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ABSTRACT

Key-based interval splitting arithmetic coding (KAC) possesses both encryption and compression capabilities. However,
it possesses vulnerability to chosen-plaintext attack because the attacker can explore the relationship between the key and
the codeword to deduce the secret key. In order to resist this attack, we propose to introduce perturbation into KAC. The
perturbation-based KAC not only avoids the flaw of KAC that the splitting keys are usually located at the endpoint of
certain codeword or at the border of two codewords but also removes the restriction that the keys are only allowed in certain
sub-intervals, which result in great convenience to the key scheduler. In addition, based on generalized arithmetic coding
using Generalized Luröth Series, we study the phase-space splitting of a chaotic map for generalized KAC and suggest the
generalized perturbation-based KAC. This leads to the design of a joint compression and encryption scheme with more
powerful cryptographic features. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Arithmetic coding (AC) has been integrated in some cod-
ing standards such as JPEG2000 and H.264/AVC because
of its high coding efficiency. Besides source coding, AC
possesses certain secrecy properties for some specific
applications. However, it is found insecure [1–3], and
thereby, many variants have been proposed for the purpose
of enhancing the security [4–9]. In particular, randomized
arithmetic coding (RAC) [5] and key-based interval split-
ting arithmetic coding (KAC) [8] are two main schemes
of embedding secure features in AC. RAC is based on
the exchange of two encoding intervals in accordance
with a key-generated secret sequence. A key bit is used
for each source symbol to determine whether the binary
fragments are exchanged or not [5]. Jakimoski and Sub-
balakshmi pointed out that RAC cannot outperform the
standard one because of the generation requirement of one
pseudo-random bit for each binary symbol [10]. Katti et al.

demonstrated the insecurity of RAC on the assumption that
the attacker cannot choose some chosen plaintexts [11].

In [12], Xiang et al. described a cryptanalysis of reveal-
ing the keystream used for exchanging decision. In addi-
tion, the interval swapping technique was also applied in
a Slepian–Wolf code based on distributed arithmetic cod-
ing [13] and in a secure binary AC by means of digitalized
modified logistic map and Linear feedback shift register
(LFSR) [14]. Unlike RAC, KAC is a modification of AC
in which each symbol may correspond to one contiguous
interval or two non-adjacent intervals because of interval
splitting [8]. It is not secure against chosen-plaintext attack
described by Kim et al., who further proposed the secure
arithmetic coding (SAC) scheme that applied a string of
permutations at the input and output siders [15]. The secu-
rity of SAC upon adaptive chosen-ciphertext attack was
studied in [16,17], followed by the security analysis of
KAC under ciphertext-only attack with respect to message
indistinguishability [18].
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Chaotic system has the inherent characteristics such
as pseudo-randomness and sensitivity to initial situations,
which are related to the two fundamental attributes of a
perfect cryptosystem: confusion and diffusion [19]. As a
result, the amount of research work is for the ciphers based
on chaos [20–29]. Interestingly, a viewpoint on chaotic
cryptography was introduced in [30], in which one-time
pad can be illustrated as the finding of the initializations of
a couple of binary chaotic systems that are from a series
of 1D nonlinear chaos equations referred to as General-
ized Luröth Series (GLS). It is interesting to note that there
exists a connection between chaos and AC, and GLS can
be used to realize generalized arithmetic coding (GAC)
[31–34]. In [32], Luca presented an interest compression
scheme using a chaos-based symbol framework, that is, a
source string matches with each trajectory in chaotic gen-
erator state space. Nagaraj further proved that AC is from
GLS modes and GLS code can reach Shannon’s entropy
bound [33]. Besides, a compression-encryption scheme,
where in order to attain scrambling effect, a secret key is
used to govern the position and direction of the chaotic
linear segments, is designed in [34]. A discrete piecewise
linear system was employed by Lin et al. [31] to exploit
GAC, which demonstrated that the compression capability
can approximate the entropy bound.

Our contributions are twofold. On the one hand, in view
of the vulnerability to chosen-plaintext attack of KAC, we
propose to introduce perturbation into it. KAC is inse-
cure under chosen-plaintext attack because the attacker can
explore the relationship between the range of the key and
the codeword to deduce the key information by using a
sufficient number of segments with varying content and
length. In order to break this relationship, a perturbation is
introduced into KAC. When an interval is split into three
subintervals by an inappropriate key, the right-most subin-
terval will be moved to the left of the left-most subinterval,
and the two sub-intervals will merge into a new interval.
This perturbation-based KAC (PKAC) makes the key be
allowed in the full interval, which is very convenient to
schedule the key. On the other hand, the generalization
of PKAC by using chaos is also studied, which is mean-
ingful because of the intrinsically cryptographic properties
that chaos possesses. In line with the evolution from AC
to GAC, we can obtain GKAC from KAC and GPKAC
from PKAC.

The following are the abbreviations that appeared in
the paper.

� AC: arithmetic coding.
� TAC: traditional arithmetic coding.
� RAC: randomized arithmetic coding.
� KAC: key-based interval splitting arithmetic coding.
� PKAC: perturbation-based interval splitting arith-

metic coding with key.
� SAC: secure arithmetic coding.
� GAC: generalization of arithmetic coding.
� GRAC: generalization of randomized arithmetic

coding.
� GKAC: generalization of key-based interval splitting

arithmetic coding.

� GPKAC: generalization of perturbation-based inter-
val splitting arithmetic coding with key.

� GLS: Generalized Luröth Series.

This paper is organized as follows. The KAC is
reviewed in Section 2. Section 3 gives PKAC followed
by its security analysis. Section 4 is devoted to the gen-
eralized PKAC. Section 5 discusses the compressibility
and applications. Section 6 shows some conclusions and
future work.

2. REVIEW OF KEY-BASED
INTERVAL SPLITTING
ARITHMETIC CODING

In traditional arithmetic coding (TAC), the interval con-
nected with every symbol is contiguous. Nevertheless, in
KAC, the interval connected with every symbol can be seg-
mented to two subintervals with the help of a real number
key known by both the encoder and decoder. we assume
that S = s1s2 � � � sN represents the input string to be com-
pressed, where si 2 {A, B} and N denote the number
of source symbols. Assume that this discrete source fol-
lows the distribution {p(A), p(B)} such that p(A) + p(B) =
1, where p(A) denotes the probability of occurrence of
the symbol A and p(B) is the probability of occurrence
of the symbol B. S is encoded by KAC using the key
stream K = k1, k2, � � � , kN , with each element lying in the
range (0, 1).

As an example, suppose p(A) = 2/3 = 0.67 and p(B) =
1/3 = 0.33, and the first symbol s1 = A. The initial
half-open interval [0, 1) is partitioned into two subintervals
I(A) = [0, 0.67) and I(B) = [0.67, 1) proportional to p(A)
and p(B), as shown in Figure 1(a). Here, I(X) represents
the interval for the symbol string X. If the key of KAC is
k1 = 0.4 within I(A), the interval in relation to symbol A
needs to be segmented. The splitting leads to that the pro-
portion of I(A) to the right of the key k1 = 0.4 will be
moved to the right of the I(B). That is to say, I(B) is shifted
left to begin at k1 (Figure 1(b) and (c)). After the splitting,
I(A) = [0, 0.4) [ [0.73, 1) and I(B) = [0.4, 0.73).

Prior to the second splitting, if the second symbol is s2 =
A, then one can partition I(A) into I(AA) and I(AB) similar
to TAC with the assumption that I(A) = [0, 0.4) [ [0.73, 1)
is a contiguous interval, as indicated in Figure 1(d). Con-
sequently, I(AA) = [0, 0.4) [ [0.73, 0.78) and I(AB) =
[0.78, 1). However, the splitting becomes constrained when
multiple symbols are processed. Figure 1(e) explains the
case of selecting an incorrect value for key k2, which gen-
erates three subintervals corresponding to symbols AA.
Figure 1(f) gives the correct range for k2, which should lie
only in the intervals I1 and I2 with length (I1) = length
(I2). It should be noticed that, in Figure 1(f), length(I1) =
length(I2) = length(I(AB)) if and only if length (I(AB)) <
length(R), where R = [0, 0.4) denotes the left-most inter-
val in Figure 1(d). Otherwise, length(I(AB)) > length(R)
and length(I1) = length(I2) = length(I(R)), as illustrated in
Figure 1(g). The key k2 is mapped to the interval I1 or I2.
When k2 2 [0, 0.5), it is scaled to a value within I1. On the
contrary, k2 2 [0.5, 1) means that it corresponds to a value
in I2.
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Figure 1. (a) Initial intervals I(A) and I(B). (b) Intervals I(A) and I(B) before splitting when k1 = 0.4. (c) Intervals I(A) and I(B) after
splitting when k1 = 0.4. (d) Intervals I(AA) and I(AB) by partitioning interval I(A) (without partitioning interval I(B), similarly hereafter).
(e) Intervals I(AA) and I(AB) after partitioning by using an inappropriate key. (f) Intervals I1 and I2 as the ranges of the appropriate
value for the key k2 when length(I(AB)) < length(R). (g) Intervals I1 and I2 as the ranges of the appropriate value for the key k2 when

length (I(AB)) > length(R).

Suppose that the resulting final interval is [start, end)
after the whole input string S has been encoded, which is
either one single contiguous interval or the union of at most
two disjoint subintervals in [0, 1). For the former case, the
larger subinterval is chosen as the final interval. Any real
number that is chosen in this interval could be selected as
the codeword of S of length d– log2(end – start)e.

3. PERTURBATION-BASED
KEY-BASED INTERVAL SPLITTING
ARITHMETIC CODING

3.1. Perturbation

Key-based interval splitting arithmetic coding is insecure
as the attacker can reveal the values of the splitting key
vector K by contrasting codewords [15]. In light of the
recursiveness of the encoding and splitting process, the
attacker could alternatively provide input sequences of

varying content and length by controlling the number
of symbols and the specific strings so that the knowl-
edge about K is gradually obtained. To fix this loophole,
we suggest introducing perturbation into KAC. This can
be exploited by moving the right-most subinterval to the
left of the left-most subinterval only when an interval is
split into three subintervals by an inappropriate key. The
proposed KAC with perturbation (PKAC) offers another
benefit that it removes the restriction that the splitting key
is only allowed in the intervals I1 and I2 in the case of
KAC. In other words, the key can span the full interval
(0, 1), which makes it convenient for key scheduling.

Here is an example of how perturbation is added into
KAC. Assume the symbol string that needs to be com-
pressed is S = AA and k1 = 0.4, then the splitting situation
occurs in Figure 2(a). The k2 = 0.1, and it is mapped
to an absolute position in the interval (0, 1). But it lies in
neither I1 nor I2, and so, the interval I(AA) is split into three
subintervals as shown in Figure 2(b). Then, on the basis
of PKAC, a new interval I(AA) combining the left-most
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Figure 2. (a) Intervals I(AA) and I(AB) after splitting I(A) by k1 = 0.4. (b) Three subintervals of I(AA) when k2 = 0.1. (c) A new combined
interval I(AA) = [0, 0.37) after perturbation. (d) A situation of KAC when k2 = 0.7. (e) Intervals I(AA) and I(AB) after splitting I(A) by

k1 = 0.15. (f) Three sub-intervals of I(AB) when k2 = 0.95. (g) A new combined interval I(AB) = [0, 0.2) after perturbation.

subinterval with the right-most subinterval is placed at the
left-most part, and the remaining intervals will be shifted
to the right accordingly, as shown in Figure 2(c). At last,
I(AA) = [0, 0.37) [ [0.59, 0.67).

Note that the splitting point determined by the key is
an absolute position. This encoding way of PKAC is more
easily realized than that of KAC. In KAC, if k2 = 0.7, k2 >
0.5, one can map it to interval I2 in the relative form
rather than the whole interval [0, 1) in the absolute form.
In order to acquire the real k2, I2 is split into 2/5 because
0.7–0.5 = 0.2, which is 2/5 of 0.5. The length of I2 is equal
to 1 – 0.78 = 0.22, so k2 is mapped to 0.78 + (2/5� 0.22) =
0.868. Accordingly, I(AA) = [0.088, 0.4) [ [0.73, 0.868),
as illustrated in Figure 2(d). This shows that the real-
ization of the key in KAC is more cumbersome. In our
scheme, the length of I(AA) is always equal to that of
KAC. This property implies that PKAC does not affect the
coding efficiency.

Figures 2(e–g) illustrates another possible situation of
PKAC corresponding to Figure 1(g). If k1 = 0.15, I(A) =
[0, 0.15) [ [0.48, 1) after the first splitting using k1. It
is further partitioned into I(AA) and I(AB) as shown in
Figure 2(e). If k2 = 0.95 belonging to neither I1 nor I2, it
splits I(AB) into three subintervals as drawn in Figure 2(f).
The result of perturbation leads to I(AB) = [0, 0.2) [
[0.53, 0.55) as plotted in Figure 2(g). The interval length is
equal to 0.22, that is, it remains unchanged.

Besides this perturbation way, other modes of perturba-
tion are possible, as shown in Figure 3. With reference to
the three emerging subintervals, each one can be relocated
to the left or right of one of the other two subinter-
vals, which results in four situations. As a result, there
are 12 possible modes of perturbation. For example, in
Figure 3(a), the third subinterval can be moved to four
relocations: the left and right sides of the first one and
that of the second one. The aforementioned perturbation
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Figure 3. Four possible relocations when moving (a) the
third subinterval, (b) the second subinterval, and (c) the first

subinterval.

illustrated in Figures 1 and 2 corresponds to the situation
depicted in Figure 3(a).

3.2. Security analysis

The relationship between the key and the codeword in
KAC was discussed in [15]. It is assumed that the encoder
always selects a position in the larger interval as the code-
word when an input string is associated with two disjoint
intervals due to interval splitting. It is also assumed that
the encoder will stop the interval splitting after partitioning
the interval corresponding to the last input symbol as there
is no need for further encoding. In KAC, if the interval
corresponding to symbol A is segmented and partitioned
to generate two intervals I(AA) and I(AB), as illustrated
in Figure 4, there are four possible length distributions of
the locations of the codewords C(AA) and C(AB), where
C(X) represents the codeword of string X. The detailed
explanations for these four cases are given as follow. SL
denotes the splitting location in the absolute form. Ll(X)
and Lr(X) indicate the length of the left and right intervals,

respectively, when I(X) comprises two distinct intervals
Il(X) and Ir(X).

If the interval corresponding to symbol B is split instead
of A, similar analysis can be carried out. This is exactly the
reason that the relationship between SL and the codeword
exists. The attacker could launch a chosen-plaintext attack
for KAC [15] by applying the following relationships.
By encoding and comparing a sufficient number of input
string consisting of two symbols, the adversary could grad-
ually shrink the segment range and ultimately reveal the
whole key.

Next, let us further investigate the connections between
the key and the codeword in PKAC. The range of a key can
be classified into two groups in a sense that whether a per-
turbation is appended. Figure 5 shows two different ranges
for the four cases illustrated in Figure 4. For clarity, only
the interval I(A), including I(AA) and I(AB), is considered
to be split. The ranges marked as R-I mean that the current
PKAC without perturbation is the same as KAC, while the
ranges marked as R-II imply that a perturbation will take
effect. When the second splitting key k2 is applied, either
R-I or R-II is split, as depicted in Figure 5.

Figure 5 shows that, without perturbation, that is, in the
case of KAC, both the keys k1 and k2 always lie in the
boundary between two intervals as illustrated in R-I for
each case. A worse case is that the keys are located at the
endpoint of a codeword or at the border of two codewords
so that they can be gradually revealed by comparing the
codewords. However, after perturbation in PKAC, neither
k1 nor k2 lies in the border of a codeword as indicated in
each R-II, which efficiently hides the relationship between
the key and the codeword. Only a perturbation is sufficient
to hide the relationship to some extent. In general, encod-
ing a sequence with many symbols results in many times of
perturbation, which makes the attacker fail to deduce any

Figure 4. Four length distributions of the locations of the codewords C(AA) and C(AB).
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Figure 5. Two different ranges for the four cases of Figure 4 and the corresponding representative examples with different keys k1

and k2.
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useful information. Thus, the proposed PKAC is able to fix
the security flaw of KAC.

In [15], Kim et al. introduced permutation into KAC to
resist chosen-plaintext attack. This SAC scheme is com-
posed of input permutation, KAC, and output permutation.
Nonetheless, the security problems still exist [16–18]. The
cause of the flaw is KAC itself rather than the permutations
because they offer poor encryption. It is worth mentioning
that the implementation complexity of the system based
on permutation is not negligible. On the contrary, PKAC
enhances the security of KAC without additional com-
plexity. In terms of coding efficiency, SAC has the same
performance as KAC because the permutations do not
incur any compression efficiency penalty. Similarly, PKAC
can maintain the original compression ratio of KAC. Con-
sidering the four cases in Figure 5, with respect to R-I
without perturbation and R-II after perturbation, we sum-
marize the relations and list them in Table I. The larger
the codeword interval is, the higher the coding efficiency.
Table I just gives some specific possible cases, and whether
the codeword length of R-I is larger than that of R-II
is indeterminate and random. This randomness is mainly
introduced by the keys used in the interval splitting. How-
ever, it can be analyzed in a statistical way. If the keys are

Table I. Comparison of length between R-I and R-II for the
length of codewords C(AA) and C(AB).

Four cases Codeword length Length comparison

Case 1 length(C(AA)) R-I > R-II
length(C(AB)) R-I < R-II

Case 2 length(C(AA)) R-I > R-II
length(C(AB)) R-I < R-II

Case 3 length(C(AA)) R-I < R-II
length(C(AB)) R-I > R-II

Case 4 length(C(AA)) R-I > R-II
length(C(AB)) R-I < R-II

presented in a random order following the uniform distri-
bution with zero expectation approximately, the number of
cases that R-I > R-II is basically flat in comparison with
that of R-II. As a consequence, the coding efficiency of
PKAC is maintained.

4. GENERALIZATION

As mentioned earlier, a novel idea that GLS can be used
to realize GAC was presented in [32,33]. It was found that
there are eight modes of GLS and only one of them cor-
responds to binary AC. Without loss of generality, assume
that the source generates two symbols A and B as presumed
in the description of KAC with the probabilities of occur-
rence p and 1–p, respectively. One of the GLS is a common
piecewise linear chaos system given by

Decoding: f (x) =

�
x/p, 1 � x < p
(1 – x)/(1 – p), p � x < 1

and

Encoding: f –1(I) =

�
p � I, symbol = 0
p + (1 – p) � I, symbol = 1

Figure 6 shows the eight modes of GLS followed by
their mathematical representations. In fact, the last seven
modes, that is, from Mode 2 to Mode 8, could be evolved
from Mode 1. Consider the first four ones. In Mode 1,
there exist two oblique lines corresponding to A and B,
respectively, with positive slopes marked as “0”. It is easy
to come up with the modification of the slope direction
that a positive slope can be changed to a negative one
marked as “1”. Altogether, four modes exist because of the
two directions of each line as depicted from Mode 1 to
Mode 4. Then, consider the remaining four modes. RAC
refers to the exchange of the two encoding intervals at ran-
dom according to a key-generated shuffling sequence [5].

Figure 6. Eight modes of GLS and their mathematical representations.
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Associating the interesting idea of interval swapping, we
swap the two oblique lines in Modes 1–4 to output Modes
5–8 accordingly as the generalization of RAC (GRAC). As
observed in the evolution process, these modes have the
essence of RAC and have brought about some powerful
cryptographic features into the TAC. As a consequence,
it is well worth to work on the generalization of KAC
and PKAC.

Before perturbation, GPKAC is the same as GKAC.
First of all, consider how GKAC works with partitioning
and splitting, whose process is shown in Figure 7(a–d). As
for GAC with respect to binary source, the phase space

[0, 1) of a piecewise linear chaos map associated with the
original interval [0, 1) in TAC is divided into two parts pro-
portional to p(A) and p(B), as depicted in Figure 6. In light
of the way of interval splitting in KAC during the encod-
ing process, we can infer the encoding process of GKAC.
Take the previous example of p(A) = 2/3 = 0.67, p(B) =
1/3 = 0.33, and k1 = 0.4. At first, the phase space [0, 1)
is divided into two parts denoted as p(A) and p(B), respec-
tively, where P(A) = [0, 0.67) and P(B) = [0.67, 1). The
slopes of the two oblique lines corresponding to p(A) and
p(B) are Slope(A) = 0 and Slope(B) = 1, respectively, as
shown in Figure 7(a). This form of the common piecewise

Figure 7. (a) Division of two phase subspaces P(A) and P(B) with respect to GKAC. (b) Two phase subspaces P(A) and P(B) before
splitting when k1 = 0.4. (c) Two phase subspaces P(A) and P(B) after splitting when k1 = 0.4. (d) Division of two phase subspaces
P(AA) and P(AB) with respect to P(A). (e) Four phase subspaces before splitting when k2 = 0.1. (f) Five phase subspaces after splitting

when k2 = 0.1. (g) A new subspace generated by merging the first P(AA) and the last P(AA).
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linear chaos map is the same as Mode 2 in Figure 6. In
Figure 7(b), the key k1 = 0.4 means that the phase space
p(A) is split into two subspaces Pl(A) and Pr(A) represent-
ing the left and right ones, respectively. Pr(A) will move
to the right of P(B) so that P(A) = [0, 0.4) [ [0.73, 1) and
P(B) = [0.4, 0.73) as shown in Figure 7(c). After split-
ting and moving, the slope with respect to P(Al) is no
longer equal to that of P(Ar) nor the original P(A), that
is, Slope(Al) ¤ Slope(Ar) ¤ Slope(A). Despite the vari-
able size, the slope direction still remains unchanged. The
second splitting of P(A) results in P(AA) = [0, 0.4) [
[0.73, 0.78) and P(AB) = [0.78, 1) (Figure 7(d)). Similar
to KAC, the splitting key maps to the phase space with
some constraints. Here, we do not repeat the description of
the further splitting. In line with the evolution from KAC
to GKAC, it must be capable of acquiring GPKAC from
PKAC. The only thing to note is that after perturbation,
two oblique lines will be merged into one, as shown in
Figure 7(e–g).

Like Mode 2, the other seven modes of GLS can be split
to achieve their corresponding generalizations. The main
difference between KAC and GKAC (or GPKAC) is that
in GKAC, every symbol X has two slopes Slope(X) = 0
and Slope(X) = 1 in association with the phase space
P(X), whereas there is no slope in KAC. Different slopes
result in different encoding ways when some appropri-
ate keys are exploited by selecting the slope direction.
GKAC or GPKAC provides a mass of encoding struc-
tures, and thereby, it is a reasonable examinee for source
coding encryption.

5. DISCUSSION

5.1. Compressibility

Table II shows the comparative results of coding efficiency
between KAC and PKAC by encoding the input sequences
with length N = 10, 100, and 1000 symbols. Two cases,
that is, p(A) = 0.60 and p(A) = 0.90, are taken into

consideration. In each case, 100 random sequences are
generated and the average length of the corresponding 100
codewords is listed in Table II. The results confirm that the
efficiency difference in percentage becomes smaller with
the increase of N. When N = 1000, the difference falls
to approximately 0.002% in both cases, the same as the
theoretical analysis.

5.2. Applications

AC has been widely studied in many works [35–42]
recently besides being adopted in the entropy coding
stage of most international image and video coding stan-
dards. The variants of AC, including RAC, KAC, SAC
and PKAC, can be embedded into some of these works
to replace AC and applied to any multimedia coder stan-
dard employing AC to attain synchronous compression
and encryption. However, RAC, KAC, and SAC have
been proven insecure, and a number of permutation oper-
ations of SAC result in the increase of complexity. The
proposed PKAC overcomes these drawbacks and can be
extended to many practical applications. Take an exam-
ple: it is well known that JPEG and JPEG2000 are often
used for lossy or lossless compression of digital images.
They offer progressive coding and region-of-interest cod-
ing. The compression ratio can be switched to provide an
optional tradeoff between storage and quality. Their most
significant feature is that they can reach excellent com-
pression performance at the price of little image quality
loss. Nevertheless, they do not provide any security pro-
tection. If some coding scheme possesses both excellent
compression performance and sufficient level of security,
its application scopes can be expanded. For this reason, the
proposed PKAC technique can be used to modify the arith-
metic coder, in JPEG or JPEG2000 to fill its gap. After the
AC and its variants are generalized, the intrinsic proper-
ties of chaos can bring excellently cryptographic features.
A representative example is the work in [43], in which
GLS coding can be incorporated into JPEG without nearly
affecting the original compression performance.

Table II. Comparative results of coding efficiency between KAC and PKAC.

Two probabilities N Entropy �N KAC PKAC Efficiency difference in %

p(A) = 0.6 10 9.71 11.58 11.67 7.770
Entropy = 0.971 100 97.1 98.77 98.72 –0.051

1000 971 972.46 972.44 –0.002
p(A) = 0.9 10 4.69 6.13 6.01 –1.960
Entropy = 0.469 100 46.9 48.30 48.38 0.170

1000 469 470.41 470.40 –0.002

KAC, key-based interval splitting arithmetic coding; PKAC, perturbation-based KAC.

Table III. Generalizations of AC and its variants.

AC [44,45] RAC [5] KAC [8] PKAC(in this paper)
GAC [32,33] GRAC [33] GKAC(in this paper) GPKAC(in this paper)

AC, arithmetic coding; RAC, randomized AC; KAC, key-based interval splitting AC; PKAC,

perturbation-based KAC; GAC, generalized AC; GRAC, generalized RAC; GKAC, generalized

KAC; GPKAC, generalized PKAC.
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6. CONCLUSION AND PROSPECT

In order to present our idea clearly, we summarize the
main conclusions in Table III, where AC and its three
variants are listed in the first line, and the generaliza-
tions of these four coding schemes can be found in the
second line. From Table III, two aspects are mainly stud-
ied in this paper. On the one hand, PKAC as a variant
of KAC is proposed to improve the security of KAC. On
the other hand, GKAC and GPKAC, corresponding to the
generalized KAC and generalized PKAC, respectively, are
introduced to supplement the generalizations.

There are two critical indicators including coding effi-
ciency and precision to reflect the performance of a code.
From the perspective of coding efficiency, RAC retains
the same level as TAC. The compression ratio of KAC is
slightly lower than that of AC, and the efficiency penalty
becomes smaller with the increasing number of input sym-
bols [8]. PKAC maintains a consistent compression ratio
as KAC. The generalized forms of AC and its variants do
not compromise the coding efficiency.

In practice, one can need sufficiently large integers
rather floating point or real numbers as the endpoints of
the current interval. Consequently, the integer form of a
code is meaningful in the application. Integer AC and dis-
crete GAC have been studied in [45] and [31], respectively.
However, the other codes including RAC, KAC, PKAC,
GRAC, GKAC, and GPKAC have never been investigated
in terms of precision and coding speed, which are worth
studying to further extend their applications.
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