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a b s t r a c t

Pricing is often used in noncooperative games or Nash equilibrium problems (NEPs) to
meet global constraints in cognitive radio networks. In this paper, we analyze the pricing
mechanism for a class of solvable NEPs with global constraints, called monotone NEPs. In
contrast to the ideal assumption of perfect measure of pricing functions, in practice
pricing functions are often imperfectly known and subject to uncertainty. We theoretically
analyze the impacts of bounded uncertainty and price-updating step sizes of imperfect
pricing in globally constrained NEPs for cognitive radio networks.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Noncooperative games are also called Nash equilibrium
problems (NEPs) [1] that characterize conflicts among
interacting decision-makers called players, where each
player is regarded to be rational and wishes to selfishly
optimize his own payoff. Such game theoretical models
have been widely applied to communications and signal
processing systems where conflicts or competition are
inevitable, for example interference among wireless links
(see a special issue [2] on game theory).

The solution to an NEP, i.e., Nash equilibrium (NE), is a
point at which no player can gain or achieve a better
payoff by unilaterally changing his strategy. In practice,
such a solution may be obtained via the best-response
algorithms [1], in which players simply optimize their own
(J. Zhou),
payoff given the strategies of the others according to a
prescribed schedule, e.g. a sequential order. One example
is the iterative waterfilling algorithm that arose in power
control for digital subscriber lines [3]. However, due to
players' selfish behaviors, the NE is often socially ineffi-
cient in the sense that global requirements are often
unsatisfied.

A common way to improve the social efficiency of the
NE is to use pricing that penalizes players' selfish beha-
viors through some pricing function [4]. As an important
application, several pricing mechanisms [5,6] have been
proposed for cognitive radio networks (CRNs) where
secondary users (SUs) compete the resources of primary
users (PUs) but have to satisfy some global interference
constraints imposed by PUs. It was shown in [5,6] that the
pricing mechanisms can be distributedly implemented and
enforce the players (SUs) to meet the global constraints.

The NEP based methods rely on local information
measurements, which are, however, often imperfect in
CRNs. For example, the channel state information (CSI)
between SUs and PUs [7], the interference plus noise (IPN)
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[8], or the best response [9] could be imperfectly measured
by SUs. In particular, [10,11] considered imperfect SU-to-
PU CSI in pricing NEP designs for CRNs. Although these
works considered imperfect information measurements by
SUs, they all assumed that pricing functions can be
perfectly measured by PUs. In practice, however, pricing
functions are more likely to be imperfectly measured since
any imperfect local measurement (of, e.g., CSI) by SUs
could lead to imperfect measurement of pricing functions
by PUs. To the best of our knowledge, imperfect pricing in
globally constrained NEPs for CRNs has not been addressed
yet.1

In this paper, we would like to investigate the influence
of imperfect pricing in a class of solvable NEPs called
monotone NEPs [13] with achievable solutions by the best-
response algorithms. The monotonicity leads to a favorable
property called co-coercivity that facilitates the NEPs to
meet global constraints with perfect pricing. Then, we
consider a more practical situation where pricing functions
are imperfectly measured and subject to bounded uncer-
tainty. We theoretically analyze the global impacts of
bounded uncertainty and choices of step sizes for the
pricing updating mechanism in globally constrained NEPs.
The studied framework is then demonstrated through
numerical examples in CRNs.
2. Nash equilibrium problem with pricing for CRNs

Consider a CRN of K PUs and N SUs over L-subcarrier
interference channels. Let hji

l
be the channel between the

secondary transmitter j and the secondary receiver i on
subcarrier l, and gik

l
be the channel between the transmit-

ter of SU i and the receiver of PU k on subcarrier l. Let
pi ¼ ðpliÞLl ¼ 1 with pi

l
being the power allocated by SU i on

subcarrier l. Then, the information rate of SU i is given by

ri pi;p� i

� �¼
XL

l ¼ 1

log 1þ jhliij2pli
σl
iþ

P
ja ijhl

jij2plj

0
@

1
A; ð1Þ

where σi
l
is the noise power on subcarrier l. Observe that

ri pi;p� i

� �
depends not only on SU i's transmit power pi

but also on the transmit power p� i ¼ ðpjÞja i of the other
SUs. A popular way to design strategies of cocurrent
transmission of all SUs is to exploit noncooperative game,
also known as NEP.

An NEP consists of three components [1]: players,
payoff (or cost) functions, and strategy sets. Here, the
players are i¼ 1;…;N SUs and the payoff function of player
(or SU) i is his information rate riðpi;p� iÞ. The strategy set
of player i is given by Pi ¼ fpi:

PL
l ¼ 1 p

l
irPig, which limits

the transmit power of SU i below Pi. Then, in the NEP, each
player i would aim to maximize his information rate
riðpi;p� iÞ by choosing a proper power strategy from Pi.
The solution to the NEP, also known as Nash Equilibrium
(NE), is a strategy profile p¼ pi

� �N
i ¼ 1, at which no player

can gain or achieve a larger rate by unilaterally changing
his strategy.
1 In the case that payoff functions are not fully known, learning
mechanisms can be used [12].
The above-mentioned (non-priced) NEP is built on the
selfish nature of the players and thus may lead to socially
inefficient NE in the sense that, at the NE, either some
global constraint is violated or overall system performance
is not good. Specifically, to protect PUs' communications in
the CRN, the SUs must satisfy the global interference
constraints

XN

i ¼ 1

XL

l ¼ 1

jglikj2plir Ik; k¼ 1;…;K ð2Þ

which restrict the interference caused by all SUs at each PU
k below the given threshold Ik. Each SU selfishly optimiz-
ing his own payoff would lead to violations of the global
interference constraints.

An effective way to tackle this issue is to introduce
pricing into NEPs and properly penalize players' selfish
behaviors. For each PU k, we can define the pricing
function zkðpÞ ¼

PN
i ¼ 1

PL
l ¼ 1 jglikj2pli� Ik, and associate

each pricing function zkðpÞ with a price λkZ0. Then, the
priced NEP can be mathematically formulated as

ðGλÞ:maximize
pi APi

riðpi;p� iÞ�λTzðpÞ; 8 i ð3Þ

where zðpÞ ¼ zkðpÞð ÞKk ¼ 1 and λ¼ λk
� �K

k ¼ 1. One can naturally
interpret λk as the price of violating the interference
constraint zkðpÞr0. Let giðpi;p� iÞ ¼ riðpi;p� iÞ�λTzðpÞ.
Then, the NE of Gλ is given by a point pn such that
giðpn

i ;p
n

� iÞZgiðpi;pn

� iÞ, 8piAPi for i¼ 1;…;N. By properly
choosing λ, the global interference constraints can be
satisfied at the NE pn. Therefore, one shall expect

λZ0; zðpnÞr0; λTzðpnÞ ¼ 0 ð4Þ
where the last condition simply says if the interference
constraint is satisfied then no pricing is needed. We term
Gλ and (4) a priced NEP and ðλn

;pnÞ the pricing equilibrium
(PE) if the price vector λn satisfying (4) at the NE pn of Gλn .
It was shown in [5,6] that the priced NEP approach leads to
a nice distributed network design.

3. Best-response and pricing algorithms

Searching the PE of a priced NEP includes actually two
parts: choose proper prices λ and find the NE of Gλ with
given λ, both depending on the properties of the strategy
sets, the payoff functions, and the pricing functions. For
the considered CRN we have the following properties: (1)
Pi is a convex compact set; (2) riðpi;p� iÞ is twice differ-
entiable and convex in pi for 8 i; (3) zkðpÞ is convex in p for
8k. We also introduce FðpÞ ¼ �∇pi

rðpÞ� �N
i ¼ 1 and

P ¼∏N
i ¼ 1Pi, where ∇pi

rðpÞ is the gradient of rðpÞ with
respect to pi. With the above properties, given any λZ0
the NEP Gλ is guaranteed to possess at least one solution
[5].

To solve the NEP Gλ with given λ, we introduce an
important concept called the strong monotonicity: FðpÞ is
strongly monotone on P if ðx�yÞT ðFðxÞ�FðyÞÞZαs‖x�y‖2
for 8x; yAP with a positive constant αs. To verify the
strong monotonicity of FðpÞ, let us define an N � N matrix
Φ with ½Φ�ij ¼ �suppAP‖�∇2

pipj
rðpÞ‖2 for ia j and ½Φ�ii ¼

infpAPλminð�∇2
pi
rðpÞÞ, where J � J2 de notes the spect-

ral norm and λminð�Þ denotes the minimum eigenvalue of
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a Hermitian matrix. Then, the strong monotonicity of F pð Þ
is implied by [13]: (C1) Φg0. Note that (C1) also guaran-
tees the solvability of the NEP Gλ as follows (the proof is
omitted and the interested reader is referred to [13] for
more details).

Lemma 1. Suppose that (C1) holds. Then, FðpÞ is strongly
monotone on P, and given any λZ0 the NEP Gλ has a unique
NE, which can be obtained by the best-response algorithm.

Remark. The best-response algorithm (BRA) simply lets
each player minimize his (priced) cost given the strategies
of the others in a prescribed order. For example, at each
iteration t the players could simultaneously update their

strategies pðtþ1Þ
i ¼ arg maxpi APi giðpi;p

ðtÞ
� iÞ, which, in the

CRN, is a convex problem and can be efficiently solved.
From Lemma 1, the BRA is guaranteed to converge to the
NE of Gλ provided Φg0. In CRNs, the BRA can be
implemented in a fully distributed manner since each SU
can locally measure the interference caused by the other
SUs. It has been verified [7] thatΦg0 is implied by Ψg0

with ½Ψ �ii ¼minljhl
iij4=ðσl

iþ
PN

m ¼ 1 jhlmij2PmÞ2 and ½Ψ �ij ¼ �
maxljhliij2jhljij2=ðσl

iÞ2 for ia j, which physically says that the
cross interference among the SUs is not very strong [5–7].
Upon the solvability of Gλ, the left question is how to set λ
such the conditions in (4) are satisfied. Let pnðλÞ denote the
NE of Gλ with given λ and let zðλÞ ¼ zðpnðλÞÞ. Then, a simple
but effective algorithm to optimize λ is as follows:

ðT1Þ:λðnþ1Þ ¼ λðnÞ þsnz λðnÞ
� �h i

þ
ð5Þ

where ½��þ denote the projection onto the nonnegative
orthant and sn is a positive step size. This algorithm admits
a natural interpretation: if at iteration n the global con-

straint is violated, i.e., zðλðnÞÞ40, then the players shall be
penalized with higher prices at the next iteration. Its
convergence depends on the following property of zðλÞ
(the proof is omitted and the interested reader is referred
to [14] for more details).

Lemma 2. Suppose that (C1) holds. Then, �zðλÞ is co-
coercive in λ, i.e., ðλ�ηÞT ðzðηÞ�zðλÞÞZαc‖zðλÞ�zðηÞ‖2 for
8λ;ηZ0 with a positive constant αc. Given 0osno2αc, T1
converges to a point satisfying the conditions in (4).

Remark. Lemmas 1 and 2 indicate that the PE of a priced
NEP can be achieved by T1 with the BRA embedded.
Particularly, in CRNs, T1 can be distributedly implemented.
Indeed, since each PU k may locally measure the inter-
ference generated by all SUs or equivalently zkðλðnÞÞ, he can
individually update λðnþ1Þ

k according to T1 and broadcast it
to all SUs, while the SUs use the BRA to solve the NEP Gλ
with given prices also in a distributed way.

4. Imperfect pricing with bounded uncertainty

A pivot in searching the PE is that the pricing function
zðλÞ is known. However, in many practical situations, zðλÞ
can only be imperfectly measured. For example, in CRNs, PUs
may not accurately measure the interference caused by SUs
exactly after the BRA converges. It is also difficult for SUs to
perfectly know the channels gik
l
to PUs, so the interference

that SUs mean to generate may not match the interference
measured by PUs [7]. Therefore, it is worthwhile to investi-
gate the impact of imperfect pricing in pricing NEPs.

For this purpose, we consider a disturbed pricing
function ẑðλðnÞÞ ¼ zðλðnÞÞþun at each iteration of the price
updating, where un is a disturbance or error vector
containing bounded uncertainty. Therefore, the practical
price updating follows:

ðT2Þ:λðnþ1Þ ¼ λðnÞ þsnẑðλðnÞÞ
h i

þ
: ð6Þ

Note that the goal of using pricing in NEPs is to meet the
global constraint zðλÞr0. This can be achieved by T1 using
perfect measure of zðλÞ, but may not be exactly satisfied by
the practical algorithm T2 using imperfect pricing. There-
fore, we shall study the influence of imperfect pricing.

4.1. Diminishing uncertainty

We first investigate the impact of diminishing uncer-
tainty, i.e., limn-1 Jun J ¼ 0. Let zðλÞ ¼ zðpnðλÞÞ with pnðλÞ
being the NE of Gλ. Let ðλn

;pnÞ be the PE of the pricing NEP
obtained by T1 and fλðnÞg1n ¼ 0 be the sequence generated by
T2. Then, we have the following result.

Theorem 1. Suppose that (C1) holds, 0osno2αc, and
limn-1‖un‖¼ 0. Then, lim infn-1‖zðλðnÞÞ�zðλnÞ‖¼ 0.

Proof. It follows from Algorithms T1 and T2 that

‖λðnþ1Þ �λn‖2 ¼ ‖½λðnÞ þsnẑ λðnÞ
� �

�þ �½λnþsnzðλnÞ�þ ‖2

r‖λðnÞ þsnẑðλðnÞÞ�λn�snzðλnÞ‖2

¼ ‖λðnÞ �λnþsnðzðλðnÞÞ�zðλnÞÞþsnun‖2

r‖λðnÞ �λnþsnðzðλðnÞÞ�zðλnÞÞ‖2þs2n‖un‖2

þ2sn Jun J Jλ
ðnÞ �λnþsnðzðλðnÞÞ�zðλnÞÞJ

ð7Þ
where the first inequality follows from the nonexpansive
property of the nonnegative projection. Using the co-
coercive property of zðλÞ in Proposition 2, we have
ðλðnÞ �λnÞT ðzðλðnÞÞ�zðλnÞÞr�αc‖zðλðnÞÞ�zðλnÞ‖2 and thus

‖λðnÞ �λnþsnðzðλðnÞÞ�zðλnÞÞ‖2

¼ ‖λðnÞ �λn‖2þs2n‖zðλ
ðnÞÞ�zðλnÞ‖2

þ2snðλðnÞ �λnÞT ðzðλðnÞÞ�zðλnÞÞ
r‖λðnÞ �λn‖2�sn 2αc�snð Þ‖zðλðnÞÞ�zðλnÞ‖2: ð8Þ

Since zðλÞ is convex, it is also Lipschitz continuous, i.e.,
‖zðλðnÞÞ�zðλnÞJrαl Jλ

ðnÞ �λn J for some constant αl40.
Hence, we have

JλðnÞ �λnþsnðzðλðnÞÞ�zðλnÞÞJr JλðnÞ �λn J

þsn JzðλðnÞÞ�zðλnÞJr ð1þsnαlÞJλðnÞ �λn J : ð9Þ
Combining (7)–(9), we obtain

‖λðnþ1Þ �λn‖2r‖λðnÞ �λn‖2þsnwnðλðnÞ;unÞ ð10Þ
where

wnðλðnÞ;unÞ ¼ sn‖un‖2�ð2αc�snÞ‖zðλðnÞÞ
�zðλnÞ‖2þ2ð1þsnαlÞJun J Jλ

ðnÞ �λn J : ð11Þ
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Fig. 1. Two scenarios of CR network: (a) six SUs and one PU and (b) six SUs and three PUs.
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Assume lim supn-1 wnðλðnÞ;unÞo0. Then, there exists an
integer m such that wnðλðnÞ;unÞo0 for 8nZm. Hence, we
have ‖λðnþ1Þ �λn‖2o‖λðnÞ �λn‖2 for 8nZm, which
implies that the sequence f‖λðnÞ �λn‖2gn converges, since
it is monotonically decreasing and lower bounded by zero.
Then, taking lim sup at both sides of (10), we have
lim supn-1wnðλðnÞ;unÞZ0, which contradicts with the
assumption. Thus, we have lim supn-1 wnðλðnÞ;unÞZ0,
which implies

lim inf
n-1

ð2αc�snÞ‖zðλðnÞÞ�zðλnÞ‖2

r lim sup
n-1

sn‖un‖2þ2ð1þsnαlÞJun J Jλ
ðnÞ �λn J : ð12Þ

Since limn-1 Jun J ¼ 0, 0osno2αc, and fλðnÞg1n ¼ 0 is
bounded, we obtain lim infn-1‖zðλðnÞÞ�zðλnÞ‖2 ¼ 0.□

Remark. Theorem 1 implies two consequences. First, the
uncertainty, even though diminishing, may have an accu-
mulated influence that impedes T2 from converging
exactly. Second, although one cannot expect zðλÞr0 is
exactly satisfied in practice, such a global requirement may
be approximately met by T2. Indeed, if at the PE
zðλnÞ ¼ zðpnðλnÞÞ ¼ 0 or λn40, then Theorem 1 reduces to
lim infn-1 JzðλðnÞÞJ ¼ 0. Thus, given any nZ0, there
always exists mZn such that zðλðmÞÞ ¼ 0. This means that
the sequence fzðλðnÞÞgn would fluctuate around zero, and
thus the global constraint zðλÞr0 can be (approximately)
satisfied. Indeed, this also implies that when the uncer-
tainty tends to zero, which corresponds to CSI becoming
more accurate (by using longer training sequences in
channel estimation or using more bits in CSI feedback),
the pricing mechanism and NE are still stable.

4.2. Undiminishing uncertainty

In this subsection, we would consider the situation
where uncertainty is bounded but not necessarily dim-
inishing. In this case, one may naturally expect that
undiminishing uncertainty possibly has a severer impact
than diminishing uncertainty. We show that this could be
true even if one uses a variable step size, for example a
diminishing step size, to be alleviate the influence of
undiminishing uncertainty.

Theorem 2. Suppose that (A1) and (C1) hold, Jun Jrε,
limn-1 sn ¼ 0,

P1
n ¼ 0 sn ¼1, and JλðnÞ �λn Jrd. Then,

lim infn-1 JzðλðnÞÞ�zðλnÞJr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εdα�1

c

p
.

Proof. Recall the definition of wnðλðnÞ;unÞ in (10) and
assume lim supn-1 wnðλðnÞ;unÞo0. Then, there exists an
integer m and a positive scalar θ such that wnðλðnÞ;unÞo
�θ for 8nZm. From (10), we have

‖λðnþ1Þ �λn‖2r‖λðnÞ �λn‖2�snθ

r⋯r‖λðmÞ �λn‖2�
Xn

i ¼ m

siθ: ð13Þ

which, given
P1

n ¼ 0 sn ¼1, implies ‖λðnþ1Þ �λn‖2o0 for a
sufficiently large n, resulting in a contradiction. Therefore,
we have lim supn-1 wnðλðnÞ;unÞZ0, which implies (12).
Considering that Jun Jrε and limn-1 sn ¼ 0, one can
obtain lim infn-1‖zðλðnÞÞ�zðλnÞ‖2rεdα�1

c .□

Remark. An example of diminishing step sizes is
sn ¼ s0ð1þcÞ=ðnþcÞ, where s0Að0;1� is the initial step size
and cZ0 is a fixed number. However, Theorem 2 indicates
that even if a diminishing step size is adopted, the negative
effect of undiminishing uncertainty in the pricing mechan-
ism will not vanish. The (approximate) satisfaction of the
global constraint is determined by the error bound. This is
in contrast with gradient-projection methods for convex
optimization problems, where the impact of bounded
uncertainty can often be removed by using diminishing
step sizes [15]. The fundamental reason is that the pricing
function zðλÞ is related to λ in an indirect and complicated
way (through the NE of a game) and the co-coercivity is
generally weaker than convexity.
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5. Numerical examples

We use several numerical examples to demonstrate
the pricing NEP framework for the CRN introduced in
Section 2. Suppose that there are N¼6 SUs (players) at the
vertices of a hexagonal cell, where each SU is a Tx–Rx link
over L¼8 subcarriers. The distance between each second-
ary Tx and Rx is identical and used as a unit, and the cell
radius is set to be 4 times of a unit. Then, we consider two
scenarios as shown in Fig. 1, where in scenario (a) there is
K¼1 base station (PU) at the center of the cell and in
scenario (b) there are K¼3 base stations (PUs). The
channels hij

l
and gik

l
are generated according to i.i.d. zero-

mean unit-variance Gaussian distributions. All SUs and
PUs operate on a bandwidth of 2 MHz. The power budget
is set such that SNR¼ Pi=σl

i is at 10 dB.
We first compare the pricing NEP with two different

network designs. One is a centralized method that max-
imizes the sum rate of all SUs subject to the global QoS
constraints. The other one is a standard NEP without
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pricing, in which each SU is restricted by individual QoS
constraints, whose interference limit is set to be Ik=N to
guarantee the global QoS for PU k. Figs. 2 and 3 show the
sum rates of three methods at different interference limits.
Both figures show that the pricing NEP provides almost the
same sum-rate performance as the centralized method
that generally requires high computational complexity and
signalling overhead. The pricing NEP also consistently
outperforms the standard NEP, although the latter one
does not need price updating. Therefore, the pricing NEP
provides a good balance between the global network
performance and signaling overhead as well as computa-
tional complexity.

Next, in Figs. 4 and 5 we show the iterations of the
perfect pricing (T1) and imperfect pricing (T2) with dimin-
ishing uncertainty in two scenarios over randomly chosen
channel profiles that satisfy (C1). The interference limit is
set to be I¼0.01. The diminishing uncertainty follows
un ¼ ð�1Þn=10n in scenario (a) and uk

n ¼ ð�1Þn=40n for
each PU k in scenario (b). One can observe from Figs. 4 and
5 that, for T2, the pricing function zkðλðnÞÞ ¼

PN
i ¼ 1

PL
l ¼ 1 j

glikj2pliðλ
ðnÞÞ� Ik (for each PU k) fluctuates at the initial stage

due to the relatively large uncertainty and finally approaches
zero when the uncertainty diminishes. Therefore, the global
QoS constraint is satisfied at zkðλðnÞÞ ¼ 0, which is consistent
with Theorem 1.

Finally, in Figs. 6 and 7 we show the iterations of the
imperfect pricing (T2) with a diminishing step size as well
as a constant step size, where uncertainty un is uniformly
distributed within ½�0:02;0:02� in scenario (a) and un

k
is

uniformly distributed within ½�0:01;0:01� for each PU k in
scenario (b). For both constant and diminishing step sizes,
the pricing function zkðλðnÞÞ tends to zero. However, for a
constant step size zkðλðnÞÞ keeps vacillating around zero.
For a diminishing step size zkðλðnÞÞ steadily approaches zero
and then stays within a small range around zero. This is
consistent with Theorem 2 that undiminishing uncertainty
has an accumulated effect on the pricing mechanism that
may not be fully eliminated by diminishing step sizes.
However, using diminishing step sizes is still helpful to
satisfy the global QoS constraint approximately.
6. Conclusion

We have studied pricing mechanisms with perfect and
imperfect measurements of pricing functions in noncoo-
perative games or NEPs to meet global constraints in CRNs.
The impacts of bounded uncertainty and price-updating
step sizes were investigated. We showed that diminishing
and undiminishing uncertainties have a bit different
impacts and the effect of the latter one cannot be elimi-
nated even using a diminishing step size. The whole
framework was demonstrated through CRN examples.
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