 10.9 3.94
2016 160 $8.65 10.9 3.90
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The data are weekly in nature. Following the previous literature, weeks are 
adjusted so that major holidays (which are labeled in Fig. 1) fall in the same week 
across all years. For example, Labor Day and Thanksgiving are always assigned 
the same week numbering: Week 37 and 50, respectively. However, depending on 
the year, there might be 11 or 12 weekends between the two holidays. Week 43 is 
included as a “filler” in those years with 12 weeks between the two holidays. In 

Table 2   Weekly admission per 
movie (in millions of tickets 
sold)

Year Mean Median Max Min

1995 8.10 5.35 41.38 0.61
1996 8.63 4.98 55.01 0.93
1997 8.99 6.20 94.02 0.73
1998 8.98 5.40 39.44 0.25
1999 9.04 5.32 69.96 0.38
2000 8.86 6.04 48.15 0.20
2001 9.49 5.67 55.21 0.55
2002 9.30 5.69 69.37 0.52
2003 9.77 6.80 60.02 0.27
2004 9.23 5.73 69.43 0.43
2005 8.60 5.48 58.74 0.30
2006 7.77 5.36 63.94 0.47
2007 7.48 4.06 48.74 0.14
2008 7.84 4.77 73.12 0.31
2009 9.25 5.08 95.00 0.22
2010 9.26 6.11 51.48 0.36
2011 8.38 5.02 47.79 0.18
2012 9.08 5.77 77.19 0.13
2013 8.60 4.93 51.88 0.33
2014 8.42 5.37 41.04 0.08
2015 8.46 3.90 109.96 0.12
2016 7.84 4.02 61.23 0.07
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essence, Week 43 would be missing in those years with 11 weeks between the two 
holidays. The filler weeks are Weeks 13, 23, 33, 43, 53 and 55, which do not appear 
in all years.7

Table  3 summarizes theater and screen statistics per released movie per week. 
Columns two to five show the mean, median, minimum, and maximum of theaters 
by release year. The means and median numbers of theaters are largely flat through-
out the sample years. The maximum number is increasing from 1995 to the mid-
2000s. After 2007, the trend is largely flat. In the data, most wide-release movies 
reach more than 2000 theaters. However, as the minimum numbers show, these 
wide-release movies can be in very few theaters at the end of their theatrical runs.

Table  3 also shows the industry aggregate numbers of theaters and screens. 
While the total number of screens increases substantially, the total number of theat-
ers decreases over the sample period. This is likely due to a major shift from many 
small single screen theaters to fewer larger multiplex theaters during the same time 

Table 3   Weekly numbers of theaters and screens per movie

Year Weekly number of theaters per movie Total of 
theaters #

Total # of screens Avg. screens 
per theater

Mean Median Max Min

1995 1074.4 969 2893 8 7744 27,843 3.60
1996 1208.9 1131 3012 29 7798 29,731 3.81
1997 1190.4 1019 3565 19 7480 31,865 4.26
1998 1254.8 1085 3310 21 7418 34,168 4.61
1999 1207.0 944 3411 2 7477 35,506 4.75
2000 1311.3 1175 3669 11 6992 35,650 5.10
2001 1320.3 1103 3715 12 6253 35,688 5.71
2002 1244.2 901 3876 2 6144 36,379 5.92
2003 1307.0 968 3749 1 6100 36,435 5.97
2004 1272.1 867 4223 3 6031 37,131 6.16
2005 1342.9 1002 4142 1 6114 37,688 6.16
2006 1238.3 781 4133 1 5939 38,415 6.47
2007 1227.7 795 4362 2 5928 38,794 6.54
2008 1278.5 763 4366 2 5786 39,233 6.78
2009 1382.3 985 4393 1 5942 39,520 6.65
2010 1429.9 971 4468 2 5773 39,580 6.86
2011 1358.8 819 4375 5 5697 39,662 6.96
2012 1355.9 840 4404 6 5683 39,956 7.03
2013 1379.8 905 4253 7 5719 40,006 7.00
2014 1374.2 830 4324 1 5856 40,024 6.83
2015 1322.6 791 4311 2 5833 40,174 6.89
2016 1303.2 658 4381 1 5821 38,834 6.67

7  Every year has 52 weeks with some filler weeks missing. For example, the year 2015 has only filler 
weeks 23, 33 and 53, while the year 2014 has only filler weeks 23, 43 and 55.
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period. As a result, the average number of screens per theater almost doubled from 
3.60 in 1995 to 6.67 in 2016.

Table 4 shows the mean, median, minimum, and maximum of inflation-adjusted 
movie production budgets by release year. The mean budget decreases in the late 
1990s, then there is no discernible trend for the rest of the sample years. The dif-
ference between the mean and median has widened over the sample periods, which 
could indicate that movie producers have shifted budgets to a few blockbuster 
movies.

Furthermore, an average movie’s length of theatrical run changes little over the 
sample years. For example, 64.0% of all movies released in 1995 have theatrical 
runs of 10 or more weeks, while the corresponding number in 2016 is 64.4%. The 
average of the entire data sample is 67.8%. This shows that movies do not stay in 
theaters longer despite the increase in the total number of screens.

Measuring the impact of theater availability on movie box-office performance is 
an empirical exercise that is undertaken in Sect.  4. Used in the empirical model, 

Table 4   Movies production 
budgets

Production budgets are in December 2016 U.S. dollars, adjusted 
using the CPI for “Other Recreation Services”

Year Production budget per movie

(in millions of Dec. 2016 dollars)

Mean Median Max Min

1995 86.27 71.46 367.17 7.46
1996 81.73 80.99 202.77 5.05
1997 99.50 86.50 387.62 5.90
1998 81.78 57.59 429.89 0.19
1999 68.62 56.18 318.91 1.09
2000 69.15 57.92 218.56 1.69
2001 65.90 49.18 245.15 2.67
2002 65.04 53.94 218.27 1.88
2003 70.81 56.78 255.41 0.44
2004 67.85 48.23 290.60 0.58
2005 67.95 52.20 287.41 1.40
2006 59.14 41.52 318.35 2.72
2007 63.10 35.13 399.49 1.00
2008 59.67 38.25 286.30 0.63
2009 65.31 44.55 504.17 0.54
2010 68.47 43.40 294.54 2.06
2011 63.04 44.83 281.14 1.69
2012 62.81 39.11 308.08 1.12
2013 62.55 35.59 303.83 0.99
2014 55.62 30.60 272.10 0.22
2015 55.11 31.80 355.75 0.11
2016 53.87 30.23 262.03 0.94
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several important variables are directly constructed from the data. First, movie j’s 
market share in week t  − sjt—is the ratio of the movie’s weekly admission (box-
office revenue divided by ticket price) to the U.S. population, which is assumed 
to be the overall potential market size.8 The fraction of population not going to 
theaters in week t is sot = 1 −

∑
j sjt.

9 Second, movie j’s share of theaters in week 
t − mjt = ajt∕Ajt—is the ratio of movie j’s number of theaters ( ajt ) to the total num-
ber of theaters, At . In the ensuing analysis in Sect. 4, the logarithm of sjt∕sot is the 
left-hand-side variable, and the logarithms of both the within-industry market share, 
sjt∕(1 − sot) , and the theater share, mjt , are the right-hand-side variables. Table  5 
summarizes these variables.

4 � Model

This section provides the details of a structural model. The model includes both the 
demand and supply sides of the movie industry. The demand model is similar to that 
in Einav (2007) and Moul (2007b), and includes both the movie quality and market-
expansion effects. On the supply side, movie producers’ investment decisions are 
modeled taking into account the impact of production budget on demand. On both 
the demand and supply sides, the model incorporates theater availability. In addi-
tion, we discuss the identification assumptions and instrumental variables.

4.1 � Demand Specification

A nested logit demand is used to model an individual consumers’ movie-going deci-
sions. The utility of consumer i from watching movie j in week t is

(1)uijt = �j − �(t − rj) + � ln(mjt) + �jt + �it + (1 − �)�ijt,

Table 5   Movie share variables

Variable Description Mean Median Max Min

sjt∕sot Relative market share ratio 0.0035 0.0009 0.1775 0.0000
sjt∕(1 − sot) Within-industry market share 0.0384 0.0105 0.8197 0.0000
mjt Theater share (%) 22.48 15.62 83.31 0.02

8  Alternatively, we can use weekly revenues to calculate market shares. In this case, the potential market 
size is calculated by multiplying the total U.S. population and the average ticket price. This method of 
calculation would yield exactly the same market shares. In addition, the calculation of admissions does 
not depend on the method of inflation adjustment, because the numerator and denominator (weekly box-
office revenues and average ticket prices) would both be adjusted by the same inflation measure.
9  Implicitly, we are assuming that a potential audience goes to at most a movie per week. This assump-
tion is reasonable because the annual admission per capita is only about 4, as shown in Table 1.
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in which: �j is a movie’s perceived quality; rj is movie j’s initial week of release; t − rj 
is movie j’s numbers of week-in-release in week t; mjt is movie j’s share of theaters; 
�jt is the unobserved propensity to like movie j in week t; and �it + (1 − �)�ijt is an 
idiosyncratic taste shock.

The perceived quality of movie j − �j—is invariant across different consumers and 
weeks. In turn, �j depends on movie j’s: production budget Bj ; genre g; release year y; 
and a random effect �j.

In a given week, consumer i can choose an outside good (good 0), which determines 
the consumer’s propensity to stay away from movie theaters. Consumer utility of 
staying away is

where �t is the weekly fixed effect.
The nested nature of the logit demand depends on the idiosyncratic taste shock, 

�it + (1 − �)�ijt . The taste shock component, �it , is the same across all movies, but 
can be different from the unobserved propensity to choose the outside option, �′

it
 . We 

assume that �ijt is an independent and identically distributed extreme value random var-
iable. The sum �it + (1 − �)�ijt is also extreme value distributed. Parameter � ∈ [0, 1] 
captures the relative importance between these two taste shock components and meas-
ures the substitutability between movies and the outside option.

Following Berry (1994), the nested logit predicted market share of movie j in week 
t is:

where

Here, Jt is the set of all available movies in theaters in week t. If we rearrange Eq. 
(4), we obtain

We show the derivation of both Eqs. (4) and (5) in “Appendix 1”. The term s0t enters 
into both sides of the regression Eq. (5), and the with-in market share— sjt

1−s0t
—is 

(2)�j = � + � ln(Bj) + �g + �y + �j.

(3)ui0t = −�t + ��
it
+ (1 − �)�i0t,

(4)sjt =
exp

(
�j−�(t−rj)+�t+�⋅ln(mjt)+�jt

1−�

)

D�
t + Dt

,

Dt =
∑
k∈Jt

exp

(
�k − �(t − rk) + �t + � ln(mkt) + �kt

1 − �

)
.

(5)

ln(sjt) − ln(s0t) = �j − �(t − rj) + �t + � ln(mjt) + � ln

(
sjt

1 − s0t

)
+ �jt,

= � + � ln(Bj) + �g + �y + �j − �(t − rj) + �t + � ln(mjt)

+ � ln

(
sjt

1 − s0t

)
+ �jt.
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endogenous. We use an instrumental variable approach to address this problem, 
which is discussed in Sect. 4.2.

All demand parameters are estimated using Eq. (5). Here, all movies have a base-
line quality � , upon which the quality increases with the production budget Bj . The 
marginal return to budget investment, � , is expected to be positive. The logarithm 
is used to capture the decreasing return to budget investment. Both genre ( �g ) and 
release-year ( �y ) of a movie can also affect a movie’s perceived quality.10 In addi-
tion, the random effect term, �j , is added to control for unobserved heterogeneity in 
movie quality, which is due to possible differences in screenplays or concept-ideas.

The rate of decay in a movie-goer’s propensity to watch a movie after its release 
is captured by the parameter � . We assume that the rate of decay is common across 
all movies and time periods. The weekly fixed effect—�t—captures the underlying 
seasonality in the movie industry.

Our model incorporates theater availability as an important determinant of a 
movie’s market share as in Moul (2007b). A movie can be considered by consumers 
only if it is available in theaters.

We use the concept of “consideration set” that is commonly used in the market-
ing literature.11 The consideration set is made up of the choices that are seriously 
considered by a consumer in her purchase decisions. If a theater ceases to show a 
movie, then the movie is eliminated from the consideration sets of the theater’s cus-
tomers. Therefore, the more theaters to which a movie is released, the higher is the 
probability that the movie is in consumers’ consideration sets. A movie’s considera-
tion probability is the probability that it is included in consumers’ consideration sets. 
We assume that the consideration probability of movie j in week t depends on its 
share of theaters mjt . We use the logarithm form, ln(mjt) , because of the decreasing 
marginal return to adding theaters due to overlaps in market exposures. Parameter � 
is the intensity parameter on theater availability.12

The parameter � determines the “market-expansion” effect. A high quality movie 
can attract consumers who would otherwise stay away from theaters. In doing so, the 
movie expands the movie-going consumer base. If � = 1 , then the outside good and 
all of the movies have no substitutability. This means that a movie can only expand 
its market share at the expense of other movies. If � = 0 , the model is a simple logit 

10  The annual dummy variable ( �y ) captures aggregate changes in the market, including changes in aver-
age ticket prices, national incomes, macroeconomic business cycles, etc. We do not use prices directly in 
the estimation, because only average national ticket prices are available in the data. This means that the 
aggregate price effect cannot be separately identified from the effect that is due to other possible aggre-
gate factors. In addition, because individual movies in general do not compete on price margins: Condi-
tional on everything else being the same, an audience pays the same price to see any available movies in 
the same theater. We do not expect unobserved idiosyncratic demand shocks would cause endogeneity 
bias on the estimation of the annual fixed effects.
11  See more details in Fotheringham (1988), Bronnenberg and Vanhonacker (1996), and Wu and Ran-
gaswamy (2003).
12  The consumer choice probability in Eq. (4) has the theater availability directly entering consumers’ 
utility function. This is equivalent to defining separately a consideration probability �jt = (mjt)

�∕(1−�) , and 

a conditional choice probability ŝjt =
exp

(
𝜃j−𝜆(t−rj )+𝜏t+𝜉jt

1−𝜎

)

D𝜎
t +Dt

 . Then sjt = 𝜋jt ⋅ ŝjt.
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model, where the cross-elasticity of demand is the same across all alternative mov-
ies and the outside option. Therefore, the magnitude of � pins down the relative size 
of the market-expansion effect.

The unobserved propensity to like movie j in week t is �jt = �jt + �jt, where �jt is 
an independent and identically distributed measurement error, and �jt captures an 
unobserved demand shock that varies across all movies and weeks. If ignored, �jt 
can cause endogeneity bias. The instrumental approach in dealing with the endoge-
neity problem is explained in Sect. 4.2.

4.2 � Identification of Demand Parameters

The within-industry market share sjt

1−s0t
 and theater availability ln(mjt) are both endog-

enous with respect to the unobserved movie demand shock �jt . As in Einav (2007) 
and Moul (2007b), an instrumental variable approach is used to correct for the endo-
geneity bias. We use the number of rival movies shown in a given week and the 
market-share weighted average rival weeks-in-release as instrumental variables. 
These variables capture a movie’s competitive environment, which is assumed to be 
uncorrelated with the movie’s own demand shock �jt.

Movie production budgets—Bjt—are also potentially endogenous. Movies with 
better screenplays may attract both larger audiences and induce greater studio invest-
ments. Following Ferreira et  al. (2012), we use the total production budgets of a 
movie’s producing studio in the previous year as an instrument variable. A movie 
studio with a large budget in the previous year may be constrained in its current-
year spending. This instrument generates a source of variation in current year movie 
budgets without being contaminated by movie qualities.

The estimation exploits the panel nature of the data to identify key demand 
parameters. A key assumption—supported by the data pattern shown in Fig. 1—is 
that the underlying seasonal pattern is stable over the years. By comparing movie 
box-office performances in the same calendar week across different years, we can 
identify both seasonality parameters �t and the market-expansion effect parameter � . 
For example, if a high quality movie or an increase in the number of movies causes 
the industry box-office revenue to increase significantly during a year, then the mar-
ket-expansion effect must be large and � is close to zero. However, if the increase in 
industry box-office revenue is small, then the market-expansion effect is small and � 
is close to one.

In general, a movie’s overall box-office revenue declines over time. This decline 
can be attributed to the shrinking pool of available consumers who have not already 
watched a movie. This idea is captured by a decay parameter, � , in consumer utility. 
Because the model assumes that all movies follow the same utility decay pattern 
conditional on observables, parameter � can be identified by examining a cross-sec-
tion of movies.

A second possible explanation for the decline in box-office revenue is the decline 
in theater availability. As theater availability falls, a movie is gradually eliminated 
from consumers’ consideration sets. For a fixed � , the changes in a movie’s market 
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shares and its share of theaters over time jointly identify the theater availability 
parameter �.

A potential challenge in estimating � is that we do not observe the types of theat-
ers. Ticket prices of movies that play in 3-D and IMAX theaters are higher in gen-
eral. These movies may have inflated market shares in our measure. An implicit 
assumption is that the 3-D and IMAX theater owners make movie showing deci-
sions in a similar manner to regular theater owners. This assumption means that 
movie shares in different types of theaters fall in a similar way. Then, the identifi-
cation of � is unbiased because different ticket prices do not affect the changes in a 
movie’s market share over time.

4.3 � Budget Decisions

On the supply side, movie producers make production budget decisions, taking into 
account their effects on movie qualities and consequently movie demand. Therefore, 
biased demand estimates can affect the supply-side predictions. To show the conse-
quences of ignoring theater availability, we model budget decisions similar to that in 
Ferreira et al. (2012). The profit earned from releasing a movie j is

In this specification: pt is the average ticket price in week t; Bj is movie j’s produc-
tion budget; and Mt is the U.S. population size in week t. As defined in Eqs. (2) and 
(4), movie market share sjt is a function of movie quality �jt , which in turn is a func-
tion of production budget Bj.

Movie producers and theater owners typically arrange revenue-sharing contracts. 
The movie producer’s share is W(t − rj) , which is a function of the movie’s num-
ber of weeks-in-release. Typically, as is reported in Filson et al. (2005), the movie 
studio’s box-office revenue share is larger (70–90 %) in the opening weeks, then it 
gradually falls over the weeks-in-release. At the end of a movie’s theatrical run, the 
movie producers can receive a share that is as low as 30%.

Furthermore, studios make budget decisions that take into account other sources 
of producer income, such as DVD sales, streaming, and merchandising. We assume 
that a movie’s revenues that are earned outside of theaters are proportional to the 
studio’s theater earnings. The factor qj captures this additional earning ratio.

In addition to the domestic market, a movie can generate box-office returns in 
international markets. The data provide the ratio of world-wide to the U.S. domestic 
box-office revenues: Rj.13 The ratio can be correlated with the production budget, 
because a movie studio is more likely to promote a blockbuster movie overseas 

(6)Πj =

⎛⎜⎜⎝
�
t∈Tj

pt ⋅Mt ⋅W(t − rj)sjt(�j(Bj))

⎞⎟⎟⎠
⋅ (qj + R(Bj)) − Bj.

13  The ratio Rj is at least 1. It equals 1 when a movie has no international sales.
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when it has a large production budget. We use the following regression to capture 
this relationship:

where �R captures the relationship between budget Bj and the international sales 
ratio Rj . This regression also controls for movie genre and release year fixed effects, 
which are represented by 𝜇̃g and 𝜓̃y respectively. Similar to the demand estimation, 
we use the movie studio’s total production budgets in the previous year as an instru-
mental variable to correct for potential endogeneity bias.

A movie producer chooses Bj to maximize profit as specified in Eq. (6). We 
assume that movie producers have perfect foresight during the entire length of a 
movie’s theatrical run. They can perfectly predict the number and qualities of rival 
movies, the number of theaters in which a movie will be exhibited, and the demand 
shocks in each week-in-release.14

Based on the first order condition for profit maximization, movie j’s production 
budget B̂j is

The derivation of Eq. (8) is detailed in “Appendix 2”.

5 � Results

This section presents the estimation results, and discusses the implications of the 
findings.

5.1 � Estimation

Table 6 presents the estimation results of two nested-logit models, based on Eq. (5). 
Model 2 is the model specified in Eq. (5). Model 1 is the same as Model 2, except 
that Model 1 does not control for theater availability: Parameter � is set to zero in 
Model 1.

The sample period is from late-1994 to mid-2017. For some movies in 1994 and 
2017, the data do not contain all weekly observations during their theatrical runs. 
This data censoring can potentially affect the estimation of movie quality parame-
ters, such as � . Also, we do not have the aggregate studio budgets in 1994. For these 

(7)Rj = 𝛼R + 𝛽R ln(Bj) + 𝜇̃g + 𝜓̃y + 𝜖j,

(8)
B̂j =𝛽 ⋅ (Rj + qj)

∑
t

ptMtW(t − rj)
sjt

1 − 𝜎

[
1 − sjt

(
𝜎

s0t

1 − s0t
+ 1

)]

+ 𝛽R

∑
t

ptMtW(t − rj)sjt.

14  Removing this assumption would add more noise to the prediction of movie production budgets for 
individual movies. Because we only consider the average industry budget spending in the ensuing analy-
sis, more noise at the individual level is less of a concern.
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reasons, observations of those movies that are released in or before 1995 and those 
released in 2017 are not included in the estimation. However, they are considered in 
the instrumental variables. In particular: Their production budgets are used to cal-
culate the aggregate studio budgets; they are counted in the number of rival movies; 
and their weeks-in-release are used to calculate the average age of competitors.

Bootstrapping is used for inference that is robust to heteroskedasticity. Standard 
errors are clustered at the individual movie level to allow for arbitrary auto-correla-
tion within the cluster.

5.2 � Result Implications

Theater availability is important because staying in theaters longer allows a movie 
to remain in consideration sets, thus boosting its box-office performance (holding 
everything else constant). In Model 2, the estimated theater availability parameter � 
is positive and significant at the 1% level. Ignoring theater availability, Model 1 has 
an estimated production budget parameter, � , that is almost twice as high as that in 

Table 6   Estimation result

All of the above estimations control for week specific fixed effects. Standard errors, corrected for heter-
oskedasticity and arbitrary auto-correlation within a movie, are given in parentheses. Three (***), two 
(**), and one (*) stars indicate statistical significance at the 1%, 5%, and 10% level respectively

Parameter Description Model 1 Model 2
(without availability) (with availability)

� Production budget 0.363*** 0.184***
(0.077) (0.062)

� Theater availability 0.447***
(0.064)

� Utility decay 0.243*** 0.195***
(0.049) (0.034)

� Market-expansion effect 0.509*** 0.373***
(0.082) (0.024)

�
2

Genre: Comedy 0.073 − 0.023
(0.055) (0.044)

�
3

Genre: Drama 0.119* 0.098*
(0.068) (0.053)

�
4

Genre: Horror/Suspense − 0.001 −0.087**
(0.058) (0.046)

�
5

Genre: Others 0.069 − 0.013
(0.105) (0.085)

� Constant − 4.414*** −3.636***
(0.409) (0.318)

R2 0.911 0.943
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Model 2. Thus, Model 1 mis-attributes some of a movie’s theater staying power to 
its perceived quality (as represented by its budget).

The estimated utility decay parameter � is also biased in Model 1. Using the 
theater share as a proxy, Model 2 can capture the idiosyncratic downward trend in 
box-office revenue specific to a movie. The average rate of decay in utility, � , is 
therefore smaller in Model 2 than in Model 1.

In addition, correcting for changes in market share that are due to theater avail-
ability, Model 2 predicts that within-industry competition has a relatively smaller 
effect on a movie’s demand. As a result, the estimated parameter � is closer to zero 
in Model 2 than in Model 1, which indicates that the market-expansion effect is 
larger in Model 2.

Both models include week fixed effects. Figure 2 compares the estimated season-
ality, which is very similar across the two models. This shows that theater availabil-
ity does not much affect the general seasonal patterns in the industry.

Both models also include movie genre fixed effects �g . In Table 6, the omitted 
baseline is the Action/Adventure genre. Movies in the Drama genre are predicted to 
have significantly higher average quality than the Action/Adventure movies in both 
models. The average quality of the Horror/Suspense movies is slightly lower than 
the baseline in Model 2. The average qualities of all other genres are not signifi-
cantly different from the baseline in either model.

We include release-year fixed effects to control for aggregate industry changes. 
Figure 3 shows that the relative market share of an average movie to outside options 
has fallen over the sample years in both models. The fall is especially precipitous 
from 1996 to 2005, which indicates that it is likely due to home media’s becoming 
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more popular in the sample period.15 Meanwhile, other aggregate factors—such as 
the increasing prevalence of online movie piracy, the decrease in consumer incomes 
due to the burst of the dot-com bubble, and the increase in average movie ticket 
prices—could also have contributed to the downward trends in Fig. 3.

As was discussed previously, we use instrumental variables that reflect to com-
petitive environments and previous-year studio budgets to correct for endogeneity 
biases. The estimated coefficients have the expected signs in the first-stage regres-
sions with respect to the instrumented variables. For example, a movie’s within-
industry market share is negatively correlated with the number of competitors and 
positively correlated with the average weeks-in-release of rival movies. In addition, 
F-tests of excluded instruments are conducted, and the weak instrumental variables 
hypotheses are rejected at the 1% level.

5.2.1 � Robustness Tests

To test the validity of assuming linear decay in utility, a quadratic term −�2(t − rj)
2 

is added to Model 2. Estimating this alternative model yields � = 0.410 and 
�2 = −0.019 . This means that the movie utility decay is faster in the beginning, then 
slows down towards the end of theatrical runs. The corresponding coefficient on 
theater availability is � = 0.686 . This suggests that the importance of theater avail-
ability is underestimated when we assume linear decay in utility. When predicting 
production budgets, we use the more conservative estimate of � presented in Table 6.
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Fig. 3   Estimated release-year fixed effect

15  For example, five major Hollywood studios formed a joint movies-on-demand venture, which allowed 
streaming via broadband Internet for the first time in 2002. In the same year, Netflix, reaching 1 million 
subscribers, made its initial public offering.
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The denominator of our proxy for theater availability—the total number of theat-
ers—can reflect some structural changes in the movie exhibition industry and poten-
tially confound the estimation. As a robustness check, the logarithm of the number 
of estimated screens is instead used to proxy for theater availability when estimat-
ing Model 2.16 The resulting estimates do not change very much. For example, the 
theater availability parameter � changes from 0.3730 to 0.3747.

To make sure that no structural changes in consumer demand occurred in the 
sample period, we re-run Model 2 with the use of different sub-samples by time 
periods. The differences in the relevant parameters for consumer utility decay ( � ), 
market-expansion effect ( � ), and theater availability ( � ) are not significantly differ-
ent between the subsample after year 2000 and the pooled sample.17 We also re-
estimate Model 2 with the use of different sub-samples by genres. The estimates of 
� , � , and � are not significantly different between the subsample containing only the 
Action/Adventure movies and the pooled sample.18

5.3 � Studio Budget Predictions

To understand the importance of theater availability in making supply-side predic-
tions, we compare the predicted production budgets that are based on Eq. (8) with 
the actual budgets in the data.

In constructing the predicted production budget, we take pt,Mt, sjt, s0t , and Rj 
from the data, and use � and � from the demand estimates. We assume that the 
movie producers’ share of box-office revenue—W(t − rj)—is linear in movie j’s 
weeks-in-release (t − rj) . Following Filson et  al. (2005), we set the share W to be 
70% in the opening week, and assume it decreases by 5% every week with a floor 
of 30%. In Eq. (8), the coefficient �R captures the relationship between production 
budget Bj and international box-office ratio Rj . Using Eq. (7), �R is estimated to be 
0.109 with a standard error of 0.019. The full regression results are in “Appendix 3”.

According to Einav (2007), only 15–35% of the studios’ total revenues come from 
domestic box-office sales. Our data do not record other sources of producer income, 
such as DVD sales, streaming, and merchandising. Therefore, to make predictions 
on production budget investment, we assume that domestic box-office sales accounts 
for at most 25% of the studios’ total revenues. Therefore, in Eq. (8), studio incomes 
from other sources are three times of the domestic box-office revenues, or qj = 3.

16  Since the data do not report a movie’s weekly number of screens, we approximate it by using the 
product of its weekly number of theaters and the average number of screens per theater as reported in 
Table 3.
17  The difference in parameter � between the subsample after the year 2000 and the pooled sample is 
− 0.005 (0.174) ; the difference in � is 0.045 (0.178) ; and the difference in � is −0.053 (0.895) . Using a 
Wald test, these differences are not significantly different from zero: P > 𝜒2 = 0.501.
18  The difference in � between the subsample that contains only the Action/Adventure mov-
ies and the pooled sample is 0.009 (0.042) ; the difference in � is 0.008 (0.045) ; and the difference in 
� is 0.020 (0.195) . Using a Wald test, these differences are not significantly different from zero: 
P > 𝜒2 = 0.809.
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Equation (8) is used to predict the production budget of every movie in the data. 
We then calculate the average movie production budget in year y by averaging the pre-
dicted production budgets of all the movies released in year y. Similarly, we calculate 
the mean of actual budgets of all the movies released in year y from the data.

Figure 4 compares the average movie production budgets that are predicted by the 
models to those constructed from the data. The solid line with cross markers repre-
sents the average budgets in the data, the dashed line with hollow markers represents 
the Model 1 predictions, and the solid line with round markers represents the Model 2 
predictions.

Models 1 and 2 have different predictions because the different demand estimates 
from the two models lead to different predicted marginal returns. Table 6 shows that 
parameter � is higher in Model 1, which translates into a higher marginal return to 
budget investment in Model 1. Therefore, Model 1, without theater availability, consist-
ently predicts higher average production budgets than does Model 2.

Figure 4 suggests that Model 2 predictions match reasonably well with the actual 
average production budget in the data. Therefore, our findings imply that theater avail-
ability is an important consideration when movie studios make production budget 
decisions.

We also quantify the magnitude of projected over-investment in production budgets 
if theater availability is ignored. Compared to the actual budgets, the projected average 
over-investment in a movie is $111.25 million, which represents over 60% of the actual 
production budget.
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6 � Conclusion

In this paper, we first estimate the impact of theater availability on box-office rev-
enue with the use of a structural model of movie demand, and then highlight the 
importance of incorporating theater availability in movie studios’ production budget 
decisions. We find that the model that takes into account theater availability is more 
consistent with the data, and the model that ignores theater availability would over-
predict the production budgets.

Provided with suitable data, the next logical step is to extend our research to 
understand the impact of movie exhibition industry consolidation on theater avail-
ability. Interestingly, large chain theaters—such as AMC, Carmike, and Regal—
have expanded tremendously in recent decades, which has contributed to a trend of 
consolidation in the movie exhibition industry. The largest five U.S. exhibitors now 
own more than half of all screens in the U.S. market. These large operators tend to 
increase the scale of operation and to upgrade the quality of their theaters. Large 
movie exhibitors may use their market power to force film distributors to grant 
them more favorable terms, thereby potentially blocking smaller competitors from 
screening certain movie titles.19 Our future research can contribute to the literature 
of movie theater competitions, and complement the existing papers such as Davis 
(2006a, b).

Acknowledgements  We thank the editor and two anonymous referees for making our paper much better. 
We thank the participants for their useful comments in IIOC. The usual disclaimer applies.

Appendix 1

In this appendix, we provide the necessary steps in deriving Eqs. (4) and (5) in the 
main text. Let vjt = �j − �(t − rj) + �jt + � ln(mkt) , where mjt is the proxy for theater 
availability, and �j is movie j’s perceived quality specified in Eq. (2) of the main 
text. Consumer i’s taste shock in week t, �it + (1 − �)�ijt , follows an extreme value 
distribution. In addition, the outside option is always considered by consumers, so 
v0t = −�t . Using the standard nested logit specification (McFadden 1978), the prob-
ability of consumers choosing movie j in week t is:

sjt =
exp(vjt∕(1 − �)) ⋅ [

∑
k∈Jt

⋅ exp(vkt∕(1 − �))]−�

[exp(−�t∕(1 − �))](1−�) + [
∑

k∈Jt
exp(vkt∕(1 − �))](1−�)

.

19  Recently, multiple lawsuits have been filed against the large theater chains; the suits allege that these 
companies use their market power to coerce film distributors to grant them “clearances.” Clearance 
means that theaters can request that the film distributors decline to license their films to theaters that are 
located in zones that the large chains deem competitive, because of geographic proximity or shared audi-
ences. See reports from the Washi​ngton​ Post.

https://www.washingtonpost.com/lifestyle/style/the-nasty-world-of-theater-clearances-and-why-it-matters-to-filmgoers/2016/01/29/5bc6a540-c5d2-11e5-a4aa-f25866ba0dc6_story.html?utm_term=.bffa092e76f9
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In this specification, the outside option is in a different nest and can have a differ-
ent substitutability from all the movies. The fraction of population that would go to 
theaters in given week is:

Correspondingly, the proportion of population choosing the outside option is:

where

The within-industry market share of movie j in week t is

1 − s0t =
�
k∈Jt

skt =

∑
k∈Jt

exp(vkt∕(1 − �)) ⋅ [
∑

k∈Jt
⋅ exp(vkt∕(1 − �))]−�

[exp(−�t∕(1 − �))](1−�) + [
∑

k∈Jt
exp(vkt∕(1 − �))](1−�)

=
[
∑

k∈Jt
exp(vkt∕(1 − �))](1−�)

[exp(−�t∕(1 − �))](1−�) + [
∑

k∈Jt
exp(vkt∕(1 − �))](1−�)

.

s0t =
[exp(−�

t
∕(1 − �))](1−�)

[exp(−�
t
∕(1 − �))](1−�) + [

∑
k∈J

t

exp(v
kt
∕(1 − �))](1−�)

=
[exp(�

t
∕(1 − �))](�−1) ⋅ [

∑
k∈J

t

exp(v
kt
∕(1 − �))]�

[exp(�
t
∕(1 − �))](�−1) ⋅ [

∑
k∈J

t

exp(v
kt
∕(1 − �))]� +

∑
k∈J

t

exp(v
kt
∕(1 − �))

=
[exp(�

t
∕(1 − �))]�[

∑
k∈J

t

exp(v
kt
∕(1 − �))]�

[exp(�
t
∕(1 − �))]�[

∑
k∈J

t

exp(v
kt
∕(1 − �))]� + exp(�

t
∕(1 − �)) ⋅ [

∑
k∈J

t

exp(v
kt
∕(1 − �))]

=
D

�
t

D
�
t
+ D

t

,

Dt = exp(�t∕(1 − �)) ⋅
∑
k∈Jt

exp(vkt∕(1 − �)) =
∑
k∈Jt

exp((vkt + �t)∕(1 − �)).

sjt

1 − s0t
=

exp(vjt∕(1 − �)) ⋅ [
∑

k∈Jt
⋅ exp(vkt∕(1 − �))]−�

[
∑

k∈Jt
exp(vkt∕(1 − �))](1−�)

=
exp(vjt∕(1 − �))∑

k∈Jt
exp(vkt∕(1 − �))

=
exp(�t∕(1 − �)) exp(vjt∕(1 − �))

exp(�t∕(1 − �))
∑

k∈Jt
exp((vkt)∕(1 − �))

=
exp((vjt + �t)∕(1 − �))

Dt

.
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Furthermore,

Taking a log-transformation, we have

Also from the derivation of s0t , we have 1 − s0t =
Dt

D�
t +Dt

 . It follows that

Appendix 2

In this appendix, we show the detailed derivation of Eq. (8) in the main text. Let 
�jt = exp

(
�j−�(t−rj)+�t+�⋅ln(mjt)+�jt

1−�

)
 , then from the “Appendix  1”, we know that 

sjt = �jt∕(D
�
t
+ Dt) and d�jt

d�j
=

�jt

1−�
 . In addition, we know that Dt =

∑
k �kt , where 

�Dt

��jt

= 1.

sjt

s0t
=

exp(vjt∕(1 − �)) ⋅ [
∑

k∈Jt
⋅ exp(vkt∕(1 − �))]−�

[exp(−�t∕(1 − �))](1−�)

=
exp(vjt∕(1 − �)) ⋅ exp(�t∕(1 − �))

[exp(�t∕(1 − �))]�[
∑

k∈Jt
⋅ exp(vkt∕(1 − �))]�

=
exp((vjt + �t)∕(1 − �))

D�
t

=
exp((vjt + �t)∕(1 − �))

(exp((vjt + �t)∕(1 − �)))�

�
exp((vjt + �t)∕(1 − �))

Dt

��

= (exp((vjt + �t)∕(1 − �)))1−� ⋅

�
sjt

1 − s0t

��

.

ln(sjt) − ln(s0t) = (1 − �) ln
(
exp((vjt + �t)∕(1 − �)))

)
⋅ � ln

(
sjt

1 − s0t

)

= � ln(mjt) + �j − �(t − rj) + �t + � ln

(
sjt

1 − s0t

)
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(
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(
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)
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Therefore,

Notice that s0t =
D�

t

D�
t +Dt

 , this means that Dt =
(

s0t

1−s0t

) 1

�−1 , so the above becomes

From Eq. (2) of the main text, we also know that ��jt
�Bj

= �
1

Bj

.
Assuming studio profit (R(Bj) + qj)

∑
t pjtMtW(t − rj)sjt − Bj , where R(Bj) is the 

worldwide to domestic box-office ratio and qj captures the additional revenue source 
outside of theaters. Then the first order condition is

We rearrange the above to get Eq. (8) in the manuscript.

Appendix 3

The international box-office ratio is a function of production budget Bj , a movie’s 
genre, and release year. We specify the regression model as the follows:

To control for the potential endogeneity, we use the total production budgets of the 
movie producer in the previous year as a instrument variable. The regression results 
are presented in the Table 7.

dsjt

d�j
=
d�jt

d�j
(D�

t
+ Dt)

−1 − �jt(D
�
t
+ Dt)

−2(�D�−1
t

+ 1)
d�jt

d�j

=
d�jt

d�j
(D�

t
+ Dt)

−1
[
1 − �jt(D

�
t
+ Dt)

−1(�D�−1
t

+ 1)
]

=
sjt

1 − �
[1 − sjt(�D

�−1
t

+ 1)].

dsjt

d�j
=

sjt

1 − �

[
1 − sjt

(
�

s0t

1 − s0t
+ 1

)]
.

�
1

Bj

⋅ (R(Bj) + qj)
∑
t

pjtMtW(t − rj)
sjt

1 − �

[
1 − sjt

(
�

s0t

1 − s0t
+ 1

)]

+ �R
1

Bj

∑
t

pjtMtW(t − rj)sjt = 1.

Rj = 𝛼R + 𝛽R ln(Bj) + 𝜇̃g + 𝜓̃y + 𝜖j
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Table 7   International box-office 
ratio regression result

Parameter Description Estimated coefficients

�R Production budget 0.110***
(0.019)

𝜇̃
2

Genre: Comedy − 0.651***
(0.024)

𝜇̃
3

Genre: Drama − 0.522***
(0.025)

𝜇̃
4

Genre: Horror/Suspense − 0.390***
(0.027)

𝜇̃
5

Genre: Others − 0.568***
(0.044)

𝜓̃
1997

Release Year: 1997 − 0.114**
(0.053)

𝜓̃
1998

Release Year: 1998 − 0.204***
(0.048)

𝜓̃
1999

Release Year: 1999 − 0.218***
(0.046)

𝜓̃
2000

Release Year: 2000 − 0.139***
(0.046)

𝜓̃
2001

Release Year: 2001 − 0.139***
(0.046)

𝜓̃
2002

Release Year: 2002 − 0.127***
(0.046)

𝜓̃
2003

Release Year: 2003 0.031
(0.046)

𝜓̃
2004

Release Year: 2004 0.072
(0.046)

𝜓̃
2005

Release Year: 2005 0.168***
(0.046)

𝜓̃
2006

Release Year: 2006 0.251***
(0.046)

𝜓̃
2007

Release Year: 2007 0.348***
(0.047)

𝜓̃
2008

Release Year: 2008 0.409***
(0.046)

𝜓̃
2009

Release Year: 2009 0.231***
(0.046)

𝜓̃
2010

Release Year: 2010 0.436***
(0.046)

𝜓̃
2011

Release Year: 2011 0.540***
(0.046)

𝜓̃
2012

Release Year: 2012 0.608***
(0.046)

𝜓̃
2013

Release Year: 2013 0.573***
(0.046)
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Table 7   (continued) Parameter Description Estimated coefficients

𝜓̃
2014

Release Year: 2014 0.523***
(0.047)

𝜓̃
2015

Release Year: 2015 0.617***
(0.048)

𝜓̃
2016

Release Year: 2016 0.556***
(0.047)

�R Constant 1.723***
(0.102)
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