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As a multifunctional cytokine, tumor necrosis factor alpha (TNF-a) exerts a series of biological actions in different cells, tissues, organs, and
species and has been demonstrated to regulate and interfere with energy metabolism, especially lipid homeostasis. A large body of researches
suggested that the effects of TNF-a on lipid metabolism mainly include five aspects: (1) suppresses free fatty acid (FFA) uptake and promotes
lipogenesis; (2) induces lipolysis; (3) inhibits lipid-metabolism-related enzymes activity; (4) regulates cholesterol metabolism; (5) regulates
other adipocyte-derived adipokines. The molecular mechanisms underlying these actions are complex and several signal transduction
pathways might be involved. Regulation of metabolism-related gene expression at transcriptional and protein levels and impact on enzymes
activity might be of importance. Identification and verification of these pathways might provide novel potential strategies and drug targets for
dyslipidemia therapy. However, the inconsistent and even conflict conclusions on lipid profile drawn from human subjects after infliximab
therapy poses the possibility that the effect of TNF-a on lipid metabolism might be more complicated than it appeared to be. Copyright
# 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Lipids have long since been recognized as signaling
molecules that have the capacity to trigger profound
physiological responses.1 Changes in lipid metabolism have
been the most important biomarkers and risks of cardio-
vascular diseases. Furthermore, plasma or serum lipids
concentration has always been the widely used index to
evaluate the validity of clinical interference. Tumor necrosis
factor alpha (TNF-a), a 17 kDa polypeptide, was originally
discovered as a factor produced by macrophages in
endotoxin stimulated rabbits that could cause hemorrhagic
necrosis of experimental tumors.2 Recently, TNF-a was
confirmed to be one of the most important cytokines exerting
a series of biological effects in different tissues and species
and at multiple layers. Although TNF-a has been widely
used as a kind of ‘‘tool drug’’ for studying cell proliferation,
apoptosis, gene expression, inflammation, etc., the functions
and mechanisms of itself have not been fully elucidated.
Accumulated data revealed that TNF-a could perturb the
normal regulation of energy metabolism, especially the lipid
metabolism, which might be one of the pathophysiological
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basis of atherosclerosis, diabetes, coronary heart diseases,
etc. Several critical reviews concerning the role of TNF-a in
adipocytes, chronic inflammation, and adipocytes biology
have been published recently.3–5 However, most of these
reviews were confined to adipocytes, and the biological
function of TNF-a on other kinds of cells and/or tissues was
rarely mentioned. In this review, the effects of TNF-a on
lipid metabolism are summarized and updated and the
molecular mechanisms underlying these effects are dis-
cussed.

THERE IS A LINK BETWEEN TNF-a AND
DYSLIPIDEMIA

Both clinical observations and basic researches put insight
that there is a potential link between inflammation and lipid
metabolism. It is well known that TNF-a plays an important
role in both acute and chronic inflammation. Close
relationship between TNF-a and lipid metabolism is
supported by multiple facts.

Firstly, in clinical patients with dislipidemia, significant
changes of plasma TNF-a level have been documented.
Compared with healthy subjects, patients with hyperlipo-
proteinemia IIb showed higher TNF-a plasma concentration
and increased level of total cholesterol (TC), total
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triglyceride (TG), and low density lipoprotein (LDL).
Furthermore, the decreased levels of TC, TG, and LDL after
fenofibrate therapy were correlated with the decreased
concentration of TNF-a.6 In patients with hypercholester-
olemia, increased plasma TNF-a level was also accom-
panied by elevated TC and LDL concentrations.7 Besides, in
hyperlipidemic patients, TNF-a levels positively correlated
with very-low-density lipoprotein (VLDL), TG, and TC
concentrations but negatively with high density lipoprotein
cholesterol (HDL-C) concentration.8 These results were
further supported by laboratory experimental data from rats
and mice.9–11 A very new study suggested that increased
TNF-a could be a marker of familial combined hyperlipi-
demia, a disorder characterized by elevated levels of serum
TC, TG, or both.12

Secondly, drugs that ameliorate hyperlipidemia could also
decrease plasma TNF-a level in the meantime. Adminis-
tration of rosuvastatin, one of the widely used hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase inhibi-
tor for hyperlipidemia therapy, decreased TC, LDL-C,
triglycerides, and increased HDL-C, which was accom-
panied by significant reduction of TNF-a in patients with
hypertension and dyslipidemia.13 Simvastatin and atorvas-
tatin, another two HMG-CoA inhibitors, also decreased
TNF-a level in hyperlipidemic and hypercholesterolemic
subjects.14,15 Furthermore, HMG-CoA inhibitors and per-
oxisome proliferator-activated receptor alpha (PPARa)
activators could normalize TNF-a levels in type IIa and
IIb dyslipidemic patients, who exhibit an abnormal pattern
of TNF-a.16 In addition, atorvastatin treatment significantly
reduced high cholesterol diet induced high levels of TNF-a
serum concentration and mRNA expression in hypercho-
lesterolemic rabbits.17 These data suggested that there might
be certain relationship between the lipid profile improve-
ment and the decreased serum level of TNF-a.
Thirdly, TNF-a blockade could significantly affect lipid

metabolism. Short-term administration of adalimumab, a
fully human anti-TNF monoclonal antibody, to patients with
active rheumatoid arthritis (RA), significantly increases
HDL-C concentrations. In addition, the atherogenic index
also decreased.18 Infliximab, a chimeric anti-TNF mono-
clonal antibody showed similar results.19,20

Fourthly, administration of TNF-a had been demonstrated
to directly interfere with the plasma lipid level andmetabolic
pathways, which provides direct evidence that TNF-a is an
important lipid metabolism regulator. In mice, adminis-
tration of TNF-a resulted in an acute increase of plasma TG
and inhibition of TNF decreased LPS-induced TG
elevation.21,22 TNF administration to insulinopenic diabetic
rats also increased serum triglycerides.23,24 While in a phase
I pharmacological study, continuously infused rH-TNF
(recombinant human tumor necrosis factor) for 24 h was
associated with significant decreases in serum cholesterol
and HDL levels.25

The influence of TNF-a on lipid metabolism is so
complicated that the detailed mechanisms underlying these
actions are still not very clear. However, documented data
have demonstrated that the mechanisms through which
Copyright # 2009 John Wiley & Sons, Ltd.
TNF-a exerts its effects on lipid metabolism takes place at
different levels and different steps, and varied in different
cells, tissues, and organs: from increasing free fatty acid
(FFA) production to inducing lipolysis, from affecting lipid-
metabolism-related gene expression to regulating enzymes
activity. In addition, TNF-a could also affect lipid
metabolism by altering the expression and secretion of
other adipokines such as leptin, adiponectin, etc.

TNF-a REGULATES LIPID METABOLISM

TNF-a increases FFA production

FFA is the basic material for neutral triacylglycerols (TAG),
the form of lipid droplets in adipocyte synthesis. Generally,
there are three FFA sources: (a) from the circulation,
(b) from lipolysis of intracellular TAG, or (c) de novo FFA
synthesis from glucose.26 Hence, the availability of relevant
substrates and the regulation of several enzymatic pathways
might exert on the overall metabolic flux of lipids into TAG.
Grunfeld et al.27 showed that bolus intravenous admin-

istration of TNF to normal rats resulted in a rapid stimulation
of hepatic FFA de novo synthesis and induced an acute
increase in the plasma levels of FFA, which was supposed to
be through raising hepatic levels of citrate, an allosteric
activator of acetyl-CoA carboxylase. Suppression of liver
peroxisomal b-oxidation by inhibiting the activity of
peroxisomal fatty acyl-CoA oxidase may also contribute
to this process.28 Other possible mechanisms include down-
regulation of the expression of FFA transport protein
(FATP), translocase (FAT) in adipose tissue and the FA-
binding protein (FABP4/aP2), and/or inhibition of the
transcript levels and expression of many proteins involved in
glyceroneogenesis, de novo FFA synthesis and esterification,
which also leads to impaired triglyceride storage in adipose
tissue.26 However, it is interesting to note that TNF
stimulated plasma FFA production might be diet dependent
since TNF increases plasma FFA in chow-fed rats while in
rats fed a high sucrose diet no such phenomenon was
observed.29

Early studies have demonstrated that administration of
TNF-a to rats stimulates lipid (plasma TG, cholesterol),
sterol synthesis, and incorporation of tritiated water into
fatty acids in the liver in vivo, which appeared 2 h after TNF-
a infusion and lasted for 17 h. However, it does not stimulate
lipid synthesis in other tissues, including adipose tissue
suggesting that stimulation of hepatic lipogenesis by TNF-a
contributes to the hyperlipidemia of infection.30 The
mechanism was not due to the increase of enzymes of
triglyceride synthesis (phosphatidate phosphohydrolase,
glycerol-phosphate acyltransferase, or diacylglycerol acyl-
transferase) but resulted from providing increased FFA as
substrate.29 Incorporation of glycerol into triglycerides in
the liver induced by TNF might also contribute to this
process.31

A single injection of human recombinant TNF-a to
female NMRI mice induced hypoglycemia within a 2 h
period, accompanied by a severe depletion of liver glycogen,
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which might be due to the consumption of glucose by the
liver for lipogenesis.32 While in dogs the decrease in glucose
concentrations after TNF-a infusion was due to a
stimulation of glucose clearance and TNF-a did not directly
affect glucose production. Furthermore, changes in lipid
kinetics were not mediated by changes in insulin or glucagon
and might have reflected direct effects of TNF-a.33 This
divergence might be due to the differences of animal species
(female NMRI mice vs. dogs) and the administration
regimen (a single injection of 7.5� 107U kg�1 vs. constant
infusion (prime, 2.5mg kg�1; constant infusion,
62.5 ng kg�1min�1)) to some degree.

TNF-a plays an important role in mediating insulin
resistance (IR) in a number of cell types including: hepatoma
cells (FAO and KRC-7), fibroblasts, myeloid cells (32D),
and rat muscle cells (L6).5 Recent studies demonstrated that
FFA produces IR and activated the pro-inflammatory nuclear
factor-kappa B (NF-kB) pathway in rat liver, which could
result in over-production of glucose and hyperglycemia.34 In
3T3-L1 adipocytes, this action was mediated by c-jun-NH2-
terminal kinase (JNK) and TNF-a.35 Actually, FFA and
possibly TNF-a levels were closely related to the develop-
ment of IR in subjects with metabolic disorders.36

The effects of TNF-a on FFA production and lipogenesis
in hepatic and adipose were shown in Figure 1. TNF-a exerts
different effects on liver and adipose tissues. In liver, TNF-a
stimulates hepatic fatty acid de novo synthesis through
raising hepatic levels of citrate and suppression of liver
peroxisomal b-oxidation by inhibiting the activity of
peroxisomal fatty acyl-CoA while in adipose tissue, this
might be through TG and by regulating FAT and FATP.
Figure 1. TNF-a increases FFA production in liver and adipose tissue. TNFR,
transport protein; FAT, fatty acid translocase

Copyright # 2009 John Wiley & Sons, Ltd.
TNF-a induces lipolysis

Healthy young male individuals receiving rH-TNF-a
showed increased systemic lipolysis with a concomitant
increase in FFA clearance while the skeletal muscle fat
metabolism was unaffected.37 Both TNF-a and IL-6 applied
alone stimulated lipolysis in perinodal adipocytes.38

Intravenous injection of recombinant TNF-a to rats
increased serum triacylglycerol, which was mainly due to
an increased secretion of triacylglycerol by the liver.39

Studies on adipocytes from mice lacking TNF receptor
(TNFR) [TNFR1 (TNFR1(�/�)), TNFR2 (TNFR2(�/�)),
or both (TNFR1(�/�) R2(�/�))] revealed that this effect
was mediated mainly via TNFR140 and dependent on down-
regulation of lipid droplet-associated protein perilipin
(PLIN).41 The downstream signals involved the activation
of several kinases of the mitogen-activated protein kinase
(MAPK) family, including extracellular signal-related
kinase (ERK) 1/2 (or p44/42) and JNK.42 Other evidence
suggested that the lipolytic action of TNF-a could be
influenced by glucose43 and activation of the ERK pathway
was an early event in the mechanism of TNF-a-induced
lipolysis in 3T3-L1 adipocytes.44 In rabbit subcutaneous
adipocytes, TNF-a affected cholesterol efflux and ATP
binding cassette transporter A1 (ABCA1) expression
through the pathway of PPARg-liver-X-receptor a
(LXRa)-ABCA1.45 While in rainbow trout adipocytes,
TNF-a stimulated lipolysis in vitro and in vivo by down-
regulation of lipoprotein lipase (LPL) activity.46 In human
adipocytes, TNF-a promoted lipolysis through activation of
MAPK (MEK)-ERK and subsequent increase in intracellular
TNF-a receptor; FFA, free fatty acid; TG, triglyceride; FATP, fatty acid
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cAMP.47 Treatment of adipocytes with metformin could
attenuate TNF-a-mediated lipolysis by suppressing phos-
phorylation of ERK1/2 and reverse the down-regulation of
perilipin protein.48 Another study indicated that TNF-a-
induced lipolysis by blunting endogenous inhibition of
lipolysis and Gi protein down-regulation might also be
involved.49

However, results from subcutaneous administration of a
polyclonal goat anti-rat TNF antibody to Zucker rats
revealed that anti-TNF treatment could not alter lipid
metabolism in the obese animals. Lipolysis measurements in
adipose tissue slices from the anti-TNF-treated animals also
did not show any significant effect of the treatment.50 In
isolated rat adipocytes, though pre-incubation with TNF
increased adrenaline-stimulated FFA release, it did not
stimulate lipolysis.51 In RAW 264.7 cell line, TNF-a
increased the rate of lipolysis by a mechanism that did not
involve increased expression of hormone sensitive lipase
(HSL) suggesting a TNF-induced post-translational modi-
fication of the enzyme.52 In 3T3-F442A adipocytes, TNF
enhanced lipolysis, decreased LPL activity, and induced
prostaglandin (PG) production. However, the lipolysis effect
of TNF was independent of PG.53

In short, though there are still some controversies about
TNF-a-induced lipolysis in vivo, most of the present
researches confirmed that TNF-a stimulates lipolysis
in vitro, which might be mediated by TNFR1 and through
multiple pathways.

Effects of TNF-a on lipid-metabolism-related enzymes

Another mechanism through which TNF-a can affect
plasma lipid metabolism is the regulation of several lipid-
related enzymes. It had long been noticed that exposure of
fully differentiated 3T3-L1 adipocytes to recombinant TNF
resulted in a dose- and time-dependent suppression of the
activity of LPL54 and an increase in intracellular lipoly-
sis.55,56 TNF also inhibited LPL activity in cultured
myocytes and in the Langendorff rat heart.57 In cultures
of a human osteosarcoma cell line, rh-TNF-a suppressed
synthesis, activity, and secretion of LPL and inhibited LPL-
mediated supply of non-esterified fatty acids as an energy
source for growth, which might partly account for the anti-
proliferative activity of TNF-a.58 Furthermore, a synergism
between interferon gamma and TNF-a in the regulation of
LPL in the macrophage J774.2 cell line was observed.59 In
brown adipocytes, the down-regulation of LPL activity
induced by TNF-a was mediated by nitric oxide (NO).60 In
addition, TNF-a could suppress LPL expression in J774.2
macrophages at the transcriptional level,61 which might be
through tyrosine kinase and the phosphatidylinositol-30-
kinase (PI3K) signaling pathways.62

HSL is an ‘‘old’’ enzyme expressed in multiple tissues and
plays a number of roles in lipid metabolism. In adipose
tissues, it is rate limiting for the degradation of triacylgly-
cerol. In 3T3-L1 adipocytes, TNF inhibited the gene
expression of HSL and depressed the activities of both
LPL and HSL.63 One potential mechanism involved might
Copyright # 2009 John Wiley & Sons, Ltd.
be TNF-a-mediated NF-kB activation.64 More recently, a
study revealed that a cell-permeable peptide that inhibits
NF-kB signaling could abolish the nuclear translocation of
NF-kB and effectively abrogated TNF-a-induced lipolysis
in a concentration-dependent manner. This was combined
with reduction of both HSL and PLIN protein suggesting
that NF-kB was important for TNF-a-induced lipolysis in
human adipocytes.65

Adipocyte triglyceride lipase (ATGL), also called
PNPLA2/destnutrin/iPLA2zeta/TTS2.2, is a novel adi-
pose-enriched lipase that catalyzes the initial step in
triglyceride hydrolysis in adipocyte lipid droplets. TNF-a
treatment decreased ATGL transcription in a time-depen-
dent manner in 3T3-L1 cells and pharmacological inhibitory
study revealed that p44/42 MAPK, PI3K, and p70 ribosomal
protein S6 kinase signals involved in this process. These
results suggested that ATGL is a target for transcriptional
activation by TNF-a.66 However, another study showed that
treatment adipocytes with 30 ngmL�1 TNF-a significantly
decreased ATGL mRNA to 17% of control level, which was
not mediated by p44/42 MAPK.67 Hence, it is certain that
TNF-a has negative effect on ATGL mRNA expression
while the involvement of p44/42 MAPK is still contro-
versial.
Early studies showed that TNF inhibited the accumulation

of acetyl-CoA carboxylase, the rate-limiting enzyme for
long-chain FA biosynthesis, mRNA expression, and
decreased its activity in a pre-adipocyte cell line, 30A-
5.68 This regulation was supposed to be achieved by
decreasing the rate of acetyl-CoA carboxylase gene
transcription during pre-adipocyte differentiation.69 How-
ever, another study found that fatty acid synthetase and
acetyl-CoA carboxylase increased 35 and 58%, respectively,
after 16 h treatment of rats with TNF and that TNF acutely
regulated hepatic FA synthesis in vivo by raising hepatic
levels of citrate.27 This was further confirmed by another
study, which demonstrated that citrate, an allosteric activator
of acetyl-CoA carboxylase, mediated changes in the rates of
FA synthesis induced by TNF.70 Although in diabetic rats
TNF administration increased production of triglyceride by
2-fold, it did not alter either the amount or activation state of
hepatic acetyl-CoA carboxylase.70 In 3T3-F442A adipo-
cytes, it was found that TNF decreased LPL, acetyl CoA
carboxylase, HSL, and fatty acid synthase mRNA levels71

without altering the activities of different enzymes of
glucose and alanine metabolism such as hexokinase,
phosphofructokinase, pyruvate kinase, glucose-6-phosphate
dehydrogenase, and alanine transaminase.72 These diver-
gences about the effect of TNF on acetyl-CoA carboxylase
might result from the difference between the adipocytes and
the liver and further studies need to be done to provide more
reasonable interpretation.
In summary, most of the important enzymes involved in

lipid metabolism such as LPL, HSL, ATGL, and acetyl-CoA
carboxylase could be regulated by TNF-a. In most cases,
this regulation might be through affecting the mRNA
expression at transcriptional level. Sometimes, direct
inhibition of enzyme activity might also be involved.
Cell Biochem Funct 2009; 27: 407–416.
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Effects of TNF-a on cholesterol metabolism

Effects of TNF-a on cholesterol metabolism differ between
rodents and primates. Whereas the administration of TNF-a
to rodents was followed by a delayed increase in serum
concentrations of TC and hepatic cholesterol synthesis, non-
human primates, and humans showed either no change or a
decrease in serum cholesterol and LDL-C levels.4

In C57Bl/6 mice, TNF increased serum cholesterol.
Moreover, TNF produced a 2.1-fold increase in hepatic
HMG-CoA reductase, the rate-limiting enzyme in choles-
terol synthesis activity. Pre-treatment with anti-TNF
antibodies blocked the effect of LPS on serum cholesterol,
hepatic cholesterol and FA synthesis, and hepatic HMG-
CoA reductase activity.22 It is interesting to note that TNF
and IL-1 combination showed synergistic effect on both
serum cholesterol and HDL-C level and HMG CoA
reductase mRNA levels in Syrian hamsters.73

TNF-a may also affect cholesterol metabolism and
excretion by inhibiting the expression and activity of
cholesterol-7a-hydroxylase (CYP7A1), the rate-limiting
enzyme in the classic pathway of bile acid synthesis.74

Besides, the activities of mitochondrial sterol 27-hydroxyl-
ase and oxysterol 7a-hydroxylase, the rate-limiting enzymes
in the alternative pathway of bile acid synthesis, were also
down-regulated by TNF-a in human hepatoma cell lines.75

Reverse cholesterol transport (RCT) plays a crucial role in
preventing and reversing the development of hyperlipidemia
and formation of atherosclerotic lesions. Several important
proteins are involved in this process such as ABCA1, ATP
binding cassette transporter G1 (ABCG1), cholesteryl ester
transfer protein (CETP), lecithin cholesterol acyltransferase
(LCAT), etc. CETP was a new therapeutic target for
atherosclerosis,76,77 and CETP blocking agents were
supposed to increase HDL and decrease cardiovascular
risk.78,79 Administration of TNF-a and IL-1 individually did
not significantly affect serum CETP levels while the
combination of them significantly decreased serum levels
of CETP in Syrian hamsters. Furthermore, TNF-a reduced
the levels of mRNA for CETP in muscle, heart, intestine,
stomach, and kidney, but not in adipose tissue while IL-1
was administered together they were much more effective
than the individual cytokines and decreased CETP mRNA
expression in all the tissues.80

Injection of TNF to cynomolgus monkeys decreased
plasma LCAT activity, plasma cholesterol level, and
decreased content of cholesterol ester in LDL and HDL
particles.81 In HepG2 cells, rH-TNF-a dose dependently
decreased the concentrations of apolipoprotein (apo) A-I,
apoB, and LCAT activity in the medium after 24 h of
incubation.82 In Syrian hamsters and cultured rat H35
hepatocytes, TNF treatment decreased plasma LCAT
activity and LCAT mRNA expression.83 In cynomolgus
monkeys, injection of LPS caused a 2-fold increase in
plasma triglyceride and a 25% reduction in plasma
cholesterol 48 h after injection. Similar results were
observed with injection of rH-TNF-a.84 TNF-a induced
both ABCA1 mRNA and protein expression in primary
Copyright # 2009 John Wiley & Sons, Ltd.
cultured peritoneal, THP-1 derived, and J774 murine
macrophages,85–87 which was mediated by NF-kB.86 While
in rabbit subcutaneous adipocytes, the expression of ABCA1
was increased by low concentration of TNF-a and was
inhibited by higher concentration, which might be mediated
by PPARg-LXRa-ABCA1.45

Effects of TNF-a on lipid-metabolism-related adipokines

Recent advances regarding the biology of adipose tissue,
especially the discovery and study of a serial of novel
pleiotropic adipokines such as leptin, adiponectin, resistin,
etc., have revolutionized our traditional view of adipose
tissue. Adipose tissue is no longer considered as an inert
tissue mainly devoted to energy storage but is emerging as an
active endocrine organ and an important mediator that is
involved in many physiologic and pathologic processes
regarding energy metabolism. Current evidence suggested
that the inter-regulation of these adipokine and TNF-amight
be involved in TNF-a-mediated lipid metabolism.

Leptin, a 16 kDa protein encoded by the ob gene, is
mainly secreted by adipose tissue.88 The circulating leptin
level is 5–15 ngmL�1 in lean subjects,89 which directly
correlate with adipose tissue mass.90 Control of appetite is
the primary role of leptin and its regulation and important
role in controlling of food intake, body weight, and energy
homeostasis have been firmly established.91–93 Besides, few
reviews have been published describing its direct potent role
in lipid metabolism both in vivo and in vitro94–96 such as
decreases food consumption via modulation of hypothala-
mic neuropeptide, changes the fuel source from which ATP
is generated, stimulator of lipolysis, and fatty acid
oxidation.94 These actions of leptin may be mediated by
its binding to its receptor with succeeding activation of the
Jak/Stat pathway or by direct stimulation 5-AMP-activated
protein kinase (AMPK), which will phosphorylate and
thereby inhibit acetyl CoA carboxylase activity and
lipogenesis.97

Previous review summarized that acute exposure to TNF-
a stimulates production of leptin at both mRNA and protein
levels, which was mediated through a direct interaction
between soluble TNF-a and p55 TNFR found on
adipocytes.98 However, some studies suggested that TNF-
a stimulates the release of pre-formed intracellular pools of
leptin but actually decreases leptin gene expression and
secretion in 3T3-L1 and mouse brown adipocytes99,100

which might be mediated by protein kinase C (PKC).100

Another study revealed that short-term (24 h) exposure of
isolated rat adipocytes to TNF-a does not affect leptin
secretion while prolonged exposure produces a concen-
tration-dependent inhibition of leptin secretion and gene
expression.101 These paradoxical results showed that TNF-a
might exert dual effects on leptin synthesis and release.
TNF-a stimulates the release of leptin from human mature
adipocytes and existing differentiated pre-adipocytes, which
may contribute to obesity-/infection-linked hyperleptine-
mia, while TNF-a inhibits leptin synthesis via inhibition of
Cell Biochem Funct 2009; 27: 407–416.
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Figure 2. Effects of TNF-a on lipid metabolism. TNFR, TNF-a receptor;
TG, triglyceride; ERK, extracellular signal-related kinase; JNK, c-jun-
NH2-terminal kinase; PKA, protein kinase A; HSL, hormone sensitive
lipase; CYP, cholesterol-7a-hydroxylase; CETP, cholesteryl ester transfer
protein; HMG-CoA, hydroxy-3-methylglutaryl-coenzyme A; LCAT,
lecithin cholesterol acyltransferase; ABCA1, ATP binding cassette trans-
porter A1; ATGL, adipocyte triglyceride lipase; PPAR, peroxisome pro-
liferator-activated receptor; Beta-AR, beta adrenoceptor; LPL, lipoprotein
lipase; PI3K, phosphatidylinositol-30-kinase
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pre-adipocyte differentiation and induction of adipocyte de-
differentiation.102

Another adipokine deserved notice is adiponectin.
Adiponectin (also called Acrp30, adipoQ, ApM1,
GBP28), a 30 kDa secretory protein synthesized in adipose
tissue and secreted into serum, was identified in 1995.103

Adiponectin is a unique adipokine since (1) the plasma
concentration of adiponectin is very high, ranging between
0.5 and 30mgL�1,104 which accounts for about 0.01% of all
plasma proteins in humans and 0.05% in rodents. This
concentration is about 3 orders of magnitude higher than
leptin and about 6 orders of magnitude higher than IL-6,
which measured in ngmL�1 and pgmL�1, respectively; (2)
adiponectin exists in six forms in vivo: the gAPN (globular
adiponectin), fAPN (full-length adiponectin), LMW (low
molecular weight adiponectin), MMW (middle molecular
weight adiponectin), HMW (high molecular weight adipo-
nectin), and Alb-LMW (serum albumin bounded form
adiponectin).105 Its multiple beneficial effects in obesity,
atherosclerosis, and metabolic syndrome104,106 strongly
supports its potential role in lipid metabolism regulation.
Similar to leptin, regulation of adiponectin expression and
secretion by TNF-awas well documented: Neutralization of
TNF-a and anti-TNF-a therapy reduced ConA-induced liver
damage in mice and improve endothelial dysfunction in
patients with RA, respectively. In the meantime, the
circulating levels of adiponectin were restored.107,108 A
more recent study reported that C57BL/6J mice treated with
TNF-a for 7 days significantly down-regulates both PPARg
and ATGL mRNA expression in adipose tissues as well as
ATGL protein levels in plasma. Moreover, adipose mRNA
expression and plasma protein levels of adiponectin were
significantly down-regulated.109 In human visceral adipose
tissue, TNF-a treatment dramatically decrease adiponectin
expression and secretion,110 which might be through insulin-
like growth factor-binding protein-3111 and JNK signal
transduction pathways.112 In addition, induction of hyper-
adiponectinemia was observed following long-term treat-
ment of patients with RA with infliximab, an anti-TNF-a
antibody.113

In summary, present documented data has demonstrated
that at least four signal pathways might be involved in TNF-
a-mediated lipid metabolism: through ERK/JNK to cAMP
to PKA and then to HSL; through Gi to cAMP; and through
PI3K/NO to LPL. Furthermore, TNF-a could also regulate
some lipid-metabolism-related enzymes activity and/or
expression such as LPL, HSL, ATGL, acetyl-CoA carboxy-
lase, LCAT, HMG-CoA, etc. In addition, TNF-a-meditated
regulation of adipokines might also be of importance
(Figure 2).

Effects of infliximab on lipid metabolism – human
studies

As mentioned above, direct evidence for the effects of TNF-
a on lipid profile in human subjects is limited. However,
TNF-a pathway inhibition by blocking TNF-a mRNA
synthesis and secretion, or by blocking TNF-a activation of
Copyright # 2009 John Wiley & Sons, Ltd.
their receptors (via monoclonal antibodies or soluble
receptors) provides indirect evidence for the role of TNF-
a in human lipid metabolism.
Infliximab, a chimeric anti-TNF-a human IgG1k antibody

linked to a variable region of a murine anti-human TNF-a
antibody was developed by Junming Le and Jan Vilcek in
last 1990s.114 Now infliximab has been widely prescribed
for the treatment of psoriasis, Crohn’s disease, ankylosing
spondylitis (AS), psoriatic arthritis (PA), RA, sarcoidosis,
and ulcerative colitis.
Early studies reported that in patients with RA and PA,

intravenous infliximab therapy (3mg kg�1 at weeks 0, 2, and
6) leads to significant increase in TG levels, decrease in
HDL-C levels but no significant difference in TC and LDL-
C levels.115 Decrease in HDL-C levels, peripheral arteries
diameters, and increase of blood wall shear stress in RA
patients received infliximab therapy were also observed.116

However, another study suggested that in active RA patients,
infliximab therapy (3mg kg�1 at weeks 0, 2, and 6) was
associated with a significant increase of both TC and HDL-C
levels, which correlated with decreasing disease activity.19

While in patients with refractory, infliximab administration
(3mg kg�1 at weeks 0, 2, 6, 14, 22, and 30) associated with
important increases in TC, LDL-C, HDL-C but has no
significant beneficial effect on the atherogenic index (TC/
HDL-C, LDL-C/HDL-C).117 A long-term investigation
(2 years) of infliximab treatment in RA patients (3mg kg�1,
, at 0, 2, 6 weeks and thereafter every 8 weeks for 2 years)
revealed that there was an initial increase in plasma levels of
TC, HDL-C, LDL-C, which significantly decreased after
6 months while the atherogenic index remained significantly
Cell Biochem Funct 2009; 27: 407–416.
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raised.118 Similar increase of the atherogenic index was also
observed in another study in a 1-year treatment but the
plasma levels of TC and LDL-C were increased.119 While
active RA treated with infliximab (3mg kg�1, at 0, 2, 6, and
14 weeks) for 14 weeks improve IR, increase TC, HDL-C,
LDL-C, and TG without changing the atherogenic index.120

Infliximab administration to RA and AS patients
(3mg kg�1, at 0, 2, 6 weeks, and every 8 weeks thereafter
for RA and at 5mg kg�1 body weight for AS, respectively)
for 6 months showed no effect on LDL-C level, TC/HDL-C,
and TG/HDL-C ratios, which suggests that infliximab might
exert neutral effect on lipid profile.121 Forty-eight weeks
(3� 7.5mg kg�1, at 0, 2, 6, and then every 8 weeks) and
14 weeks infliximab infusions showed similar effects on the
lipid profile.122,123 In addition, anti-TNF-a treatment in
combination with methotrexate (MTX) and corticosteroid
therapy in patients with active RA for 3 months increase
both TC and HDL-C levels, without affecting the
atherogenic index.124 A study assessed the effect of
infliximab on lipid profile induced by chronic inflammatory
arthritides in RA, PA, and AS patients in the meantime. Six
months of infliximab treatment induced a sustained increase
of serum HDL-C while the TC and the atherogenic index
was significantly increased and decreased, respectively, only
after the first month of treatment.20 In a case report of a
patient with RA and PA, a single infusion of infliximab
developed a marked increase in TG and TC levels125 which
was confirmed by a 6-month study in RA patients.126

Infliximab treatment preferentially induced extra high levels
of VLDL-TG.126 Popa et al.127 reported that treating RA
patients with infliximab (3mg kg�1, at 0, 2, and 6 weeks and
then every 8 weeks) for 6 months increase TC, HDL-C,
apoA-I, and the atherogenic index. But the beneficial effect
of infliximab was supposed to be through changes in the
composition of the HDL particle leading to improved anti-
oxidative properties.

In patients with inflammatory bowel disease, infliximab
treatment (5mg kg�1 intravenously over 2 h at weeks 0, 2,
and 6 and a maintenance dose of 5 or 10mg kg�1 every
8 weeks) increased TC, HDL-C, and apo-AI levels without
affecting TG, LDL-C, and apoB100.128 In patients with
Crohn’s disease, infliximab therapy increase in both TC and
HDL-C concentrations. Furthermore, a rapid and large
increase in visceral and subcutaneous abdominal fat during
infliximab therapy was also observed.129

From discussed above, it is hard to make a definite
conclusion about the effect of infliximab on lipid profile in
patients and it is even harder to confirm the effect of TNF-a
on lipid metabolism in human beings since the conflicting
clinical results make it more elusive rather than explicit.
However, it is reasonable to think that infliximab therapy
exerts potent effects on lipid metabolism.

CONCLUSION

In summary, TNF-a plays an important role in energy
metabolism and is an effective lipid homeostasis regulator.
Recent advances have unveiled many new aspects of TNF-a
Copyright # 2009 John Wiley & Sons, Ltd.
action on lipid metabolism though the exact components and
molecular mechanisms of these effects remain to be
elucidated. However, our present view of TNF-a in lipid
metabolism might be superficial since there are inconsistent
and even controversial results in nearly every aspect of its
action. These conflict observations might be due to the
different cells/cell lines used such as the adipocytes and
hepatocytes, the mature adipocytes, and pre-adipocytes,
different species such as human, rodent, non-human
primates, and different experimental conditions. Further-
more, the potency, the dosages, and the sources of TNF-a
might be account for such inconsistence. As far as the
clinical observations are concerned, large-scale, hospital-
based studies in RA patients and in normal healthy subjects
need to evaluate the exact effects of infliximab on lipid
profile. In addition, application of proper randomized
placebo and standardization of inclusion and exclusion
criteria might also be considered. The molecular dissection
of TNF-a signaling pathways in lipid metabolism might
offer novel targets for the treatment of dyslipidemia.
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