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A B S T R A C T

The recent emerging graph signal processing technologies have been widely applied to analyze signals defined
on irregular domains, e.g., data collected from social networks, sensor networks, or transportation systems.
Vertex frequency analysis, especially the windowed graph Fourier transform, is one of the most important
tools for graph signal analysis and representations. Nevertheless, with a selected window function, it is
rather challenging to construct tight frames via the windowed graph Fourier transform. To facilitate the
construction of tight frames, in this paper, we consider multi-windowed graph Fourier transforms to develop
novel vertex frequency analysis methods. Firstly, under the multi-windowed setting, tight graph Fourier frames
are elaborately constructed to fulfill technical demands in different application scenarios. The canonical dual
frames of the multi-windowed graph Fourier frames are investigated to establish the reconstruction formulas
of graph signals. Additionally, we propose shift multi-windowed graph Fourier frames by directly using the
shift operators, e.g., the adjacency matrix. The related tight frames, dual frames and their constructions
are also discussed. Experimental results show that the proposed two types of frames can efficiently extract
vertex-frequency features of synthetic graph signals. Furthermore, anomaly data can also be detected by these
frames.
. Introduction

As the explosion of information and communication in the mod-
rn society, data science is now facing a huge challenge to handle
variety of data analysis problems [1]. Among the real-world data,
any types of signals are originally collected from distributed receivers

r sensor networks, transportation or mobile networks [2,3], and in-
ernet of things [4,5], and thus naturally reside on an underlying
rregular domain. Due to the complex irregular structures, classical
ignal processing techniques cannot be directly applied to analyze
hese structured data. Thus, it is of great importance to develop novel
ethodologies to handle signals with an underlying structure [6].

The recent emerging graph signal processing (GSP) theory redefines
tructured data as graph signals and provides novel perspectives for the
rocessing of them [7]. Currently, the main focus of GSP is to build
p systematic mechanisms for graph signals, similar to the classical
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signal processing theory [8]. The GSP theory contains a series of
topics, like sampling theory [9,10], frequency analysis [11], topology
inference [12,13], to name a few. For extracting and analyzing the
vertex-frequency features of graph signals, the vertex-frequency anal-
ysis, which plays a role in GSP analogs to that of the time-frequency
analysis in classical signal processing, has gradually become a hot
topic in the GSP community. Specifically, the vertex-frequency analysis
contains the graph Fourier transform, graph wavelet transform and
filter-banks, windowed graph Fourier transform and the related frame
theory [14].

The graph Fourier transform presents the spectral representations
of graph signals and also sets the foundation for establishing the graph
wavelet transform and windowed graph Fourier transform [15,16].
The graph wavelet transform can be applied to obtain multiscale and
sparse representations of graph signals. The relevant variants of graph
wavelet transform include multiscale or multiresolution transform
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[17,18], graph wavelet filter-banks [19–22], and adaptive multiscale
transform [23,24]. Meanwhile, the windowed graph Fourier transform
acts similar to the short time (windowed) Fourier transform in classical
signal processing, and is applied to indicate local variations of graph
signals in the vertex-frequency domain. In [16], the windowed graph
Fourier transform was introduced under the framework of the graph
Fourier transform and graph signal filtering. The key properties of
windowed graph Fourier transform was then explored in [25], and
the windowed graph Fourier frames were designed to extract vertex-
frequency features of graph signals. The spectrum adapted windows
were also designed to achieve better discriminative ability of the trans-
form [26]. To accelerate the computation, fast algorithm for windowed
graph Fourier transform was then constructed in [27]. Latter on, the
theory was extended to vertex domain localization windows [28] and
general Gabor-type frames [29]. The vertex-frequency representation
given by the windowed graph Fourier frames could show the vertex-
frequency feature of graph signals. But the reconstruction of the signal
requires extra computation of a dual frame. By adopting tight frames,
the dual frame could be ignored and extra computation of the dual
frame would be saved. However, the problem of constructing tight
windowed graph Fourier frames is still under exploring.

In this paper, based on our previous work [30], we extend the win-
dowed graph Fourier transform to the multi-windowed case to facilitate
the construction of tight frames. We present equivalent conditions for
multi-windowed graph Fourier frames and tight frames. We also inves-
tigate the duals of multi-windowed graph Fourier frames to construct
reconstruction formulas for any graph signals. To extend the scope of
vertex-frequency analysis, we also define shift windowed graph Fourier
frames. The related tight frames, duals and the key properties of them
are also discussed. Experimental results show that the proposed multi-
windowed and shift windowed graph Fourier frames are efficient in
extracting vertex-frequency features of graph signals.

The rest of this paper is organized as follows: In Section 2, we briefly
review the background of the paper. In Section 3, we introduce the
definition of multi-windowed graph Fourier frames, and present some
results on frames and tight frames. In Section 4, we give some results
on the duals of multi-windowed graph Fourier frames. In Section 5, we
define shift windowed graph Fourier frames and discuss the related du-
als and tight frames. In Section 6, we provide examples on constructing
tight or near-tight multi-windowed and shift windowed graph Fourier
frames. In Section 7, we present the experimental results. Section 8
concludes this work.

2. Background

In this section, we provide a brief overview of the notations and
concepts from graph theory, graph signal processing, frame theory,
time-frequency analysis and vertex-frequency graph signal analysis.

2.1. Notations and preliminaries

We denote an undirected weighted graph by  = ( ,  ,𝐖), where 
denotes the vertex set,  denotes edge set, and 𝐖 denotes the adjacency

atrix, respectively. If there exists an edge 𝑒(𝑖, 𝑗) connecting nodes 𝑖
nd 𝑗, 𝑊𝑖,𝑗 is the weight value assign to the edge 𝑒(𝑖, 𝑗). We define the

degree matrix 𝐃 of  as a diagonal matrix whose 𝑖th diagonal element
𝑖 is the degree of vertex 𝑖, i.e. the sum of the weights of all the edges
ncident to vertex 𝑖: 𝐷𝑖𝑖 =

∑

𝑗 𝑊𝑖𝑗 . Then the graph Laplacian, also
alled the combinatorial graph Laplacian of  is defined as 𝐋 = 𝐃−𝐖.
ince  is undirected, 𝐋 is a real symmetric matrix, and therefore has a
omplete set of orthonormal basis. Denote these eigenvectors by 𝐮𝑙 for
= 0, 1,… , 𝑁 − 1, with associated eigenvalues 𝜆𝑙, i.e. 𝐋𝐮𝑙 = 𝜆𝑙𝐮𝑙. We
enote the eigen-matrix by 𝐔 = (𝐮0,𝐮1,… ,𝐮𝑁−1).

Then for any vector 𝐟 ∈ R𝑁 defined on the vertices of , its graph
ourier transform 𝐟̂ is defined by

(𝜆𝑙) = ⟨𝐟 ,𝐮𝑙⟩ =
𝑁
∑

𝐮∗𝑙 (𝑛)𝐟 (𝑛).

𝑛=1

36
The inverse transform can be derived by:

𝐟 (𝑛) =
𝑁−1
∑

𝑙=0
𝐟̂ (𝜆𝑙)𝐮𝑙(𝑛).

The Parseval equation holds for the graph Fourier transform, that
s, for any 𝐟 , 𝐠 ∈ R𝑁 , ⟨𝐟 , 𝐠⟩ = ⟨𝐟̂ , 𝐠̂⟩.

.2. Frames and operators [31]

efinition 2.1. A family of vectors {𝐟𝑘}𝑀𝑘=1 ⊆ R𝑁 (𝑀 ≥ 𝑁) is a finite
rame for R𝑁 if there exist constants 𝐴,𝐵 > 0, such that

‖𝐟‖2 ⩽
𝑀
∑

𝑘=1
∥ ⟨𝐟 , 𝐟𝑘⟩|2 ⩽ 𝐵‖𝐟‖2

olds for every 𝐟 ∈ R𝑁 . The constants 𝐴 and 𝐵 are called frame bounds,
nd if 𝐴 = 𝐵, {𝐟𝑘}𝑀𝑘=1 is called a tight frame.

For a frame {𝐟𝑘}𝑀𝑘=1, we define its associated synthesis operator
∶ 𝑙2(R𝑁 ) → R𝑁 by

({𝑐𝑘}) =
𝑀
∑

𝑘=1
𝑐𝑘𝐟𝑘,

nd the analysis operator 𝑇 ∗ ∶ R𝑁 → 𝑙2(R𝑁 ) by
∗𝐟 = {⟨𝐟 , 𝐟𝑘⟩}.

Integrating 𝑇 and 𝑇 ∗ together, which are a pair of dual operators,
e define the frame operator of {𝐟𝑘} by 𝑆 = 𝑇𝑇 ∗, i.e.,

𝐟 =
𝑀
∑

𝑘=1
⟨𝐟 , 𝐟𝑘⟩𝐟𝑘, 𝐟 ∈ R𝑁 ,

hich is a bounded, positive, invertible and self-adjoint operator.
If there exists another sequence of vectors {𝐠𝑘}𝑀𝑘=1, such that

=
𝑀
∑

𝑘=1
⟨𝐟 , 𝐠𝑘⟩𝐟𝑘, 𝐟 ∈ R𝑁 ,

e call {𝐟𝑘}𝑀𝑘=1 a dual frame of {𝐟𝑘}𝑀𝑘=1.
For any frame {𝐟𝑘}𝑀𝑘=1, it has an infinite number of dual frames. We

ould directly verify that {𝑆−1𝐟𝑘}𝑀𝑘=1 is a dual frame, which is often
alled the canonical dual frame of {𝐟𝑘}𝑀𝑘=1, where 𝑆−1 is the inverse of
.

Additionally, the synthesis operator of {𝐟𝑘}𝑀𝑘=1 can be written as
full rank 𝑁 × 𝑀 matrix 𝐅, which has its columns as the frame

lements, i.e., 𝐅 = (𝐟1, 𝐟2,… , 𝐟𝑀 ). Then the analysis, frame operators and
nverse frame operator of 𝐅 can be represented as 𝐅∗, 𝐅𝐅∗ and (𝐅𝐅∗)−1,
espectively. Here ∗ denotes the matrix conjugate.

.3. Short-time Fourier transform [32]

For any window function 𝑔 ∈ 𝐿2(R) and 𝑢 ∈ R, the translation of 𝑔
y 𝑢 is defined by the operator 𝑇𝑢:

𝑇𝑢𝑔)(𝑡) ∶= 𝑔(𝑡 − 𝑢). (1)

or any 𝜉 ∈ R, the modulation of 𝑔 by frequency 𝜉 is defined by the
perator 𝑀𝜉 :

𝑀𝜉𝑔)(𝑡) ∶= 𝑒2𝜋𝑖𝜉𝑡𝑔(𝑡). (2)

iven a finite sequence of window functions 𝑔1,… , 𝑔𝐿, the family of
iscrete multi-windowed Fourier atoms is defined by:
𝑤 = {𝑔𝑙𝑚,𝑛(𝑡) ∶= (𝑀𝑚𝑇𝑛)𝑔𝑙(𝑡) = 𝑒2𝜋𝑖𝑚𝑡𝑔𝑙(𝑡 − 𝑛)}, (3)

here 𝑙 = 1,… , 𝐿; 𝑚 ∈ Z; 𝑛 ∈ Z.
𝑤 is called a multi-windowed Fourier frame if there exist two

ositive constant 𝐴,𝐵 > 0, such that for any 𝑓 ∈ 𝐿2(R),

‖𝑓‖2 ≤
𝐿
∑ ∑

|⟨𝑓, (𝑀𝑚𝑇𝑛)𝑔𝑙⟩|
2 ≤ 𝐵‖𝑓‖2. (4)
𝑙=1 𝑚,𝑛∈Z
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The constant 𝐴,𝐵 are called frame bounds. 𝑤 is called a tight frame
if 𝐴 = 𝐵. Here 𝑆𝑓 (𝑚, 𝑛, 𝑙) ∶= ⟨𝑓, (𝑀𝑚𝑇𝑛)𝑔𝑙⟩ = ∫ 𝑓 (𝑡)𝑔𝑙(𝑡 − 𝑛)𝑒−2𝜋𝑚𝑡𝑑𝑡 are
the windowed Fourier transform coefficients. The coefficients
{|𝑆𝑓 (𝑚, 𝑛, 𝑙)|2, 𝑙 = 1,… , 𝐿}𝑚,𝑛∈Z is generally called the ‘‘spectrogram’’
of signal 𝑓 .

Any function 𝑓 ∈ 𝐿2(R) can be reconstructed by using the win-
dowed Fourier transform coefficients and a dual multi-windowed
Fourier frame.

A multi-windowed Fourier frame ̃𝑤𝐿 = {𝑔̃𝑙𝑚,𝑛(𝑡)} generated by
indow functions 𝑔̃1,… , 𝑔̃𝐿, is called a dual to 𝑤𝐿 = {𝑔𝑙𝑚,𝑛(𝑡)} if for

any 𝑓 ∈ 𝐿2(R),

=
𝐿
∑

𝑙=1

∑

𝑚,𝑛∈Z
⟨𝑓, (𝑀𝑚𝑇𝑛)𝑔𝑙⟩(𝑀𝑚𝑇𝑛)𝑔̃𝑙 . (5)

.4. Windowed graph Fourier transform for GSP [16]

For a graph signal 𝐟 ∈ R𝑛 defined on a 𝑁-vertex graph  = ( ,  ,𝑊 ),
the generalized translation of 𝐟 by 𝑖 is defined by the operator 𝑇𝑖:

(𝑇𝑖𝐟 )(𝑛) ∶=
√

𝑁
𝑁−1
∑

𝑝=0
𝐟 (𝑝)𝐮∗𝑝(𝑖)𝐮𝑝(𝑛). (6)

The generalized modulation of 𝐟 by frequency 𝑘 is defined by the
operator 𝑀𝑘:

(𝑀𝑘𝐟 )(𝑛) ∶=
√

𝑁𝐟 (𝑛)𝐮𝑘(𝑛). (7)

The windowed graph Fourier atoms generated by a window function
∈ R𝑁 on  are defined by

𝑖,𝑘(𝑛) ∶= (𝑀𝑘𝑇𝑖𝐠)(𝑛) = 𝑁𝐮∗𝑘(𝑛)
𝑁−1
∑

𝑝=0
𝐠̂(𝑝)𝐮∗𝑝(𝑖)𝐮𝑝(𝑛), (8)

with 𝑖 = 1, 2,… , 𝑁 , 𝑘 = 0, 1,… , 𝑁 − 1. We denote the set of these
windowed graph Fourier atoms by

𝑤 = {𝐠𝑖,𝑘}𝑖=1,2,…,𝑁 ;𝑘=0,1,…,𝑁−1. (9)

In [16] and [25], it was shown that the condition for a window
𝐠 ∈ R𝑁 to generate a windowed graph Fourier frame is 𝐠̂(0) ≠ 0.

Lemma 2.2. For a window function 𝐠 ∈ R𝑁 defined on , if 𝐠̂(0) ≠ 0,
hen the windowed graph Fourier atoms defined in (9) is a frame with lower
rame bound

∶= min
𝑛∈{1,2,…,𝑁}

{𝑁‖𝑇𝑛𝐠‖22}, (10)

and upper lower frame bound

𝐵 ∶= max
𝑛∈{1,2,…,𝑁}

{𝑁‖𝑇𝑛𝐠‖22}. (11)

We then call the atom set a windowed graph Fourier frame (WGFF).

Constructing tight windowed graph Fourier frames is a valuable
topic in GSP. By Lemma 2.2, technical design of window functions for
tight frames would involve with complicated computations and analysis
on the graph Fourier transform matrix. In the sequel, we utilize multi-
window to construct tight frames and develop novel vertex-frequency
analysis methods. As will be seen, multi-window could create more
freedom than the single-window case and thus reduce the difficulty in
the construction of tight frames.

3. Multi-windowed graph Fourier frames

Analog to (3) in the classical case, for a finite sequence of window
functions 𝐠1, 𝐠2,… , 𝐠𝐿 ∈ R𝑁 , we can define the set of multi-windowed
graph Fourier atoms by

𝑤𝐿 = {𝐠𝑙𝑖,𝑘}𝑖=1,2,…,𝑁 ;𝑘=0,1,…,𝑁−1;𝑙=1,2,…,𝐿. (12)
37
Theorem 3.1. Let 𝑤𝐿 be the set of multi-windowed graph Fourier atoms
defined in (12). If ∑𝐿

𝑙=1 |𝐠̂
𝑙(0)|2 ≠ 0, then 𝑤𝐿 is a frame with lower frame

bound

𝐴 ∶= min
𝑘∈{1,2,…,𝑁}

{𝑁
𝐿
∑

𝑙=1
‖𝑇𝑛𝐠𝑙‖22}, (13)

nd upper lower frame bound

∶= max
𝑘∈{1,2,…,𝑁}

{𝑁
𝐿
∑

𝑙=1
‖𝑇𝑛𝐠𝑙‖22}, (14)

roof. For any 𝐟 ∈ R𝑁 ,
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
|⟨𝐟 , 𝐠𝑙𝑖,𝑘⟩|

2

=
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
|⟨𝐟 ,𝑀𝑘𝑇𝑖𝐠𝑙⟩|

2

= 𝑁
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
|⟨𝐟◦(𝑇𝑖𝐠𝑙)∗, 𝑢𝑘⟩|

2

= 𝑁
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1
|⟨𝐟◦(𝑇𝑖𝐠𝑙), 𝐟◦(𝑇𝑖𝐠𝑙)⟩|

2

= 𝑁
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁
∑

𝑛=1
|𝐟 (𝑛)|2|(𝑇𝑖𝐠𝑙)(𝑛)|

2

= 𝑁
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁
∑

𝑛=1
|𝐟 (𝑛)|2|(𝑇𝑛𝐠𝑙)(𝑖)|

2 (15)

= 𝑁
𝑁
∑

𝑛=1
|𝐟 (𝑛)|2

𝐿
∑

𝑙=1
‖(𝑇𝑛𝐠𝑙)‖22,

here (15) follows from the symmetry of 𝐋 and the definition of
perator 𝑇𝑖 in (6). In addition, if ∑𝐿

𝑙=1 |𝐠̂
𝑙(0)|2 ≠ 0, we have

𝐿
∑

𝑙=1
‖𝑇𝑛𝐠𝑙‖22 = 𝑁

𝑁−1
∑

𝑝=0

𝐿
∑

𝑙=1
|𝐠̂𝑙(𝑝)|2|𝐮𝑝(𝑛)|2

>
𝐿
∑

𝑙=1
|𝐠̂𝑙(0)|2 > 0 (16)

y (16), taking the minimum and maximum of ∑𝐿
𝑙=1 ‖𝑇𝑛𝐠

𝑙
‖

2
2, we have

he lower frame bound 𝐴 > 0. Thus, 𝑤𝐿 is a frame with lower and upper
rame bounds defined in (13) and (14). □

We call the atom set defined in (12) a multi-windowed graph
ourier frame (MWGFF) if it forms a frame.

Let 𝑐𝑛 = 𝑁
∑𝐿

𝑙=1 ‖𝑇𝑛𝐠
𝑙
‖

2
2 and 𝐜 = (𝑐1,… , 𝑐𝑁 )𝑇 , by the proof of

heorem 3.1, Eq. (15) shows that

𝑆𝐟 , 𝐟⟩ = ⟨𝐜◦𝐟 , 𝐟⟩, 𝐟 ∈ R𝑁 . (17)

ere ◦ denotes the entrywise product. That is, for vectors 𝐜 and 𝐟 , the
ntrywise product 𝐜◦𝐟 = (𝑐1𝑓1,… , 𝑐𝑁𝑓𝑁 )𝑇 .

Equivalently, we have

𝐟 = 𝐃𝑐 𝐟 , 𝐟 ∈ R𝑁 , (18)

here 𝐃𝑐 = diag(𝐜) is a diagonal matrix, with its 𝑛th diagonal entry
𝑛𝑛 = 𝑐𝑛 =

∑𝐿
𝑙=1 ‖𝑇𝑛𝐠

𝑙
‖

2
2.

orollary 3.2. 𝑤𝐿 is a tight frame if and only if there exists a constant
𝐶, such that 𝑁 ∑𝐿

𝑙=1 ‖𝑇𝑛𝐠
𝑙
‖

2
2 = 𝐶 for 𝑛 = 1, 2,… , 𝑁 .

roof. From Eq. (18), the frame operator of 𝑤𝐿 can be written as the
iagonal matrix

= 𝐃𝑐 = diag(𝐜),

ith 𝑐𝑛 = 𝑁
∑𝐿

𝑙=1 ‖𝑇𝑛𝐠
𝑙
‖

2
2, 𝑛 = 1,… , 𝑁 . As the optimal lower and upper

rame bounds of a frame are the smallest and largest eigenvalues of
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the frame operator respectively, the frame bounds of 𝑤𝐿 are given by
the smallest and largest entries in 𝐜. Therefore, 𝑤𝐿 is a tight frame is
equivalent to the condition that 𝐜 is a constant vector, i.e. there exists

constant 𝐶, such that 𝑐𝑛 = 𝐶 for 𝑛 = 1, 2,… , 𝑁. □

Corollary 3.3. Let 𝑤𝐿 be the set of multi-windowed graph Fourier atoms
defined in (12). If there exists a constant 𝐶, such that ∑𝐿

𝑙=1 |𝐠̂
𝑙(𝜆𝑝)|

2 = 𝐶,
or 𝑝 = 0, 1,… , 𝑁 −1, then 𝑤𝐿 is a tight frame with frame bounds 𝐴 = 𝐵 =
2𝐶.

roof. In the proof of Theorem 3.1, for any 𝑓 ∈ R𝑁 , we have,
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
|⟨𝐟 , 𝐠𝑙𝑖,𝑘⟩|

2 = 𝑁
𝑁
∑

𝑛=1
|𝐟 (𝑛)|2

𝐿
∑

𝑙=1
‖(𝑇𝑛𝐠𝑙)‖22

= 𝑁2
𝑁
∑

𝑛=1
|𝐟 (𝑛)|2

𝑁−1
∑

𝑝=0

𝐿
∑

𝑙=1
|𝐠̂𝑙(𝜆𝑝)|

2
|𝐮𝑝(𝑛)|2. (19)

Since the eigen-matrix 𝐔 of 𝐋 is orthogonal, we have ∑𝑁−1
𝑝=0 |𝐮𝑝(𝑛)|2 = 1,

for 𝑛 = 1, 2,… , 𝑁 . If ∑𝐿
𝑙=1 |𝐠̂

𝑙(𝜆𝑝)|
2 = 𝐶, for 𝑝 = 0, 1,… , 𝑁 − 1,

from Eq. (19), we have
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
|⟨𝐟 , 𝐠𝑙𝑖,𝑘⟩|

2 = 𝑁2𝐶‖𝑓‖22. (20)

Thus, 𝑤𝐿 is a tight frame with frame bounds 𝐴 = 𝐵 = 𝑁2𝐶. □

Note that Corollary 3.3 presents a method for constructing multi-
windowed graph Fourier tight frames. The details will be given in
Section 6.

4. Dual of multi-windowed graph Fourier frames

In [25], the authors presented a reconstruction formula for sin-
gle windowed graph Fourier frames. In this section, we provide a
reconstruction formula by introducing the definition of dual of multi-
windowed graph Fourier frames. Additionally, the canonical dual is
also discussed.

Similar to the definition in (5), let ̃𝑤𝐿 denotes the multi-windowed
graph Fourier atom set generated by a finite sequence of window
functions 𝐠̃1, 𝐠̃2,… , 𝐠̃𝑁 in the sense of (12). ̃𝑤𝐿 is called a dual to 𝑤𝐿 if
for any 𝐟 ∈ R𝑁 , there exists a constant 𝐶, such that

𝐟 = 𝐶
𝐿
∑

𝑙=1

𝑁−1
∑

𝑘=0

𝑁
∑

𝑖=1
⟨𝐟 , 𝐠̃𝑙𝑖,𝑘⟩𝐠

𝑙
𝑖,𝑘 = 𝐶

𝐿
∑

𝑙=1

𝑁−1
∑

𝑘=0

𝑁
∑

𝑖=1
⟨𝑓, 𝐠𝑙𝑖,𝑘⟩𝐠̃

𝑙
𝑖,𝑘. (21)

Theorem 4.1. Suppose that 𝑤𝐿 is a multi-windowed graph Fourier frame
as defined in (12). If there exists a finite sequence of window functions
𝐠̃1, 𝐠̃2,… , 𝐠̃𝑁 and a constant 𝜇 > 0, such that
𝐿
∑

𝑙=1
𝐠̂𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝) = 𝜇, 𝑝 = 0, 1,… , 𝑁 − 1, (22)

then ̃𝑤𝐿 is a dual of 𝑤𝐿 .

Proof. Suppose that ∑𝐿
𝑙=1 𝐠̂(𝜆𝑝) ̂̃𝐠(𝜆𝑝) = 𝜇 for 𝑝 = 0, 1,… , 𝑁 − 1. Then

we have
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0
⟨𝐟 , 𝐠𝑙𝑖,𝑘⟩𝐠̃

𝑙
𝑖,𝑘(𝑛)

=
𝐿
∑

𝑙=1

𝑁
∑

𝑖=1

𝑁−1
∑

𝑘=0

(

𝑁
𝑁
∑

𝑚=1
𝐟 (𝑚)𝐮∗𝑘(𝑚)

𝑁−1
∑

𝑝=0
𝐠̂𝑙(𝜆𝑝)𝐮𝑝(𝑖)𝐮∗𝑝(𝑚)

)

⋅

(

𝑁𝐮𝑘(𝑛)
𝑁−1
∑

𝑝′=0
𝐠̂𝑙(𝜆𝑝′ )𝐮∗𝑝′ (𝑖)𝐮𝑝′ (𝑛)

)

=𝑁2
𝑁
∑

𝐟 (𝑚)
𝐿
∑

𝑁−1
∑

𝑁−1
∑

𝐠̂𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝′ )𝐮∗𝑝(𝑚)𝐮𝑝′ (𝑛)⋅

𝑚=1 𝑙=1 𝑝=0 𝑝′=0 𝑇

38
𝑁
∑

𝑖=1
𝐮𝑝(𝑖)𝐮∗𝑝′ (𝑖)

𝑁−1
∑

𝑘=0
𝐮∗𝑘(𝑚)𝐮𝑘(𝑛)

=𝑁2
𝑁
∑

𝑚=1
𝐟 (𝑚)

𝐿
∑

𝑙=1

𝑁−1
∑

𝑝=0

𝑁−1
∑

𝑝′=0
𝐠̂𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝′ )𝐮∗𝑝(𝑚)𝐮𝑝′ (𝑛)𝛿𝑝𝑝′𝛿𝑚𝑛

𝑁2𝐟 (𝑛)
𝑁−1
∑

𝑝=0

𝐿
∑

𝑙=1
𝐠̂𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝)|𝐮𝑝(𝑛)|2

𝑁2𝜇𝐟 (𝑛).

ere the orthogonality of 𝐔 is applied in the last equation, i.e.
𝑁−1
𝑝=0 |𝐮𝑝(𝑛)|2 = 1. Thus, ̃𝑤𝐿 is a dual of 𝑤𝐿 with 𝐶 = 𝑁2𝜇 in (21). □

We could also prove that the dual ̃𝑤𝐿 of a multi-windowed graph
ourier frame 𝑤𝐿 is also a frame.

orollary 4.2. Suppose that 𝑤𝐿 is a multi-windowed graph Fourier frame
s defined in (12). If there exists a finite sequence of window functions
̃1, 𝐠̃2,… , 𝐠̃𝑁 and a constant 𝜇 > 0, such that ∑𝐿

𝑙=1 𝐠̂
𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝) = 𝜇 for

= 0, 1,… , 𝑁 − 1, then ̃𝑤𝐿 is also a multi-windowed graph Fourier frame.

roof. If ∑𝐿
𝑙=1 𝐠̂

𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝) = 𝜇 > 0 for 𝑝 = 0, 1,… , 𝑁 − 1, by the
auchy–Schwartz inequality, we have

2 = |

𝐿
∑

𝑙=1
𝐠̂𝑙(𝜆𝑝) ̂̃𝐠𝑙(𝜆𝑝)|

2

≤
𝐿
∑

𝑙=1
|

̂̃𝐠𝑙(𝜆𝑝)|
2

𝐿
∑

𝑙=1
|𝐠̂𝑙(𝜆𝑝)|

2, (23)

or 𝑝 = 0, 1,… , 𝑁−1. Then we have ∑𝐿
𝑙=1 |𝐠̂

𝑙(𝜆𝑝)|
2 ≠ 0, and ∑𝐿

𝑙=1 |
̂̃𝐠𝑙(𝜆𝑝)|

2

0, for 𝑝 = 0, 1,… , 𝑁 − 1. By Theorem 3.1, we have ̃𝑤𝐿 is also a
ulti-windowed graph Fourier frame. □

Theorem 4.1 and Corollary 4.2 imply that there is a freedom on
onstructing dual multi-windowed graph Fourier frames. To be more
pecific, we could construct dual windows under Condition (22). For

multi-windowed graph Fourier frame 𝑤𝐿 generated by 𝐠1, 𝐠2, ⋯,
𝐿 ∈ R𝑁 , the dual ̃𝑤𝐿 can be constructed by selecting a constant 𝜇
hen finding 𝐠̃𝑙 ∈ R𝑁 by letting ̂̃𝐠𝑙(𝜆𝑝) =

𝜇
𝐿𝐠̂𝑙 (𝜆𝑝)

for 𝑝 = 0, 1,… , 𝑁 − 1.
ondition (22) is then satisfied. But in case that 𝐠̂𝑙(𝜆𝑘) = 0 for some 𝑘
nd 𝑙, the dual cannot be constructed in this scheme. Consequently, it
equires a technical design and calculation of the window functions.
dditionally, in the multi-window case, the reconstruction formula
equire the dual frame generated by the dual windows, and thus would
ncrease the computation for the reconstruction of signals.

Taking the diagonal property of the frame operator into accounts,
e could easily obtain the canonical dual frame.

orollary 4.3. Suppose that 𝑤𝐿 is a multi-windowed graph Fourier frame
s defined in (12). Let 𝐜 ∈ R𝑁 be a vector with 𝑐𝑛 = 𝑁

∑𝐿
𝑙=1 ‖𝑇𝑛𝐠

𝑙
‖

2
2, and

∈ R𝑁 be a vector with 𝑑𝑛 = 1
𝑐𝑛

, 𝑛 = 1, 2,… , 𝑁 . Then the canonical dual
frame of 𝑤𝐿 is given by

̃𝑤𝐿 ∶= {𝐠̃𝑙𝑖,𝑘 = 𝐝◦𝐠𝑙𝑖,𝑘}, (24)

here 𝑖 = 1, 2,… , 𝑁 ; 𝑘 = 0, 1,… , 𝑁 − 1; 𝑙 = 1, 2,… , 𝐿.

Proof. Suppose that 𝑆 is the frame operator of 𝑤𝐿 . In the proof of
Corollary 3.2, we have that

𝑆 = 𝐃𝑐 = diag(𝐜).

According to Section 2.2, the canonical frame of 𝑤𝐿 is then given by
−1𝐠𝑙𝑖,𝑘 = 𝐃−1

𝑐 𝐠𝑙𝑖,𝑘 = 𝐃𝑑𝐠𝑙𝑖,𝑘 = 𝐝◦𝐠𝑙𝑖,𝑘
here 𝑖 = 1, 2,… , 𝑁 ; 𝑘 = 0, 1,… , 𝑁 − 1; 𝑙 = 1, 2,… , 𝐿. □

Remark that the dual frame ̃𝑤𝐿 is unnecessary to be generated by a
equence of windows. Specifically, the graph translation operator does
ot commute with the entrywise product ◦, i.e.

(𝐜◦𝐠) ≠ 𝐜◦𝑇 (𝐠), 𝐠 ∈ R𝑁 .
𝑖 𝑖
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Even though the graph modulation operator commutes with the entry-
wise product, i.e.

𝑀𝑘(𝐜◦𝐠) = 𝐜◦𝑀𝑘(𝐠), 𝐠 ∈ R𝑁 ,

we still have in general that,

𝑀𝑘𝑇𝑖(𝐜◦𝐠) ≠ 𝐜◦𝑀𝑘𝑇𝑖(𝐠), 𝐠 ∈ R𝑁 .

Finding the generator windows of a windowed graph Fourier frame
could facilitate the investigation of the properties of the frame. How-
ever, without knowing the windows, the canonical dual frame can still
be easily obtained from the original frame, and be applied to construct
a reconstruction formula for graph signals.

5. Shift windowed graph Fourier frames

As the graph signal translation operator could increase the redun-
dancy and complexity of the multi-windowed frame, an alternative is
to take the graph shift operator as the translation operator. Given a
graph  = ( , ) with 𝑁 vertices, the associated graph shift operator

is defined as an 𝑁 × 𝑁 matrix whose entry 𝑆𝑖,𝑗 ≠ 0 only if (𝑖, 𝑗) ∈
[11]. The adjacency matrix is often utilized as a type of shift operator,

cting like the translation operator in classical signal processing. By
eplacing the translation operator by the adjacency matrix in the multi-
indowed graph Fourier atom set, we could then design a new type of
ulti-windowed frames.

heorem 5.1. Let {𝐮𝑖}𝑁−1
𝑖=0 be the eigenvector of the Laplacian matrix of

raph , with 𝐀 be its adjacency matrix. Suppose that there are 𝑀 window
ectors 𝐠𝑙 ∈ R𝑁 , with 𝐀𝐠𝑙 ≠ 0, 𝑙 = 1,… ,𝑀 . Define

𝑖,𝑙 ∶= 𝐮𝑖◦(𝐀𝐠𝑙) (25)

here ◦ denotes the entrywise product. Also define

= (𝑐1, 𝑐2,… , 𝑐𝑁 )𝑇 ,with 𝑐𝑘 = 𝐚̃𝑘𝐆𝐚̃∗𝑘, (26)

here 𝐚̃𝑘 is the 𝑘th row of matrix 𝐀, and 𝐆 =
∑𝐿

𝑖=1 𝐠𝑖𝐠
∗
𝑖 . The set of

ulti-window graph Fourier atoms
𝑠
𝐿 ∶= {𝐠𝑖,𝑙}𝑖=0,2,…,𝑁−1;𝑙=1,2,…,𝑀. (27)

orms a frame for signals defined on  if and only if 𝑐𝑘 > 0 for all of elements
f 𝐜. The optimal lower and upper frame bounds are

= min
𝑘∈{1,2,…,𝑁}

𝑐𝑘, and 𝐵 = max
𝑘∈{1,2,…,𝑁}

𝑐𝑘, (28)

respectively.

Proof. By the definition of the multi-window shift atoms, rewriting
𝐠𝑖,𝑙 ∶= 𝐮𝑖◦(𝐀𝐠𝑙) in a matrix form, we have 𝐠𝑖,𝑙 = 𝐃𝑖𝐀𝐠𝑙, where 𝐃𝑖 is a
iagonal matrix with the 𝑘th diagonal entry equal to the 𝑘th element
f 𝐮𝑖. Let

𝑘 =
(

𝐃1𝐀𝐠𝑘,𝐃2𝐀𝐠𝑘 ⋯ ,𝐃𝑁𝐀𝐠𝑘
)

, (29)

he corresponding synthesis operator of 𝑠𝐿 can be written as:

=
(

𝐓1,𝐓2 ⋯ ,𝐓𝑀
)

. (30)

y Lemma, 𝑠𝐿 forms a frame if and only if its frame operator is positive
efinite. In fact, the frame operator of 𝑠𝐿 can be written as

𝐓∗ =
𝑀
∑

𝑙=1

𝑁
∑

𝑖=1
𝐃𝑖𝐀𝑔𝑙𝑔∗𝑙 𝐀

∗𝐃∗
𝑖 . (31)

ote that for any diagonal matrix 𝐃 = diag(𝐮), and any matrix 𝐌, we
lways have 𝐃𝐌𝐃∗ = 𝐌◦(𝐮𝐮∗). Therefore, the frame operator 𝐓𝐓∗ can

be re-written as:

𝐓𝐓∗ =
𝑀
∑

𝑁
∑

[𝐀𝑔𝑙𝑔∗𝑙 𝐀
∗]◦(𝐮𝑖𝐮∗𝑖 )
𝑙=1 𝑖=1

39
=
𝑀
∑

𝑙=1

[(

𝐀𝑔𝑙
)(

𝐀𝑔𝑙
)∗]

◦
(

𝑁
∑

𝑖=1
𝐮𝑖𝐮∗𝑖

)

=
𝑀
∑

𝑙=1

[(

𝐀𝑔𝑙
)(

𝐀𝑔𝑙
)∗]

◦𝐈𝑁 . (32)

ere 𝐈𝑁 is the 𝑁 ×𝑁 identity matrix.
Let 𝐆 =

∑𝐿
𝑖=1 𝐠𝑖𝐠

∗
𝑖 , we have

𝑀

𝑙=1

(

𝐀𝑔𝑙
)(

𝐀𝑔𝑙
)∗ = 𝐀𝐆𝐀∗. (33)

q. (32) indicates that 𝐓𝐓∗ is a diagonal matrix with the 𝑘th diagonal
ntry given by the 𝑘th diagonal entry of 𝐀𝐆𝐀∗. Let 𝐚̃𝑘 be the 𝑘th row
f matrix 𝐀, by a simple matrix computation, the 𝑘th diagonal entry of
𝐆𝐀∗ can be written as 𝑐𝑘 ∶= 𝐚̃𝑘𝐆𝐚̃∗𝑘.

Recall that the optimal lower and upper frame bounds of a frame
re the smallest and largest eigenvalues of the frame operator, respec-
ively [31]. Therefore, 𝑠𝐿 is a frame is equivalent to 𝑐𝑘 > 0 for all of
lements of vector 𝐜 = (𝑐1, 𝑐2,… , 𝑐𝑁 )𝑇 . The frame bounds of 𝑠𝐿 can
hen be given by (28) which are the smallest and largest elements of 𝐜
s defined in (26). □

Since the adjacency matrix in (27) can be replaced by any shift
perator of graph signals. We call 𝑠𝐿 a shift multi-windowed graph
ourier frame (SMWGFF) if the frame bounds in (28) can be obtained.

Similar to the multi-window graph Fourier frames, we can also
erive the canonical dual frame in an entry-wise product manner.

orollary 5.2. Suppose that 𝑠𝐿 is a shift multi-windowed graph Fourier
rame as defined in (27). Let 𝐜 ∈ R𝑁 be a vector with 𝑐𝑘 = 𝐚̃𝑘𝐆𝐚̃∗𝑘, and
∈ R𝑁 be a vector with 𝑑𝑛 = 1

𝑐𝑛
, 𝑛 = 1, 2,… , 𝑁 . Then the canonical dual

frame of 𝑠𝐿 is given by

̃𝑠𝐿 = {𝐠̃𝑖,𝑙 = 𝐝◦𝐠𝑖,𝑙}, (34)

where 𝑖 = 1, 2,… , 𝑁 ; 𝑘 = 0, 1,… , 𝑁 − 1; 𝑙 = 1, 2,… , 𝐿.

The proof of Corollary 5.2 is similar to Corollary 4.3, and is omitted.
We could also derive an equivalent condition for the shift multi-
windowed graph Fourier tight frames.

Corollary 5.3. Let 𝑠𝐿 be a shift multi-windowed graph Fourier frame,
and 𝐚̃𝑘 be the 𝑘th row of matrix 𝐀. 𝑠𝐿 is a tight frame if and only if

𝐚̃𝑘𝐆𝐚̃∗𝑘 = 𝐶, 𝑘 = 1,… , 𝑁, (35)

where 𝐶 is a constant number, and 𝐆 =
∑𝐿

𝑖=1 𝐠𝑖𝐠
∗
𝑖 .

Proof. By Theorem 5.1, the frame bounds of 𝑠𝐿 are given by the
smallest and largest elements in 𝐜, with 𝑐𝑘 = 𝐚̃𝑘𝐆𝐚̃∗𝑘.

Hence, 𝑠𝐿 is a tight frame is then equivalent to 𝐚̃𝑘𝐆𝐚̃∗𝑘 = 𝐶 for
𝑘 = 1,… , 𝑁 . □

According to Corollary 5.3, the construction of shift multi-
windowed graph Fourier tight frames may be complicated. We discuss
the construction of tight frames in the next section. In case that tight
frames are not available, we construct near-tight frames.

6. Design of multi-windowed tight frames

In this section, we design two types of multi-windowed tight frames.
We utilize the B-splines to construct the generator of tight multi-
windowed graph Fourier frames (TMWGFF). Additionally, we construct
tight shift multi-windowed graph Fourier frames (TSMWGFF) with 𝑁

generators.
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6.1. Construction of TMWGFF

Constructing TMWGFF is equivalent to find 𝑀 generators {𝑔1, 𝑔2,
, 𝑔𝑀}, such that, ∑𝐿

𝑙=1 ‖𝑇𝑛𝐠
𝑙
‖

2
2 = 𝐶 for 𝑛 = 1, 2,… , 𝑁 .

By Corollary 3.3, in the spectral domain, if ∑𝐿
𝑙=1 |𝑔̂

𝑙(𝜆𝑝)|
2 = 𝐶,

or 𝑝 = 0, 1,… , 𝑁 − 1, 𝑤𝐿 is tight frame in R𝑁 . Without lose of
enerality, we could let 𝐶 = 1, the goal of the construction is to
ind a sequence of window functions, such that ∑𝐿

𝑙=1 |𝑔̂
𝑙(𝜆𝑝)|

2 = 1, for
𝜆𝑝 ∈ 𝜎(𝐋), where 𝜎(𝐋) is the spectrum of the Laplacian matrix. That is,
the modulus square of the generators form a partition of unity. As the
generators should be localized, we could apply localized functions with
the property of partition of unity to construct the generators. Among
the functions with such a property, the cardinal B-splines are good
candidates to be the generators.

The first order cardinal B-spline 𝐍1 is defined as the step function,
i.e.

𝐍1(𝑥) =
{

1 𝑥 ∈ [0, 1],
0 else.

The 𝑘th order cardinal B-spline 𝐍𝑘 is then defined in a recursive manner
via convolution with 𝐍1, i.e.

𝐍𝑘(𝑥) = 𝐍𝑘−1 ∗ 𝐍1(𝑥) = ∫

1

0
𝐍𝑘−1(𝑥 − 𝑡)𝑑𝑡. (36)

The integer-translates of the 𝑘th order cardinal B-spline form a partition
of unity,
∑

𝑝∈Z
𝐍𝑘(𝑥 − 𝑝) = 1,∀𝑘 ∈ N+. (37)

In the following, we apply the 𝑘th order cardinal B-splines to
construct the tight frame generators. Suppose that the spectrum of the
Laplacian is 𝜎(𝐋) = [𝜆𝐴, 𝜆𝐵], and the support set of 𝐍𝑘 is [𝑐𝑘, 𝑑𝑘]. Select
a proper order 𝑘 for the cardinal B-splines, such that [𝑐𝑘, 𝑑𝑘] ⊂ [𝜆𝐴, 𝜆𝐵].
As 𝐍𝑘 is compact supported, we can find two integers 𝑘1 and 𝑘𝑀 ,
such that, when 𝑘 < 𝑘1 or 𝑘 > 𝑘𝑀 , 𝐍𝑘(𝑥 − 𝑘) = 0, for 𝑥 ∈ [𝜆𝐴, 𝜆𝐵].
Correspondingly, the subsequence of integer translates of 𝐍𝑘, {𝐍𝑘(𝑥 −
𝑘1),𝐍𝑘(𝑥 − 𝑘2),… ,𝐍𝑘(𝑥 − 𝑘𝑀 )} form a partition of unity on [𝜆𝐴, 𝜆𝐵],
where 𝑘1 < 𝑘𝑝 ≠ 𝑘𝑙 < 𝑘𝑀 , for 1 < 𝑝, 𝑙 < 𝑀 .

Let |𝐠̂𝑙(𝜆𝑝)|2 = 𝐍𝑘(𝜆𝑝 − 𝑘𝑙) for 𝑙 = 1, 2,… ,𝑀 , we have
𝑀
∑

𝑙=1
|𝐠̂𝑙(𝜆𝑝)|

2 = 1, 𝜆𝑝 ∈ [𝜆𝐴, 𝜆𝐵]. (38)

Thus, the window sequence 𝑔1, 𝑔2,… , 𝑔𝑀 generates a tight frame.
Remark that other types of functions that satisfy the property of

partition of unity could be applied to construct TMWGFFs. The number
of window functions is then depends on the support sets of the selected
windows. The construction of tight frames by using other functions can
be implemented similar to that of the cardinal B-splines.

6.2. Construction of TSMWGFF

As shown in Corollary 5.3, a SWGFF 𝑠𝐿 with 𝐿 windows, 𝑠𝐿 is a
tight frame is equivalent to 𝐚̃𝑘𝐆𝐚̃∗𝑘 = 𝐶 for 𝑘 = 1,… , 𝑁 . The condition
can be rewritten as
𝐿
∑

𝑙=1
|⟨𝐚̃𝑇𝑘 , 𝐠𝑙⟩|

2 = 𝐶. (39)

The equations show that the modulus of projection of 𝐚̃𝑘 in the subspace
spanned by {𝐠𝑙}𝐿𝑙=1 are constant 𝐶.

Note that it is complicated and difficult to construct such a sequence
f window vectors. But for a sequence of 𝑁 windows, we can still
onstruct tight or near-tight frames.

The goal is to construct 𝐆 =
∑𝐿

𝑖=1 𝐠𝑖𝐠
∗
𝑖 such that the matrix 𝐀𝐆𝐀∗

as identical diagonal entries. Note that the diagonal entries of 𝐀𝐀∗ are
he 2-norm of row vectors, i.e. ‖𝐚𝑘‖2 is the 𝑘th diagonal entry of 𝐀𝐀∗.

If ‖𝐚𝑘‖2 = 𝐶, for 𝑘 = 1,… , 𝑁 , we can select an orthonormal basis
𝐮 }𝑁 in R𝑁 , and let 𝐠 = 𝐮 . We then have, ‖𝐠 ‖ = 1, 𝑙 = 1, 2,… , 𝑁
𝑖 𝑖=1 𝑖 𝑖 𝑙

40
nd ⟨𝐠𝑘, 𝐠𝑙⟩ = 0, if 𝑘 ≠ 𝑙. As an orthonormal basis preserves 2-norm, we
an still have
𝑁
∑

𝑙=1
|⟨𝐚̃𝑇𝑘 , 𝐠𝑙⟩|

2 = ‖𝐚𝑘‖2 = 𝐶. (40)

hus, the window sequence 𝑔1, 𝑔2,… , 𝑔𝑁 generates a tight frame.
Otherwise, if ‖𝐚𝑘‖2 ≠ 𝐶, for any 𝑘 ∈ {1,… , 𝑁}, we could modi-

ied the orthonormal basis to construct tight or near-tight frames. We
onsider scaling the basis elements and let 𝐠𝑙 = 𝑘𝑙𝐮𝑙. The 𝑘th diagonal
ntry of matrix 𝐀𝐆𝐀∗ is then become:
𝑁
∑

𝑙=1
|⟨𝐚̃𝑇𝑘 , 𝑘𝑙𝐮𝑙⟩|

2 =
𝑁
∑

𝑙=1
𝑘2𝑙 |⟨𝐚̃

𝑇
𝑘 ,𝐮𝑙⟩|

2. (41)

efine a matrix 𝐏, with 𝑃𝑘,𝑙 = |⟨𝐚̃𝑇𝑘 ,𝐮𝑙⟩|
2, and a vector 𝐱 with 𝑥𝑙 = 𝑘2𝑙 ,

, 𝑙 ∈ {1, 2,… , 𝑁}. By Eq. (41), 𝑔1, 𝑔2,… , 𝑔𝑁 generate a tight frame is
equivalent to

𝐏𝐱 = 𝐶𝟏 (42)

If Eq. (42) has a solution, {𝐠𝑙 = 𝑘𝑙𝐮𝑙}𝑁𝑙=1 generates a tight frame.
therwise, we can solve a minimization problem as follows:

𝐱̂ = argmin
𝐱

‖𝐏𝐱 − 𝐶𝟏‖2

subject to 𝐱 ≥ 0
(43)

he problem can be solved by using off-the-shelf convex optimization
oolbox, e.g. the function lsqnonneg() in Matlab. The MWSGFF gener-
ted by {𝐠𝑙 = 𝑘𝑙𝐮𝑙}𝑁𝑙=1 is then closest to be a tight frame in terms of the
-norm distance.

Remark that in the construction of tight frames, MWGFF only
elated to the spectrum of the graph, while SMWGFF has a strong rela-
ionship with the shift operator, which often represents the graph topol-
gy. Both types of tight frames could be utilized in different scenarios
hen the spectral or topology property of the graph is considered.

. Experiments

In this section, we present examples of tight frame window functions
or MWGFF, and validate the performance of MWGFF and SMWGFF
n extracting vertex frequency features of graph signals. The Matlab
oolbox MatlabBGL [33] was applied.

.1. Examples of tight frame window functions

We construct two sets of tight frame window functions based on
he cardinal B-spline functions. As discussed in Section 6.1, we could
tilize the cardinal B-spline functions to fulfill the condition that the
pectral window functions forms a partition of unity on the spectrum
f the graph.

Suppose that the normalized Laplacian matrix is applied, that is,
he corresponding spectrum is contained in [0, 2]. We then taking the
econd order cardinal B-spline 𝐍2 to construct the tight frame window
unctions. By the recursive formula in (36), we have

2(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥 𝑥 ∈ [0, 1),
1 − 𝑥 𝑥 ∈ [1, 2],
0 else.

Letting |𝑔̂1|
2 = 𝐍2(𝑥 − 1), |𝑔̂2|

2 = 𝐍2(𝑥), and |𝑔̂3|
2 = 𝐍2(𝑥 + 1),

according to Eq. (37), we have ∑3
𝑙=1 |𝑔̂𝑙(𝜆𝑝)|

2 = 1, 𝜆𝑝 ∈ [0, 2]. That is,
𝑔1, 𝑔2, 𝑔3} is a set of tight frame window functions. The spectral curves
f the 3 window functions are presented in Fig. 1(a).

We could also improve the localization property of the tight frame
indow functions by utilizing the scaling of the cardinal B-spline

unctions. For example, letting |𝑔̂1|
2 = 𝐍2(2𝑥 − 1), |𝑔̂2|

2 = 𝐍2(2𝑥),
|𝑔̂3|

2 = 𝐍2(2𝑥 + 1), |𝑔̂4|
2 = 𝐍2(2𝑥 + 2), and |𝑔̂5|

2 = 𝐍2(2𝑥 + 3), we then
have {𝑔 , 𝑔 , 𝑔 , 𝑔 , 𝑔 } is a set of tight frame window functions. The
1 2 3 4 5
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Fig. 1. (a) Spectral curves of 3 tight frame B-spline window functions; (b) Spectral
curves of 5 tight frame B-spline window functions.

spectral curves of the 5 window functions are given in Fig. 1(b), where
each window function localized in a shorter interval on [0, 2] than the
window function in Fig. 1(a). Note that the number of windows is
depends on the selected order of the cardinal B-spline functions or
its scaling parameter. It may turn to an optimization on the optimal
number of windows for specific application, which is beyond the scope
of this work and could be discussed in our future work.

The construction of tight SMWGFF could be challenging. As dis-
cussed in Section 6.2, when the rows of the adjacency matrix have
identical 2-norm values, we could construct orthonormal matrix as the
window set. We design three types of orthonormal windows, which will
be applied in the experiment later:

• the Laplacian eigenvectors, i.e. 𝐠𝑙 = 𝐮𝑙−1, 𝑙 = 1, 2,… , 𝑁 , where 𝐮𝑙
is the 𝑙th eigenvector of the Laplacian matrix.

• Householder vectors with localized generator, i.e. 𝐠𝑙 = 𝐡𝑙, where
𝐡𝑙 is the 𝑙th vector of the Householder matrix 𝐇 = 𝐈𝑁 −2𝐯𝐯𝑇 , and
𝐯 is a vector localized on a small set of indices.

• translated vectors, i.e. 𝐠𝑖 = 𝑇𝑖(𝐠), 𝑖 = 0, 1,… , 𝑁−1, 𝐠 is a localized
vector, and 𝑇𝑖 is the translation operator of real-time vectors.

When the rows of the adjacency matrix have different 2-norm val-
ues, we could compute the vectors given by Model (43) for a set of
N-windows, and then use them to generate a near-tight frame.

7.2. Vertex-frequency feature extraction

We then validate the performance of MWGFF and SMWGFF on
extracting vertex frequency features of synthesis graph signals. The
synthetic data are generated on path graph and sensor network by
composing Laplacian eigenvectors.

In the first example, we consider an unweighted path graph of 100
vertices. We design a signal in Fig. 2(a) on the path graph by composing
three Laplacian eigenvectors: 𝑢8 restricted to the first 28 vertices, 𝑢18
restricted to the next 43 vertices, and 𝑢28 restricted to the remained
vertices. The applied window function is the heat diffusion kernel,
𝑔̂(𝜆𝑙) = 𝑒−𝜏𝜆𝑙 with 𝜏 = 80, which is given in Fig. 2(b).

For comparison, we present the spectrograms generated by WGFF
and SMWGFF, where each spectrogram consists of the squared mag-
nitudes of the windowed graph Fourier frame coefficients. Fig. 2(c)
shows that the vertex-frequency features of the signal can be precisely
captured by the spectrograms generated by WGFF. Fig. 2(d) is the spec-
trogram generated by SMWGFF, with the window functions generated
from the 𝑁-translations of the heat diffusion kernel, i.e. 𝐠𝑖 = 𝑇𝑖(𝐠),
𝑖 = 0, 1,… , 𝑁 − 1 with 𝜏 = 2,

𝐠(𝑛) =
{

𝑒−0.1𝜏(𝑛−1) 1 ≤ 𝑛 ≤ 11,
0 𝑛 ≥ 12.

(44)

The spectrogram of SMWGFF is also sensitive to the vertex-frequency
features of the signal but less concentrated than the WGFF. The
SMWGFF is more sensitive on the switching point of frequencies, as
well as the dual of SMWGFF. As shown in Fig. 2(d) and (e), the
two switching points are precisely marked by large frame coefficients.
41
Fig. 2(f) is the spectrogram generated by the tightened SMWGFF. As
can be observed, the tightened SMWGFF has better coefficient sparsity
than the original SMWGFF and its dual.

In the second example, we validate the performance of MWGFF on
a signal designed on sensor graph with 80 vertices in Fig. 3(a). The
vertices of the graph is partitioned into 3 classes: red, blue and green.
The applied MWGFF is generated by a set of 4 tight frame cardinal
2-order B-spline window functions, which are displayed in Fig. 3(b).
Similar to the first example, the signal defined on this random graph is
taken by restricting 𝑢6 to the red vertices, 𝑢60 to the blue vertices, and
𝑢68 to the green vertices. Fig. 3(c) is the spectrogram generated by the
first window that localized in the low frequency. Fig. 3(d), (e) and (f)
are the spectrograms generated by the other 3 windows that localized in
the central and high frequencies. The first spectrogram almost captures
the vertex-frequency features of the signal around different frequencies
and appropriate vertex sets. The last 3 spectrograms are less sensitive
to the frequencies, but still giving proper localization on appropriate
vertex sets.

In the third example, we validate the performance of SMWGFF
by different generators given in Section 7(a) on a signal designed on
sensor graph with 100 vertices in Fig. 4(a). The vertices of the graph
is partitioned into 3 classes: red, blue and green. For comparison,
we utilize two types of SMWGFF generators, the Laplacian eigen-
matrix and the local Householder matrix. Similar to the first example,
the signal defined on this random graph is taken by restricting 𝑢8
to the red vertices, 𝑢18 to the blue vertices, and 𝑢28 to the green
vertices. Fig. 4(b),(c) and (d) present the spectrograms generated by
the SMWGFF with Householder matrix, its dual and the tightened
SMWGFF, respectively. The local generator vector of the Householder
matrix is given in Eq. (44). As can be seen, all the three spectrograms
can capture the vertex-frequency feature around different frequencies
and appropriate vertex sets, but slightly less localized than the WGFF.
Additionally, the tightened SMWGFF in Fig. 4(d) has better sparsity
than the other spectrograms. Fig. 4(e) presets the diagonal entries in the
frame operators of the original SMWGFF and the tightened SMWGFF by
the Laplacian eigen-matrix. It can be seen that the tightened SMWGFF
is very close to be a tight frame as the diagonal entries are very close
to be identical. In Fig. 4(f), (g), and (e), we present the spectrograms
generated by the SMWGFF, its dual and the tightened SMWGFF, re-
spectively, with respect to the Laplacian eigen-matrix. It shows that the
spectrogram with respect to Laplacian eigen-matrix has better sparsity
than that of the Householder matrix, but less localized in the frequency.

7.3. Anomaly detection

Finally, we apply the WGFF, MWGFF and SMWGFF to detect
anomaly data in a graph signal. For that, we define a constant signal on
the sensor graph with 100 vertices, by letting 𝑓 (𝑛) = 0.1, 𝑛 = 1, 2⋯ , 100.
We then define the signal values of the neighbors of vertex 𝑣50 by
letting 𝑓 (𝑛) = 1, 𝑛 ∈  (𝑣50). The corresponding anomaly vertices
are marked by blue bars in Fig. 5(b), (c) and (d). We compute the
spectrogram of WGFF, MWGFF with 4 windows and SWGFF with the
windows defined in (44). Taking maximum with respect to the vertices,
the spectrogram coefficients then threshold by 𝛿 = 0.5 ⋅ max(𝐒), where
𝐒 denotes the spectrogram. The vertices with maximum coefficients
larger than 𝛿 is then marked as red vertices. Fig. 5(a) is generated by
WGFF spectrogram thresholding on the constant signal. As can be seen,
about half of the vertices are detected as anomaly. In fact, the WGFF
spectrogram coefficients of the constant signal are very close to their
mean value. Using the 𝛿 thresholding could then misclassify about half
of the vertices as anomaly. We present this result only for comparison
and show that the spectrogram coefficients could then localized only
on the anomalies for anomaly graph signals. In Fig. 5(b), the WGFF
detected all the anomaly vertices but misclassified an extra vertex as
anomaly. In Fig. 5(c), the SMWGFF spectrogram detected almost all
except one anomalies, and also misclassified the same vertex as WGFF.
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Fig. 2. (a) A signal on path graph by composing Laplacian eigenvectors; (b) The curves of the heat diffusion window function; (c) The spectrogram generated by WGFF; (d) The
spectrogram generated by diffusion SMWGFF; (e) The spectrogram generated by dual diffusion SMWGFF; (f) The spectrogram generated by tightened diffusion SMWGFF.
Fig. 3. (a) A signal on random graph by composing Laplacian eigenvectors; (b) The spectral curves of 4 tight frame window functions; (c) The spectrogram generated by window
#1; (d) The spectrogram generated by window #2; (e) The spectrogram generated by window #3; (f) The spectrogram generated by window #4. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
In Fig. 5(d), we integrate the thresholding results on the spectrograms
corresponding to the 4 windows of the MWGFF, by taking the union
of anomalies given by the 4 spectrograms. It can be observed that
the MWGFF integrated spectrogram detected all the anomaly vertices,
and also detect the only vertex with degree 1 and its neighbor in the
graph, which can also be considered as anomaly vertices. The MWGFF
integrated spectrogram misclassifies 2 extra vertices as anomaly, which
are actually neighbors of the anomalies. This example shows that
MWGFF could be applied to find out the vertex-frequency features that
both SMWGFF and WGFF unable to.
42
8. Conclusion

We extended the theory of windowed graph Fourier transform to
the multi-windowed case. We presented conditions for constructing
multi-windowed graph Fourier frames (MWGFF), tight frames and
dual frames, respectively. We also propose shift multi-windowed graph
Fourier frames (SMWGFF) and discuss the related dual and tight
frames. Strategies for constructing tight or near tight MWGFF and
SMWGFF are provided. We validate the performance of MWGFF and
SMWGFF on extracting vertex-frequency features by experiments on
synthesis graph signals. We also show that anomaly data on graph
signals can be detected by MWGFF and SMWGFF.
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Fig. 4. (a) A graph signal by composing Laplacian eigenvectors; (b) The spectrogram generated by Householder SMWGFF; (c) The spectrogram generated by the dual of Householder
MWGFT; (d) The spectrogram generated by the tightened Householder SMWGFF; (e) The diagonal entries of the original and tightened frame operator; (f) The spectrogram
enerated by eigenmatrix SMWGFF; (g) The spectrogram generated by the dual of eigenmatrix SMWGFF; (h) The spectrogram generated by the tightened eigenmatrix SMWGFF.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. (a) Anomaly vertices detected by the spectrogram on constant signal; (b)
Anomaly vertices detected by the WGFF spectrogram on anomaly signal; (c) Anomaly
vertices detected by the SMWGFF spectrogram on anomaly signal; (d) Anomaly vertices
detected by the MWGFF integrated spectrogram on anomaly signal. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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