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In this work, we intend to design a robust coder, based on compressive sensing with
structurally random matrix, for encrypted images over packet transmission networks. The
proposed coder can be applied in the scenario that Alice needs a semi-trusted channel
provider Charlie to encode and transmit the encrypted image to Bob. In particular, Alice
first encrypts an image using globally random permutation and then sends the encrypted
image to Charlie who samples the encrypted image using a structural matrix. Through an
imperfect channel with packet loss, Bob receives the compressive measurements and
reconstructs the original image by joint decryption and decoding. Experimental results
show that the proposed coder can be considered as an efficient multiple description coder
with a number of descriptions against packet loss.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The traditional approach of transmitting an image via a
communication channel is to perform compression pre-
ceding encryption at the sender side; and to decrypt the
cipher-image followed by decompression at the receiving
side. However, consider a particular scenario in which
Alice needs to transmit an image to Bob but wants to keep
the image confidential to an untrusted channel provider
Charlie. This implies that Alice should encrypt the image
moderately and Charlie has to compress the encrypted
image without any knowledge of the cryptographic key. At
the receiving side, Bob performs both decompression and
decryption to reconstruct the original image.

Some works for compressing encrypted images have
been reported in recent years. A scheme for compressing
encrypted images using a 2-D source model and LDPC codes
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was developed in [1]. It is based on the finding that
encrypted data are as compressible as unencrypted ones by
considering the problem as distributed source coding. The
lossless compression of encrypted grayscale and color
images has been presented in [2], by decomposing the
image pixels into bit-planes. By applying the approach of [3]
to the prediction error domain, a better lossless compres-
sion performance on the encrypted grayscale and color
images is achieved [4]. A progressive compression approach
for processing an encrypted image has been suggested, in
which the decoder needs to study the local statistics of a
low-resolution image and then decodes the next resolution
level [5]. Meanwhile, the lossy compression of encrypted
images was also studied to achieve higher compression
ratios [3,6-10]. For example, based on the results of [3], a
practical model for compressing encrypted binary image
has been developed in [6]. Zhang proposed a novel scheme
for the lossy compression of an encrypted image at a flex-
ible compression ratio [7], in which a pseudorandom per-
mutation is used to encrypt the plain-image. Making use of
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the process of masking the original pixel values by a
modulo-256 addition with pseudorandom numbers, Zhang
et al. further proposed a scheme for the scalable coding of
encrypted images [8]. In [9], the compression is performed
on an encrypted image with multi-layer decomposition.
Zhou et al. designed an efficient encryption-then-
compression scheme for images via error clustering, in
which both lossless and lossy compressions were con-
sidered [10]. They also designed a novel scalable compres-
sion method for stream cipher encrypted images through
Context-Adaptive Sampling [11]. The above-mentioned
approaches of compressing encrypted images are not sui-
table for high packet loss transmission in non-feedback
systems, since the resultant coded streams have sub-
stantially unequal importance such that the loss of some
codewords may cause severe error propagation and results
in unsatisfactory decoded result.

Multiple description coding is a common approach to
deal with packet loss during transmission. In general, a
multiple description coder generates two or more sub-
streams referred to as descriptions. The packets of each
description are transmitted over multiple disjoint paths.
After receiving each description, the decoder is able to
perform a low-quality reconstruction. If all the descriptions
have been received, the reconstruction quality is the best.
Such a protocol allows a channel with network congestion
or packet loss to perform the decoding at the expense of
reconstruction quality. Multiple description coding of nat-
ural images has been extensively studied in [12-15], where
spatial correlations are often eliminated by using sparse
transforms like DWT. However, they are not suitable for
encrypted images since sparse transforms are nearly inef-
fective on encrypted images due to the low correlation
between the pixels. A multiple description coder especially
designed for encrypted images is rarely reported so far.

As stated above, the robust coding of natural images
and the effective compression of encrypted images have
been studied individually in recent years. However, little
work has been done in the robust coding of encrypted
images. The existing results in these two individual
research areas cannot be combined directly for the robust
coding of encrypted images. This is because the robust
coding of natural images relies on the elimination of spa-
tial correlations using sparse transforms such as discrete
wavelet transform (DWT), which is ineffective to encryp-
ted images due to the weak correlation between encrypted
pixels. Moreover, the compression of encrypted images
always generates code streams with different significance.
If one or more such streams are lost, the quality of the
reconstructed images may drop substantially or decoding
error may exist, which violates the goal of robust coding of
encrypted images. Consider the scenario that Alice needs
the semi-trusted channel coder Charlie to transmit an
encrypted image to Bob. When a high packet loss is
encountered in the channel between Charlie and Bob,
Charlie should first encode the encrypted image for error
control. This motivates us to explore a multiple description
coder aiming at the robust coding of encrypted images. In
this work, we design such a coder based on compressive
sensing (CS) with a structurally random matrix (SRM). The
proposed coder is comprised of three parts: permutation-

based encryption by Alice, encoding using structural
matrix (SM) by Charlie, and joint decryption and decoding
by Bob. In particular, Alice first encrypts an image using
globally random permutation and then sends the encryp-
ted image to the semi-trusted channel encoder Charlie
who samples the encrypted image using a structural
matrix. Through a channel with high packet loss, Bob
receives the compressive measurements and reconstructs
the original image by joint decryption and decoding.
Moreover, we discuss the relationship between our
approach and existing algorithms and describe two other
cryptographic applications of SRM. In the performance
evaluation, we explore the relationship between packet
loss rate and sampling rate and then introduce a feasible
quantization approach to the compressive measurements
of encrypted images. Finally, we investigate the robustness
of the proposed coder at different parameter settings. It is
verified that the proposed coder can be regarded as an
efficient multiple description coder with a number of
descriptions against packet loss.

The rest of this paper is organized as follows. Section 2
is a brief review of the theory of CS using SRM. In Section
3, the robust coding of encrypted images based on CS with
SM is proposed. Further discussions can be found in Sec-
tion 4 while the performance evaluation is reported in
Section 5. Finally, we conclude the paper with some
remarks in Section 6.

2. Compressive sensing by structurally random matrix

The fundamental Shannon/Nyquist sampling theory is
widely accepted as the keystone in signal acquisition and
reconstruction. It governs the sampling process from the
perspective of signal bandwidth. Nevertheless, the number
of required measurements can be so large that the storage
becomes unbearable and the acquisition time can be very
long. Compressive sensing [16,17] is a new sampling the-
ory which allows the exact recovery of a sparse signal from
a few linear projections lower than the Nyquist rate. The
underlying property of CS is the sparsity of interest. A
signal x of length N is said to be K-sparse or compressible
if it can be well approximated using only K<N coefficients
over some sparsifying basis ¥ as follows:

x=Ws, (@)

where s is the transform coefficient vector that contains at
most K significant nonzero entries. Compressive sensing
theory indicates that X can be acquired by the following
random measurement:

y= (I)X, (2)

where @ is a M x N(M < N) random measurement matrix
and y represents the measurement coefficient vector. X can
be faithfully recovered from only M= O(K log N) mea-
surements through [;-minimization

min ||s]|; s.t.y=DPWs, 3)

where the measurement matrix @ should be highly
incoherent with the sparsifying basis W.
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The design of an efficient measurement matrix is still a
big challenge in CS. Do et al. [18] introduced a fast and
efficient measurement matrix for practical CS. The matrix
is called a structurally random matrix (SRM), which, in
many aspects, outperforms the existing popular sensing
matrices such as Gaussian, Bernoulli and Fourier matrices
[19-21]. Gaussian and Bernoulli matrices require high
computation complexity and huge memory buffering due
to their completely unstructured nature while Fourier
matrix works well only if the sparsifying basis is an
identity matrix. Do et al. also pointed out that SRM pos-
sesses the following features: optimal or near-optimal
sensing performance; universality; low complexity; hard-
ware/optical implementation friendless. In particular, it is
defined as a product of three matrices

N
- \/%DFR 4)

where Re RV s either a uniform random permutation
matrix or a diagonal random matrix whose diagonal entries
are Bernoulli random variables. Fe RN*N represents an
orthonormal matrix that is selected among popular fast
computable transforms such as Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT) and Walsh-Hada-
mard Transform (WHT). D € R¥*N is a subsampling operator
selecting a random subset of rows of the matrix FR. Inter-
ested readers can refer to [18] for more details on SRM.

3. Robust coding of encrypted image via structural
matrix

Compressing encrypted images is a big challenge due to
the fact that an effective encryption algorithm must have
already removed or lowered the correlation among neigh-
boring image pixels to increase the entropy. However,
classical image compression schemes like JPEG 2000 always
make use of the high correlation and non-uniformity of
image pixels. Some lightweight encryption techniques only
permute the pixels or mask the pixel values by a keystream.
As a result, the encrypted image may still be compressed to
certain extent by leveraging some particular coding tech-
niques [1-11]. The lightweight encryption schemes are
usually not secure enough, but they are employed in some
specific application scenarios. The proposed scheme does
not aim at improving the compression performance on
encrypted images but focuses on designing a robust coder
for the transmission of encrypted images over a channel
with high packet loss rate.

The proposed coder is based on SRM. The basic idea is
to split the measurement matrix ®=,/N/MDFR in
(4) into two matrices: the matrix R and the matrix
+/N/MDF. R is a random permutation matrix which can
serve as a lightweight encryption tool while /N/MDF can
be considered as a new measurement matrix in the pro-
posed coder. First, Alice encrypts an image using R and
then sends the encrypted image to the channel coder
Charlie who samples the encrypted image using /N/MDF.
Through a high packet loss channel, Bob receives the
compressive measurements and reconstructs the original
image by joint decryption and decoding using /N/MDFR,

as illustrated in Fig. 1. The random permutation R is con-
structed from a secret seed known to both Alice and Bob.
The robust coding of encrypted images by structural
matrices is composed of three steps: permutation-based
encryption by Alice, encoding using structural matrix by
Charlie, and joint decryption and decoding by Bob.

3.1. Permutation-based encryption by Alice

The encrypted image is obtained by applying random
spatial permutation on the image. Alice converts the ori-
ginal image X of size N; x N, into a vector X with length
N =N; x N;. Then she encrypts x to the cipher sequence
Xen by applying a random permutation matrix R e RNV,
governed by

Xen = RX. (©)

Xen is rearranged into a 2-D cipher image Xe;, which is
then sent to Charlie who obtains the encrypted sequence
Xen by arranging X.,. The conversion between vector and
matrix is known to both Alice and Charlie. The random
permutation matrix R is a binary matrix in which each row
or column has exactly one and the rest are all zero. It is
generated by a pseudo-random generator with initial
random seed shared between Alice and Bob. The reader
may refer to [22,23] for more illustrations on the encryp-
tion methods based on permutation matrix. It should be
noticed that permutation-based decryption is performed
by multiplying the cipher image with the inverse permu-
tation matrix. Interestingly, it is not necessary to invert the
matrix since the inverse matrix is obtained by transposing
the permutation matrix itself, i.e, R~! = R”. The key space
is N! so that it is not likely for Charlie to launch a brute
force search when N is sufficiently large. Permutation-
based encryption cannot hide the statistical information of
the original image due to its unaltered histogram. In spite
of this, it can still be employed in applications where high
secrecy is not a must.

3.2. Encoding using structural matrix by charlie

After the encrypted image has been received, Charlie
constructs a special measurement matrix to sample it. This
matrix is tailored to the encrypted image and is called
structural matrix (SM). It is governed by

N
A= \/%DF, (6)

where D and F are as described in (4). Encoding using SM
is expressed as

y= Axen- (7)

Obviously, SM is derived from SRM due to the fact that
y = AXep = /N/MDFX,, = /N/MDFRx = ®x. The scenario
that SM is applied for permuted or encrypted images is the
same as that SRM is employed for spatial images. Struc-
tural matrix is expediently selected among some popular
computable matrices such as FFT, SCT, WHT or their block
diagonal versions. The M rows are extracted at random
from SM. These matrices have stable structures like SRM
and they outperform Gaussian and Bernoulli matrices in
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Fig. 1. A block diagram of the proposed coder.

terms of computational complexity and memory require-
ment. It can be easily inferred that the performance of SM
measuring the encrypted image is the same as that of SRM
sampling the original image. It has been mathematically
proved in [18] that entries of ARW asymptotically form a
normal distribution A(0,62), where W is an arbitrary
orthonormal matrix and ¢ <O(3), under some mild
assumptions: F is an unit-row matrix whose entries have
absolute magnitude in the order of 62 < O(+;) and the sum
of entries in each row is equal to zero; W is an unit-norm
column matrix with entries having maximal absolute
magnitude in the order of O(1) and the average sum of
entries in each column in the order of 62 <O(}). The
entries in each row of F and each column of ¥ are not all
equal. Do et al. also found that SRM supports block-based
models with high incoherence between FR and W. It
should be noticed that the randomization D can induce a
new application scenario, which will be described later.

3.3. Joint decryption and decoding by Bob

At the receiving side, Bob obtains the compressive
measurements y and applies joint decryption and decod-
ing to recover the original image using the following
algorithm:

min |s|l; s.t.y=ARWYs= \/gDFR‘I’s 8)

As a result, x = Ws. The recovery criterion has been stated
in [18]: with a probability of at least 1—6, the sensing
framework using SRM can exactly recover K-sparse signals
if M > O(8K log2% , where B is the block size. Theoretically,
this guarantees the capability of SM in encoding the
encrypted image.

4. Further discussions

In some references [24-27], CS was applied for natural
image coding but this is not an appropriate approach in
terms of compression efficiency [28]. Nevertheless, in view
of the robustness property of multiple description coder,
CS can be a good candidate [15,29,30]. A representative
work was presented by Deng et al. in [15], in which the
compressive measurements can be viewed as a number of
descriptions mainly because of their democracy properties.
If the measurement matrix follows the Gaussian

distribution, each CS measurement possesses a similar
amount of information of the original signal [31]. Specifi-
cally, the sampling is performed on the frequency coeffi-
cients generated by two-dimensional DWT and at the
decoding side, two different recovery algorithms are
developed for the low-frequency and high-frequency
subbands, respectively, by fully exploiting the intra-scale
and inter-scale correlation of multiscale DWT. Although
experimental results showed that this CS-based codec is
much more robust for lossy channels in comparison with
existing CS-based coding schemes [15], it is not suitable for
processing encrypted images. This is because the efficiency
of sparse transforms like DWT mainly depends on strong
correlation between pixels, which must be weakened by
the encryption process, even if a lightweight one is
employed.

CS-based compression of encrypted image has been
explored in only two references [32,33], both of which
aimed at the linear transformation encryption operations.
Both coders adopt the block-to-block structure which pos-
sesses a straightforward advantage, i.e., parallel CS encoding
and decoding. Unfortunately, such a block encryption
manner suffers from three drawbacks. Firstly, individual
block operation makes the cipher more insecure than global
image transform. In order to enhance the security, different
blocks may be endowed with different keys and more keys
need to be transmitted. Secondly, a plain image is divided
into a number of non-overlapping blocks having different
statistical features and unequal significance. When these
blocks are individually sampled, the measurements have
unequal significance. As a result, both coders cannot be
considered as efficient multiple description coders. Thirdly,
blocking artifact cannot be avoided. In addition, a random
matrix is chosen as the measurement matrix. In practical
sensing applications, this is costly as very high computa-
tional complexity and huge memory buffering are required
due to the completely unstructured nature of the matrix
[21]. The proposed coder does not suffer from the above
drawbacks. Global permutation is a common lightweight
image encryption technique which is more secure than
individual block permutation. The random permutation R
relocates all the pixels globally. It destroys the image
structure and converts a meaningful image into one look
like white noise [18]. The structural matrix A in sampling
the permuted image supports block processing, meaning
that parallel CS encoding can be applied. R disperses the
energy of the whole image and F further spreads the energy
over all the measurements. Consequently, the sampled
measurements obtained by SM roughly have the same
significance. The proposed coder is a multiple description
coder with a number of descriptions whose capability in
resisting against packet loss is verified in the next section.
There is no blocking artifact as a unified decoder is used to
reconstruct the whole image. Compared with random
matrix, SM facilitates fast computation and low-complexity
electronic or optical implementation.

It is worth mentioning that SRM also induces two other
applications related to coding and encryption due to the
randomness of R and D. The first application is illustrated in
Fig. 2(a). Alice still permutes the image with R while Charlie
can further encrypt the permuted image with DF. This is
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Fig. 2. Two other applications of SRM.

because the matrix D is a random selection operation which
can serve as a secret key shared between Charlie and Bob.
Another application is the direct encryption by Alice using
DFR, as shown in Fig. 2(b). Both applications can be con-
sidered as joint coding and encryption schemes. The size of
the key space due to D is given by the combinatorial number
(M). It seems that the current size of key space upgraded as
N!+ (™) is sufficiently large to resist brute-force attack.
Unfortunately, the encryption schemes based on CS with SRM
is probably insecure against some potential attacks such as
known-plaintext attack and chosen-plaintext attack due to its
linearity [34]. As a consequence, the security level of CS needs
to be analyzed. For example, a low-complexity multiclass
encryption scheme has been designed in [35,36], which
possesses strong resistance against known-plaintext attacks.

5. Performance evaluation

Our simulation settings are similar to those using SRM
[18]. Four natural images of size 512 x 512 including Lena,
Peppers, Boat and Goldhill are used for testing. The sparsi-
fying basis W is Daubechies 9/7 wavelet transform. The
reconstruction algorithm is GRSR in [37]. R and D are
generated using MATLAB commands and F is chosen as
block diagonal DCT (BDCT) and block diagonal WHT
(BWHT). The packet size is set to 100 unless specified. We
first explore the relationship between packet loss rate and
sampling rate and then describe a feasible quantization
approach for the compressive measurements of encrypted
images. Finally, the robustness of the proposed coder at
different parameter settings is investigated.

5.1. Relationship between packet loss rate and sampling rate

The compressive measurements y of length M can be par-
titioned, at equal intervals, into a number of packets. Each
packet carries a similar amount of information of the original
image since all the measurements have roughly equal impor-
tance. If a packet contains m measurements, there are [M/m]
packets in total. Lost packets always occur randomly and Bob
will update D according to the received packets. We denote
packet loss rate as PLR which can be up to 30% in real cases
[38]. The sampling rate (SR) is defined as SR=M/N. For
example, if M=157290 and m=100, then SR=[157,
290/51221=0.60 and the number of packets is [157,
290/1001 = 1573. If PLR=0.20, the number of lost packets is
1573 x 0.2 = 315 and the number of received packets is 1258.
In other words, Charlie sends 5122 measurements and Bob
receives about 125,800 measurements among them. This is
similar to the case that the sampling rate is changed to
SR = 125,800/5122 = 0.48. In fact, this equivalence is rea-
sonable due to the roughly equal importance of the measure-
ments. This example inspires us a relationship between SR
and PLR.

In general, for a given SR=a (O<a<1), PLR=p
(0<f <023) is basically equivalent to SR=a(1—f). This
can be verified in Fig. 3, where BDCT32 and BWHT32
corresponding to the solid line and the dashed line,
respectively, mean that each sub-matrix in the diagonal of
F has a size of 32 x 32. It can be observed that the effects
of BDCT and BWHT are consistent since each pair of solid
and dashed lines coincides with each other while other
conditions are identical. The value of SR is set as SR= 0.6 in
Fig. 3(a). PLR=f in Fig. 3(a) corresponds to SR=0.6 x
(1—p) in Fig. 3(b). A comparison between Fig. 3(a) and
(b) shows that the former PSNR roughly coincides with the
latter one. Both starting points have the same PSNR value,
i.e., PLR=0 in Fig. 3(a) and SR=0.6 in Fig. 3(b). However,
with the increase of PLR and the reduction of SR, the PSNR
value of the former is sightly lower than that of the latter.
There are three factors causing this difference: (i) Weak
correlations exist between adjacent measurements. The
amount of information of the whole packet containing m
successive measurements is gracefully greater than that
provided by the m randomly sampled measurements; (ii)
After packing the measurements, the number of mea-
surements m’ in the last packet is less than m as long as M
is not divisible by m. The last packet will not be lost with
high probability (1-§) such that the actual
SR=am([M/m|(1-F)—1)+m)/M<a(1-p). (ii) The
rounding effect of [M/m]f possibly results in the actual
PLR=round([M/m] - §)/[M/m] > . Revealing such a
connection of PLR and SR helps to adjust the SR according
to the PLR in real-time transmission. Bob distinguishes the
PLR according to the received packets and then feeds back
to Charlie who adjusts the SR to guarantee a certain PSNR
value for the image received by Bob.

5.2. Quantization of compressive measurements of cipher
image

When the compressive measurements are transmitted
over a communication channel, they need to be efficiently
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quantized and encoded. Therefore, the measurements' sta-
tistics are required and an optimal quantizer should be
tailored to the measurements for minimizing the amount of
distortion during reconstruction. The statistical distribution
of compressive measurements obtained by SRM has been
well studied [39]. It has been pointed out that the encryp-
tion performed by a random permutation on the pixel
indices makes the measurements suitable for quantization
by causing the measurements’ distribution roughly normal.
The measurements obtained by applying SM to the

a

PSNR (dB)

—*— Boat-BDCT32
A - Boat-BWHT32
Peppers-BDCT32
Peppers-BWHT32 N i
—*— Lena-BDCT32
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0.1
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Fig. 3. PSNRs of the reconstructed images with respect to (a) PLR; (b) SR.

a

Cc

207

encrypted image approximately yield a Gaussian distribu-
tion. This is also observed in Fig. 4, which depicts the his-
tograms of various encoded images in different cases.

A uniform scalar quantization is employed to round
each entity of y to the nearest integer. The difference in
distortion caused by the round-off is extremely subtle, as
shown in Tables 1 and 2. Moreover, we can observe from
Fig. 4 that the measurement values roughly lie between
—150 and 150. The farther the measurement value devi-
ates from zero, the fewer the number of measurements are
required. Our quantization method only reserves and
rounds the values located within the interval
[—127.5,127.5). Others are discarded due to two reasons:
(i) The discarded measurements make up only a low pro-
portion, marked as y, of the whole measurements. Fig. 5
lists the values of y at different parameter settings. y is
basically smaller than 0.0055, which implies that either
the PLR rises slightly to PLR = #+y or the SR drops a small
portion ay by the reason of the approximately equal
importance among the measurements; (ii) The reserved
measurement values can be one-to-one mapped to the
interval [0, 255] through adding 128 to every value. The
integers in [0, 255] not only can be fully represented by 8-
bit numbers, but also match with the common-adopted
256 grayscales in the images. After the encoding process is
completed, an image can still be stored in 8-bit format,
which leads to great convenience in practical usage.

The quantization distortion is caused by two factors:
the decimal round-off and the proportion of discarded
measurements. The first factor is insignificant, as justified
by the data listed in Tables 1 and 2 while the second one is
the same because y is basically smaller than 0.0055. It can
also be justified by the rate-distortion curves plotted in
Fig. 6, in which the dashed and solid lines correspond to
cases with and without quantization, respectively. These
two lines are almost identical and they indicate that the
proposed quantization method works well.

Table 1
PSNR versus round-off and without round-off (Lena, SR=0.6, BDCT32).

PLR 0 005 010 015 020 025 030

Round-off 3718 36.37 3554 3459 3379 3316 3215

Without 3722 3637 35.66 34.61 34.00 3325 32.34
round-off

Difference 0.04 0.00 012 0.02 021 0.9 019
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Fig. 4. Histograms of the encoded images for the cases: (a) Lena, SR=0.8, BDCT32, PLR=0.05; (b) Peppers, SR=0.6, BWHT32, PLR=0.10; (c) Boat, SR=0.8,

BDCT32, PLR=0.15; (d) Goldhill, SR=0.6, BWHT32, PLR=0.20.
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Table 2
PSNR versus round-off and without round-off (Lena, SR=0.8, BWHT32).

PLR 0 005 010 015 020 0.25 0.30
Round-off 40.96 39.27 3821 36.82 3570 34.69 33.96
Without 41.01 39.54 38.34 36.82 35.72 35.02 34.00
round-off
Difference 005 027 013 0.00 002 033 004
a
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Fig. 5. The values of y versus PLR for (a) SR=0.6; (b) SR=0.8.

5.3. Robustness

When the proposed coder is used in a packet network,
the robustness is directly related to PLR and SR. Figs. 7,
8 and 9 show some reconstructed Lena and Peppers ima-
ges at different values of SR and PLR. It can be observed
that most of the visual information of the original images
can be recovered even when SR=0.2 and PLR=0.3. This
demonstrates that the proposed coder possesses high
robustness against packet loss. Besides, the coder does not
result in blocking artifacts. In the aforementioned experi-
ments, the packet size is set to 100 while the block size of
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Fig. 6. Rate-Distortion performance of the quantization for (a) SR=0.6,
BDCT32; (b) SR=0.6, BWHT32.

SM is 32 x 32. In fact, the robustness is more or less related
to both values.

As analyzed previously, there are three factors causing
the PSNR difference in exploring the relationship between
SR and PLR. Yet these factors arise from the packet size m.
Intuitively, with an increasing m, the PSNR value descends
to some extent. This conjecture is justified by Fig. 10,
where the parameter settings are SR=0.6 and PLR=0.3.
The smaller the packet size, i.e., the more the number of
descriptions, the better the reconstructed image quality is.
Naturally, the best case is that each measurement forms a
description. When the packet size is between 0 and
3 x 10*%, the PSNR value drops with the reduction in the
number of packets. However, when the packet size is lar-
ger than 3 x 10%, the PSNR virtually has no change. This is
because that the number of packets is basically reduced to
two and remains unchanged. If one of these two packets is
lost, it means that half of the successive measurements are
sampled. This successional sampling violates the ran-
domness of the down-sampling operator D. The analyses
indicate that if the transmission channel allows a small
quantity of descriptions and the PLR is too large, for
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Fig. 7. The reconstructed images and their PSNR values under SR=0.8: (a) PSNR=35.7965, PLR=0.2, BWHT32; (b) PSNR=33.8944, PLR=0.3, BWHT32;

(c) PSNR=35.2942, PLR=0.2, BDCT32; (d) PSNR=33.2762, PLR=0.3, BDCT32.

Fig. 8. The reconstructed images and their PSNR values under SR=0.5: (a) PSNR=32.6432, PLR=0.2, BWHT32; (b) PSNR=31.2287, PLR=0.3, BWHT32;

(c) PSNR=32.0629, PLR=0.2, BDCT32; (d) PSNR=30.7208, PLR=0.3, BDCT32.

-

Fig. 9. The reconstructed images and their PSNR values under SR=0.2: (a) PSNR=26.2722, PLR=0.2, BWHT32; (b) PSNR=25.4766, PLR=0.3, BWHT32;

(c) PSNR=26.1835, PLR=0.2, BDCT32; (d) PSNR=24.9015, PLR=0.3, BDCT32.

instance, only two descriptions and PLR > 0.3, the pro-
posed coder cannot be regarded as an efficient multiple
description coder. In order to fix this problem, Charlie has
to improve the SR. Consider an extreme scenario that
SR=1, i.e., full redundancy without compression, the
encoding process is changed to y = FX.,. Such an encoder
cannot be guaranteed by the theory of SRM and a great
many successive measurements’ loss will substantially
affect the quality of the reconstructed image. Fortunately, a
solution has been developed to cope with this scenario.
Associating a realization of down-sampling operator D
that truncates the first or M randomly selected elements
after arbitrarily permuting the signal, Charlie introduces a
new random permutation R’ known by Bob. The present

encoding form is y =R'FX.;. When a packet containing
many successive measurements is lost, Bob receives the
information y = fR'FX,,. Let D' = SR’, which can be con-
sidered as a down-sampling operator, then §y = D'FX¢,. In
other words, the PLR is the very SR. Even if PLR=0.8, which
is equivalent to SR=0.8, the reconstructed image quality is
still visually acceptable.

The purpose of having the measurement matrix in a
block mode is to reduce storage space and computational
complexity at the cost of a lower quality of the recovered
signal. In the proposed coder, we investigate PSNR versus
the block size of SM when SR=0.6 and PLR=0.05, as
shown in Fig. 11. The greater the block size, the higher the
PSNR is. However, the rate of increase is quite slow.
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Meanwhile, a larger block size of SM needs more memory
and consumes more resources. Consequently, a trade-off
between them is required. In general, the block size of SM
is set as 32~256.

In the end, it is worth mentioning that in the above
three types of experiment including the relationship
between packet loss rate and sampling rate, the quanti-
zation of compressive measurements of cipher image and
the robustness, a great number of natural images have
been tested to draw unanimous results.

6. Conclusion

A novel and robust coder for processing encrypted
images against packet loss has been designed. It is differ-
ent from the existing approaches of the robust coding of
natural images and the compression of encrypted images.
The proposed coder based on SRM is composed of three
parts: permutation-based encryption by Alice, encoding
with structural matrix by Charlie, and joint decryption and
decoding by Bob. In addition, we have investigated the

relationship between the proposed and the existing
methods. Two other cryptographic applications of SRM
have also been suggested. In the performance evaluation,
we have explored the relationship between packet loss
rate and sampling rate. A feasible approach for quantizing
the compressive measurements of encrypted images has
been introduced. Finally, we have investigated the
robustness of the proposed coder at different parameter
settings. It has been verified that our coder can be con-
sidered as an efficient multiple description coder with a
number of descriptions to resist packet loss.
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