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A RELIABILITY INDEX (ai)  

THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS 

Abstract 

The performances of six major indices of inter-coder reliability were evaluated 

against actual judgments of human coders in a behavior-based Monte Carlo (BMC) 

experiment. The correlations between the indices’ estimated chance agreements (ac) and the 

observed chance agreements (oac) turned out to be negative for Cohen’s κ, Scott’s π and 

Krippendorff’s α, and mild although positive for Bennett et al’s S, Perrault and Leigh’s Ir and 

Gwet’s AC1. While each of the indices was designed to improve on percent agreement, each 

underperformed percent agreement (ao) when estimating observed true agreement (at) in the 

BMC experiment. 

The poor or negative correlations between the calculated estimates and the observed 

estimands question the validity of the estimators, namely the indices. The findings support 

the emerging theory that reliability indices available today assume dishonest coders who 

deliberately maximize chance coding, and they are therefore unsuitable for typical studies 

where coders perform chance coding involuntarily when the task is too difficult.  A new 

index or indices are needed.  

This manuscript also reports the effort to develop such a new index, agreement index 

(ai), which assumes honest coders and involuntary chance coding. Subsequent analysis shows 



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   4 
 

that ai is void of the 23 known paradoxes that plague other indices. In the BMC experiment, 

the chance agreement estimated by ai was by far the best predictor of the observed chance 

agreement between coders. Index ai also outperformed percent agreement and all other six 

indices while predicting true agreements among the coders.  

Empirical testing of theories and indices should continue, especially by different 

researchers using different methods, and so should the search for a better index.  Until better 

evidences are available, however, researchers may refrain from using κ, π, and α, and add ai 

as a reasonable measure of true agreements between two coders on a nominal scale. Online 

software has been provided at http://reliability.hkbu.edu.hk/ to facilitate calculation. 

Key words: reliability, intercoder reliability, interrater reliability, agreement index, 

estimator, estimate, estimand, maximum randomness, variable randomness, behavioral 

Monte-Carlo experiment, BMC, simulation-augmented behavior experiment, SAB, kappa, 

alpha, pi.  
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A RELIABILITY INDEX (ai)  

THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS 

 

Indices of intercoder reliability have been often used to assess the quality of 

communication content studies. Researchers in other fields, such as psychology, education, 

sociology, and medical research, often use the same indices, where they were also referred to 

as interrater reliability or agreement indices.   

Methodologists, however, disagreed over which index(es) of reliability are 

appropriate for general use.  While Cohen’s κ is by far the most popular across disciplines, 

many authors pointed out that it makes unrealistic assumptions about coder behavior, and 

therefore produces many paradoxes when used in typical research (Feinstein & Cicchetti; 

1990; Grove, Andreasen, McDonald-Scott, Keller, & Shapiro, 1981; Lombard, Snyder-Duch, 

& Bracken, 2002; Zhao, 2011a; Zhao, Liu, & Deng, 2012b).  

Scott’s π (1955) is the second in popularity, and Krippendorff’s α (1970a, 1980) has 

been regarded by communication researchers as the most sophisticated (Hayes & 

Krippendorff, 2007; Krippendorff, 2004b).  But some argued that π and α make as many 

unrealistic assumptions and produce as many paradoxes as κ (Lombard et al., 2002; Zhao, 

2011b; Zhao et al., 2012b).  A Monte Carlo simulation found that the three indices behave 

almost identically to each other under many conditions (Feng, in press).  A recent review of 
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22 indices found none of the existing indices satisfactory, and new indices based on more 

realistic assumptions were called for (Zhao, Deng, Feng, Zhu, & Chan, 2012a; Zhao et al., 

2012b).  

This manuscript begins with a brief review of the known limitations of the existing 

indices. I will then report an experiment using real human coders, which was also augmented 

by Monte Carlo simulation techniques, to empirically test these theories and criticisms. I will 

report that the major indices performed poorly, supporting the theories behind the criticism 

and the call for a new index that assumes more realistic coder behavior.   I will report the 

efforts to develop such a new index, called agreement index (ai).  I will report that ai is void 

of the known paradoxes, and it outperformed each major index in estimating the observed 

true chance agreement or the observed true agreement among human coders, who 

participated in the behavior-based Monte Carlo (BMC) experiment. 

 

I. Available Indices and the Need for a New Index 

Since Benini (1901), two types of intercoder reliability indices have been introduced.  

The first is the non-adjusted indices, including percent agreement (ao, pre 1901), Holsti’s CR 

(1969), Osgood’s coefficient (1959) and Rogot and Goldberg’s A1 (1966). These indices 

assume that observed agreement contains no random chance coding, hence no need to adjust 

for it.  As random chance coding is seen as given, many considered percent agreement “the 
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most primitive” (Cohen, 1960, p. 38), “inadequate” (Hughes & Garrett, 1990, p. 193), and 

“flawed” (Hayes & Krippendorff, 2007, P. 80). There has been a consensus among reliability 

experts that “percentage agreement should not be used … as an intercoder reliability 

estimation” (Hughes & Garrett, 1990, p. 187), leading to decades-long efforts to “account for” 

and “remove” chance agreement (Krippendorff, 1980, pp. 133-134; Riffe, Lacy, & Fico, 1998, 

pp. 129-130; Rust & Cooil, 1994, p. 2). 

The second type is chance-adjusted indices.  While the efforts to consider chance 

have been widely applauded, some authors argued or hinted that these indices’ assumptions 

of coder behavior may be unrealistic (Grove et al, 1981; Lombard, Snyder-Duch, & Bracken, 

2002; Riffe, Lacy & Fico, 1998, 2005; Rust & Cooil, 1994).  These indices assume that 

coders deliberately maximize random chance coding, and limit honest coding to occasions 

dictated by chance, according to analyses by Zhao, Liu and Deng (Zhao, 2011a&b; Zhao et 

al., 2012b). 

The chance-adjusted indices include three subgroups.  The first is category-based 

indices.  These indices assume that, as the number of categories increases, chance agreements 

decrease, and reliability increases, producing a classic paradox -- “empty categories increase 

reliability” (Scott, 1955; Zhao et al., 2012b).   

Indices in the second subgroup estimate chance agreement as a function of 

distribution, which medical researchers refer to as “prevalence” (Feng, in press; Gwet, 2010; 
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Shrout, Spitzer, & Fleiss 1987; Spitznagel & Helzer, 1985).  Some of these distribution-based 

indices are among the most popular, including Cohen’s κ, Scott’s π, and Krippendorff’s α.  

While some consider this subgroup, especially α, the most sophisticated (Hayes & 

Krippendorff, 2007; Krippendorff, 2012), others argued that relying on distributions implies 

uncomfortable assumptions, e.g., coders apply pre-determined quotas (Zhao, 2011a,b; Zhao 

et al., 2012b).  Consequently, π, κ and α produce more paradoxes and abnormalities than 

most of the other indices (Brennan & Prediger, 1981; Gwet, 2008, 2010, 2012; Zhao, 

2011a&b; Zhao et al., 2012b). 

The third subgroup has just one index, Gwet’s AC1, which is based on both category 

and distribution.  The double base limits but not eliminates the negative impacts of 

distribution-related assumptions.  The double base also brings back the troublesome impact 

of the category-related assumptions that the distribution-based indices successfully avoided 

(Zhao et al., 2012b). 

A growing number of authors pointed out that chance agreement is affected by 

difficulty -- the higher difficulty leads to more chance coding, hene more chance agreement 

(Grove et al, 1981; Gwet, 2008, 2010, 2012; Riffe et al., 1998, 2005).  Some argued that 

chance agreement is not a function of category (Scott, 1955; Zhao et al., 2012b), others 

argued it is not a function of distribution (Gwet, 2008, 2010, 2012; Zhao et al., 2012b). Some 
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called for new indices that use difficulty to estimate chance agreement (Gwet, 2008, 2010, 

2012; Zhao et al., 2011a&b; Zhao et al., 2012b).  

This study has three tasks.  The first is to test some major assumptions implied in the 

published criticisms of the major indices and the call for a new index(es). A behavior-based 

Monte Carlo (BMC) experiment, which may also be called a simulation-augmented behavior 

(SAB) experiment, was designed for the test.  

The second task is to develope a new reliability index based on three assumptions:  

1) Chance coding often happens, and often produces chance agreements.  This 

assumption is to avoid the main deficiency of the non-adjusted indices.  

2) Coders do not deliberately maximize chance coding.  Instead, they conduct chance 

coding involuntarily and often unknowingly. Consequently, chance agreement is not fixed at 

a certain maximum as most of the chance-adjusted indices assume.  Some studies may 

produce no chance agreement, when the task is extremely simple and training exceptionally 

good, while others may produce maximum chance agreement, when the task is extremely 

difficult or the training exceptionally lacking. Most of the studies may fall somewhere 

between the two extremes. This assumption is to avoid a main deficiency of the chance-

adjusted indices.    
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3) The amount of chance agreements, therefore, is a function of task difficulty, but not 

category or distribution per se.  This assumption is to avoid another main deficiency of the 

chance-adjusted indices. 

The third task is to test whether the new index achieves its design objectives, using 

again the data from the BMC experiment.  

Obviously category, distribution and difficulty, are crucial concepts in our theorizing 

and analysis.  The existing indices rely on category, distribution, or both, while we, among 

others, believe that difficulty is far more important.  So let’s explicate the three concepts 

before discussing empirical tests and mathematical derivations (c.f., Chaffee, 1991).  

 

II. Explicating Category, Distribution, and Difficulty  

Category is the number of choices available to a coder on a nominal scale. Gender, 

for example, typically has two categories, male and female, while political party may have 

two or more categories depending on country and time.   

Distribution is the pattern of occurrences in each category, where “occurrences” are 

often expressed as percentages (Cohen, 1960; Feng, in press; Gwet, 2010, 2012; Perreault & 

Leigh, 1989).  The concept has also been referred to as “frequency” (Gwet, 2008), “base rate” 

(Grove et al., 1981; Kraemer, 1979; Spitznagel & Helzer, 1985), or “prevalence” (Feng, in 

press; Gwet, 2010; Shrout et al., 1985).  
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In reliability literature, distribution is usually operationalized on a skewed-even 

continuum (Cohen, 1960; Gwet, 2008, 2010; Krippendorff, 1970, 1980; Scott, 1955). For 

example, on a binary scale, a 100% & 0% or 0% & 100% distribution is the most skewed, 

while a 50% & 50% distribution is the most even. So a distribution scale originally ranging 

from 0% & 100% to 100% & 0% needs to be “folded”, making a 0% & 100% distribution 

equal to a 100% & 0% distribution, and a 10% & 90% distribution equal to a 90% & 0% 

distribution, etc.  This study will follow this tradition. 

Another tradition is to assume that coders’ reported distribution is a good estimate of 

target distribution under coding (Cohen, 1960; Gwet, 2008, 2010, 2012; Krippendorff, 1970, 

1980; Scott, 1955).  It was based in part on this assumption that π, α, κ and AC1 multiply the 

marginals of a contingency table to estimate chance agreement. The assumption has been 

widely accepted.  Researchers conduct a research because they do not know the target 

distribution, and reported distribution is seen as the best indicator of the target distribution.   

The target-report relation, however, may be more complicated, and it may depend on 

task difficulty and reported skew.  When the task is easy, the coding tends to be accurate, and 

reported distribution tends to resemble the target distribution closely, whether the reported 

distribution is skewed or even.  When the task is difficult, however, the coding tends to be 

random, and the reported distribution tends to be even, even when the target distribution is 

skewed.  So a reported skewed distribution is more likely to resemble the target distribution 
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than a reported even distribution. Further, some argued that π, κ and α assume that reported 

distribution equals marble distribution, where “marble” refers to a physical, statistical, 

electronic, mental, or virtual device of probability that coders use to guide their chance 

coding (Zhao, 2011a&b; Zhao et al., 2012b). At least one author disagreed that such an 

assumption exists (Krippendorff, 2012).  Our data will show that the assumption does appear 

to exist, and it is a major cause for the negative correlation between the chance agreement 

estimated by these indices and the chance agreement observed from our empirical data. 

Distribution is more meaningful for a coding session with multiple items than a single 

item.  By contrast, category and difficulty can be equally meaningful for a session or an 

individual item.  This distinction has implications for our variable manipulation and data 

analysis, as I will explain later.  

The concept difficulty may be defined broadly, as the joint consequence of all factors 

that cause the coding to be inaccurate.  Thus defined, difficulty may include several 

dimensions: 

1) Task: By their nature some tasks are more difficult than others.  For example, 

deciding whether an advertisement contain Surgeon General’s warning is easier 

than deciding whether a news story contains bias.    

2) Instrument: Instrument refers to measures that researchers should take to enable 

the coders to accomplish a given task accurately. Examples of such measures 
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include sufficient incentive, organization, monitoring, appropriate categories, 

clear and appropriate questions, sufficient instruction, good training, adequate 

equipment, and good environment. Insufficient incentive or monitoring, 

inappropriate categories, unclear instructions, and poor training increases 

difficulty. 

3) Coders: Some coders are less capable, less focused, or less motivated than others, 

which increase difficulty.  Despite researchers’ efforts, there are always variations 

among coders and within coders over time. 

In the BMC experiment that I am to report below, I manipulated task difficulty so it 

ranges from very low to very high. By choosing a task that is almost self-explanatory, I fixed 

instrument difficulty at a very low level.  But we still saw variations in coder difficulty 

between coders and over time. 

  

III. Testing Assumptions Using Behavior-Based Monte Carlo (BMC) 

Experiment 

 Dozens of intercoder reliability indices have been introduced in over a century. 

Popping (1988) identified 39. Zhao and colleagues (2012a&b) reviewed 22 and quickly 

added a 23rd.  Until recently, however, discussions of reliability indices relied on theoretical 

reasoning and mathematical derivation, and sometimes illustrated by a couple individual 
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examples.  The last index introduced in this fashion was Potter & Levine-Donnerstein’s 

redefined Pi (1999). Debates took place from time to, e.g., among Grove et al (1981), 

Kraemer (1979), Shrout et al (1987), Spitznagel & Helzer (1985), and Thompson & Walter 

(1988), between Krippendorff (2004b) and Lombard et al (2002), and between Krippendorff 

(2012) and Zhao et al (2012b).  All sides relied on theoretical and mathematical analyses. We 

have not seen a systematic field study to build the empirical foundations for the indices and 

the debates. 

Gwet (2008) took a large step forward. He used a Monte-Carlo simulation to support 

his mathematical analysis of four indices. 500 computer-generated samples, which I call 

“coding sessions,” simulated a binary scale and two coders, although no coders were actually 

used. The simulated distribution within each session was fixed at 95% & 5%, and sample 

sizes were chosen at 20, 60, 80 and 100. Against a “’true’ inter-rater reliability” defined by 

the author as the criteria, AC1 showed smaller biases than Scott’s π (1955), Cohen’s κ (1960) 

or Guilford’s G (Guilford, 1961; Holley & Guilford, 1964), while G is mathematically 

equivalent to Bennett, Alpert, and Goldstein’s S (1954; cf., Zhao et al., 2012b). AC1 also 

showed smaller variance than any of the other three indices. Feng (2012, in press) and Zhao 

et al (2012a) followed suit, by using  larger Monte Carlo samples to explore various issues 

related to intercoder reliability.  

Like any method, simulation has its limitations.  While we need to test the effect of 
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category, difficulty, and distribution on coder behavior, pure simulation does not measure the 

actual behavior. It can simulate the behavior according to assumptions imposed by 

researchers, but the results cannot serve as tests of the assumptions. 

What simulation cannot do, behavior experiment can.  For example, experiment using 

human coders (subjects) can convincingly measure coder behavior. But a typical behavior 

experiment is infeasible in this case, which I will explain in more details below.  So I 

combined experimental and simulation techniques to design a behavior-based Monte Carlo 

(BMC) experiment. 

 

III.1. Rationale and Design of BMC Experiment 

 III.1.a. Behavior experiment is infeasible, while Monte Carlo simulation does not 

measure behavior.  

Reliability studies require variables at the level of coding session.  For example, 

percent agreement, distribution, Cohen’s κ, Scott’s π, or estimated chance agreement is 

meaningful only for a coding session with multiple target items coded by at least two coders.  

The unit of analysis must be coding session, not individual coder or single item.   

Manipulating these variables at the level of coding session, however, are hardly 

feasible for a typical university researcher.  We need a sufficient number of targets within 

each coding session (I chose Nt=100, where Nt is number of targets coded in a coding session) 
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and we need a sufficient number of coding sessions (I chose Ns=384, where Ns is the number 

of coding sessions involved in an analysis). The total number of data points would be much 

large than a typical controlled experiment or a content analysis study. The study I will report 

below, for example, manipulated four levels of category, eight levels of difficulty, and three 

levels of distribution, making it a 4X8X3 experiment with 96 cells. Following the 

conventional rule of 20 subjects (sessions) per cell, I would have needed 96X20=1,920 

coding sessions with 100 targets and at least two coders for each session. At least 20 

variables were involved in the analysis, which would mean 1,920 X 100 X 2 X 20 = 

7,689,000 data points. A behavior experiment of this size would be too expensive and too 

difficult to implement with typically limited resources of university researchers.  

More importantly, within each of the 96 cells, each independent variable would have 

a fixed value, e.g., two categories, extremely easy, and 99% & 1% distribution. Each coder 

would have to repeat the same task under the same condition 100 times per session.  They are 

likely to get bored, tired, disinterested, or quickly figure out the answers to the subsequent 

questions. The idiosyncratic combination or interaction between a certain coder and a certain 

condition would have a large effect, leading to large measurement errors.  Examples include a 

coder who is exceptionally good at the most difficult task was assigned the most difficult task 

100 times, and a coder who gets easily distracted by irrelevant categories gets the highest 

number of categories 100 times.  
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III.1.b. A behavior-based Monte Carlo (BMC) experiment. 

A two-stage experiment was designed To meet the challenge.  The first was a 

manipulation-behavior stage. Category and difficulty were manipulated at the level of 

individual items, and distribution was manipulated at the level of 10-item short sessions. 

Human coders coded in short sessions, and each coder had a variety of category and difficulty 

levels which were randomly rotated within each session.  While the short sessions and 

varying tasks helped to maintain interest and quality, the data from this stage were not 

directly usable for my purpose, because each session did not have one level of difficulty or 

category, but up to eight or four levels.  Also each session had too small a sample (Nt=10) to 

be representative of typical coding session. 

Hence the second stage, the Monte Carlo stage. I randomly sampled from the data 

collected at the first stage to simulate a 4X8X3 between-session experiment in which each 

session had 100 items (Nt=100), and was assigned a certain level of category, difficulty, and 

distribution.  

Category is known to affect indices like Bennett et al’s S, Perreault and Leigh’s Ir and 

Gwet’s AC1 (Bennett et al, 1954; Feng, in press; Guttman, 1946; Scott, 1955; Gwet, 2008, 

2010, 2012; Zhao et al., 2012b).  Distribution is known to affect indices like Cohen’s κ, 

Scott’s π, Krippendorff’s α, and Gwet’s AC1  (Brennan & Frediger, 1981; Feinstein & 

Cicchetti, 1990; Feng, in press; Perreault & Leigh, 1989; Rust & Cooil, 1994; Shrout et al., 
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1987; Zhao, 2011a&b; Zhao et al., 2012b). Increasingly, however, reliability experts argue 

that difficulty is the main factor affecting chance agreement, therefore should be the main 

factor affecting a reliability index (Grove et al, 1981; Riffe et al., 1998 & 2005; Gwet, 2010, 

2012; Zhao et al., 2012b).  

So category, distribution and difficulty are the three manipulated variables. Other 

independent variables and dependent variables are measured from coders’ responses, as I will 

explain below.  

It is not a typical human behavior experiment. A typical human behavior experiment 

does not use Monte Carlo simulation (Montgomery, 2008).  Yet this design shares two most 

valuable features of human behavior experiments, namely physical rather than simulated 

manipulation of independent variables and direct observation of human responses 

(Montgomery, 2008).  In that sense, I call it a simulation-augmented behavior (SAB) 

experiment.  

It is also not a typical Monte-Carlo (MC) experiment.  A typical MC experiment is 

based on a population of random numbers defined by assumptions guided by relevant 

theories or practical needs (Liu, 2001). This SAB experiment was based on a population of 

observed human behavior in response to experimental manipulation guided by relevant 

theories and practical needs.  Yet this design shares two most valuable features of a typical 

Monte Carlo experiment (Liu, 2001).  One is the task, which is to solve a problem through 
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simulation when deterministic or other methods are infeasible.  The other is a technique, 

which is repeated random sampling.   So we may also call this design a behavior-based 

Monte Carlo (BMC) experiment.   

The BMC design gave us the best of two methods, namely behavior experiments’ 

ability to systematically record actual human behavior and Monte Carlo simulations’ ability 

to efficiently generate large amount of high-quality data, thereby making the infeasible 

feasible. 

Accordingly, I first experimentally manipulated category and task difficulty at the 

level of individual items and manipulated distribution at the level of small (10-item) sessions.  

I then measured coders’ responses at the level of individual items.  Using exclusively the data 

from the experimental manipulation and the coder responses, I constructed through 

simulation 384 coding sessions, each of which having 100 target items.   

In the process, the three variables originally manipulated at the level of individual 

items or short sessions were re-manipulated at the level of long (100-item) sessions through 

Monte-Carlo-style repeated sampling.  There were four levels of category (2, 4, 6, 8), eight 

levels of difficulty (1~8 pixels as the difference between two longest bars), and three levels of 

distribution (99%&1%, 75%&25%, and 50%&50%). As is shown in Table1, this is a 4X8X3 

between-subject experiment, where “subject” is simulated coding session based on actual 

responses from human coders.   
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[Table 1 About Here] 

 

Besides testing the effects of the three manipulated variables, I also wanted to assess 

the performance of the various reliability indices against systematically measured coder 

responses. Such assessment has not been seen in the literature. The ranges of the three 

independent variables were designed in part to set up a realistic context for the assessment. 

III.1.c. Identifying a task with a muddy gold standard. 

Reliability indices are standards against which empirical studies are evaluated. Now 

that the indices themselves are evaluated, we need ask coders a question that comes with a 

natural gold standard, namely an answer key that is agreeable by almost every reasonable 

person.   

Most of empirical studies, however, have no answer keys -- had there been answer 

keys, no coding would have been needed. What researchers usually have is a varying degree 

of difficulty. When the task is extremely easy, the coders may all agree on an answer. When 

the task is extremely difficult, the coders may disagree as often as they agree. Most of the 

studies are somewhere in between, with some disagreements, but more agreements. To create 

a realistic environment and capture this key variable, we need varying and manipulable 

degrees of difficulty. That means we need to find a task question that has 1) a gold standard 

acceptable by the scientific community, 2) varying “muddiness” in the eyes of coders and, 3) 
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controllable “muddiness” in the hands of the researcher.    

 The task that I designed for my coders is to find the longest bar among several bars, 

whose lengths were manipulated by computer programming. This task meets the three 

requirements set above. The details are reported below. 

 

III.2. Execution of BMC Experiment  

My assistants programmed a website for the invited coders to participate online, at 

http://reliability.hkbu.edu.hk/. The site served as a platform that helped us to perform the 

following. 

[Figure 1. About Here] 

 

III.2.a. Manipulating category and difficulty at item level. 

 Each coder was asked to pick the longest bar from two, four, six or eight bars with 

various lengths (Figure 1). So the first manipulated variable, category, had four levels.   

The second manipulating variable, task difficulty, was operationalized by changing the 

differences between the two longest bars, which are 200 pixels long, plus or minus a few 

pixels depending on the experimental manipulation. The smallest difference, representing the 

highest difficulty, is one pixel, which is the smallest controllable element on a computer 

screen. The largest difference, representing the lowest difficulty, is eight pixels. Hence 



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   24 
 

difficulty has eight levels.  To facilitate analysis and interpretation, this variable was linearly 

transformed to a 0~1 scale where 1 represents the highest difficulty (1 pixel difference) and 0 

represents the lowest difficulty (8 pixel difference), and other six differences proportionally 

spaced in between.  

The distance between the two longest bars is fixed at 150 pixels to minimize the effect 

of distance. When there are four, six, or eight categories, all bars other than the two longest 

are fixed at 150 pixels long.  So I will refer to the two longest bars “long bars” and the other 

bars “short bars.”  This design was to assure that the real competition was between the long 

bars, so that category effect does not confound or complicate difficulty effect. This design 

was also to test Scott’s (1955) classic theory that Bennett et al’s S increases with empty cells, 

which provided a main enticement for the development of Scott’s π (1955), Cohen’s κ (1960), 

and Krippendorff’s α (1970, 1980). 

III.2.b. Maintaining attention and minimizing interferences.  

A number of measures were taken to maintain a high level of interest and attention by 

the coders. Each coding session was limited to 10 items.  This was in part to eliminate clutter 

effect, which has been found to be an important factor affecting memory and attitude in 

various settings (Nan & Faber, 2004; Thorson & Zhao, 1997; Zhao, 1989, 1997). The number 

of category, difficulty level, location of the longest bar, and the location of the second longest 

bar (left or right of the longest bar) are randomly rotated within each session to minimize 
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effects of learning, tiring and boring, primacy and regency, other serial position, and 

interaction between coder idiosyncrasies and difficulty, category, position, etc. Prior studies 

have theorized or demonstrated that these factors affect memory and attitudes (Jeong, Tran, 

& Zhao, 2012; Li, 2010; Terry 2005; Thorson & Zhao, 1997; Zhao, Shen, & Blake, 1995). 

III.2.c. Manipulating distribution at short-session level.  

The random rotation described above also manipulated distribution within each 10-

item session.  The rotation often placed five longest bars at the left of the second longest bars, 

and another five longest bars at the right, producing a 5~5 distribution.  The random chance 

also produced some 4~6, 3~7, 2~8 distributions, and a couple 1~9 and 0~10 distributions.  As 

I operationalized distribution as skew, in later analysis the distribution scale is “folded,” e.g., 

a 4~6 distribution is re-coded to equal a 6~4 distribution, and both were given a value 0.6.  

Similarly, a 5~5 distribution is represented by 0.5, and 0~10 and 10~0 distributions are both 

represented by 1.0.   

As can be expected from a random process, far more cases concentrated in 0.5 and 0.6 

distributions than in 0.9 or 1.0 distributions.  After being folded, the distribution is skewed 

toward left (the 0.5 side).  The skewed distribution violates an assumption of least square 

significance tests.  It’s even worse from the view of experimental design, as we need roughly 

equal number of cases in all conditions. Extremely skewed distribution is expected to affect 

several major indices significantly.  The very small number of cases in those conditions 
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hampers our ability to test these effects.  Further, κ, π and α are undefined with 1.0 

distribution.  A 0.99 (1~99 or 99~1) distribution would be good replacement, but unavailable 

in 10-item sessions. 

These shortcomings are part of the reasons that our main analysis will not be on the 

original 10-item sessions, but instead on simulated 100-item sessions.  During the simulation 

I will re-manipulate distribution to include 0.99, and I will be sure to have equal number of 

cases per distribution level. By contrast, the values of category (2, 4, 6 & 8) and difficulty 

(0~1) will remain unchanged during the simulation and re-manipulation.   

III.2.d. Collecting and pairing coder responses.  

At the end of each 10-item session, a coder may choose to stop or do another 10 items. 

The first 10 items coded by the first coder were preserved and presented to the next coder 

who logged on.  The 10 items given to the two coders were identical in terms of category, 

difficulty, locations of the two longest bars, the serial order of the items, and all other factors 

within the control of the researcher.  These 10 items coded by two coders constitute 10 pairs 

of coded items, and constitute 10 basic elements for our subsequently analysis.  Once a 10-

item list has been coded by two coders, it will not be coded again by a third coder as long as 

there is simultaneous logging on. When a coder chose to code 10 more items or when a new 

coder logged on, he or she may code 10 pre-preserved unpaired items or, if there are no 

unpaired items left, code 10 items newly generated by the computer.  This process repeated 
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for all subsequent coders and 10-item sessions.   

Occasionally more than two coders coded the same 10 items due to simultaneous 

logging on.  In these cases I randomly selected two coders’ responses for our analysis.  There 

were also a couple cases one coder completed all 10 items while his or her partner completed 

less than 10 items.  I excluded such incomplete information for the purpose of this analysis.   

The data collection took place between March 22nd and May 9th, 2012. Undergraduate 

and graduate students, teachers, computer technicians, office workers, research assistants and 

other professionals from over 15 colleges and two research firms in America, mainland China, 

Hong Kong, Macau and Singapore participated in the coding as a part of their class exercise, 

research training, or work assignment.  They registered 383 given names or web names.  The 

total number of participating coders should be around 400, as some of the same names came 

from different cities and different organizations, hence likely represented different persons.  

The coders logged on 2,490 times from 53 cities in Asia, Europe, and North America.  They 

coded a total of 22,290 items, of which 19,900 were successfully paired, producing 9,950 

paired responses for our analysis.  

III.2.e. Simulating a 4X8X3 between-session experiment, based entirely on actual 

coder responses.  

I defined the 9,950 paired responses as the population for this study, from which I 

sampled repeatedly and randomly to construct a 4X8X3 experiment, through the following 
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procedure.  

I first set the number of items within each session (Nt) to be 100.  Then I drew my 

first sample with three conditions: category=2, difficulty=0 (easiest) and distribution=1&99%. 

As said earlier κ, π and α are undefined when distribution is 0&100% or 100&0%. From the 

9,950 paired responses I randomly sampled without replacement 100 pairs that meet the 

category (K=2) and difficulty (df=0) requirements; to meet the distribution requirement of 1% 

& 99%, I sampled one item with the longest bar located at the left of the second longest bar, 

and 99 with the longest bar located at the right. 

This constitutes my first simulated coding session. After the computer collected 

relevant information from the 100 pairs, I returned them to the population of 9,950. I changed 

one of the three factors, category, from two to four, while difficulty and distribution remain 

unchanged. Under the new conditions (K =4, df=0 and distribution=1&99%), I drew my 

second sample (coding session).  I repeated the process for every combination of category 

and difficulty, which gave us a total of 4X8=32 samples (sessions).  I then changed 

distribution to 25&75%, 50&50%, 75&25%, and 99&1%, and repeated the process, which 

gave us 32X5=160 samples (sessions).  Because all inter-coder reliability are symmetrical 

with regard to distribution, I folded the distribution scale so that 1&99% and 99&1% are 

represented by the same score of skew (sk) = 0.99, 25&75% and 75&25% are represented by 

sk= 0.75, and 50&50% is represented by sk= 0.5.  Now distribution has three levels, extremely 
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skewed (sk=0.99, 32X2=64 samples), moderately skewed (sk=0.75, 32X2=64 samples), and 

even (sk=0.5, 32 samples).  So that every level has an equal number of samples, I repeated the 

process to draw another 32 samples for the even (sk=0.5) distribution, which gave us a total of 

160+32=192 samples. 

 As κ, π, and α can be heavily influenced by a small number of cases, especially when 

the distribution is skewed (Feinstein & Cicchetti, 1990; Hoehler, 2000; Lombard et al., 2002, 

Vach, 2005; Zhao et al., 2012b), and I had just 64 samples in the extremely skewed condition 

(sk=.99), I was concerned whether the sample size was large enough.  To stabilize the 

distribution effect while still give all conditions an equal weight, I repeated the entire process 

to double the number of samples for all conditions, which means the total number of samples 

is also doubled to become Ns=192*384. 

III.2.f. Re-manipulating category, difficulty, and distribution at long-session level.  

The structured and repeated sampling also re-manipulated category, difficulty and 

distribution.  Its impact on the three variables differ somewhat due to the natures of each 

variable. 

As category and difficulty had been manipulated at item level, their values remained 

unchanged after re-manipulation.  For example, each item in an extremely easy and eight-

category session had the same df=0 and K=8 as an individual item.  They had scattered in 

many 10-item sessions and were gathered to this simulated 100-item session, with no change 
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to the values of difficulty or category. 

Distribution was a bit different.  It was a session-level variable and was originally 

manipulated at the level of 10-item session. When switching from 10-item session to 100-

item session, for the reasons explained earlier, the values of distribution changed, from the 

original 0.5, 0.6, …&1.0 to 0.5, 0.75 & 0.99.      

III.2.g. Deciding number of subjects (sessions) per experimental cell.  

Using the terminology of psychological experiment, this is a 4X8X3 between-subject 

design with four subjects in each cell, where “subjects” are coding sessions. So one may ask 

why not follow the 20-subject-per-cell rule to sample more, to put 20 sessions into each cell.  

First, our main independent and dependent variables are all on numerical scales. The 4X8X3 

characterization assumes categorical independent variables, and therefore may overestimate 

the number of samples needed.  Second, the 20-subject-per-cell rule assumes individual 

subject as unit of analysis, while we have coding session, each of which aggregating 100 

pairs of responses.  Aggregated data tend to have smaller variance, which generates more 

statistical power and needs smaller Ns.  

III.2.h. Measuring dependent and other independent variables at long-session level. 

[Table 2About Here] 

For the 100 paired responses sampled, I calculated the 22 variables listed in Table 2. 

Recall that, to minimize the effects of position and order, I randomized the locations of the 
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long bars relative to the short bars for every item (Jeong et al, 2012; Li, 2010; Nan & Faber, 

2004; Terry 2005, Zhao, 1989, 1997; Zhao et al, 1995).  To meet the design objective of 

having two main competing categories, during the calculation I treated each long bar as 

Category 1 or 2, regardless of its location on screen.    

Observed agreement (ao) and observed disagreement (do) were directly available in 

our data, which are also available in typical studies using two or more coders, raters, or 

diagnosticians.  

Observed right agreement (ar) is the number of cases for which both coders gave the 

correct answers divided by the total number of cases for each sample (Nt).  Observed 

erroneous agreement (ae) is the percent of cases that two coders agree but their answers are 

incorrect.  The two measures are also discussed conceptually in Table 6. They should not be 

parameters of an index as they are usually unavailable in typical studies. This methodological 

study measured them to produce a couple “gold standards” against which the indices can be 

empirically evaluated. 

The calculation of observed chance agreement (oac) needs some explanation.  Chance 

agreement, by its nature, may be right or wrong. The erroneous agreement (ae) is directly 

observed, which is a result of chance coding according to our starting assumption of no 

systematic error.  The randomly right agreement is mixed with the systematically right 

agreement, therefore needs calculation. 
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Due to our design of two long bars and several (0~6) short bars, the chance agreement 

came from two types of random selection: between two long bars, and among all bars.  When 

the later resulted in an agreement on the longest bar, we designate it as ara, right agreement 

from random choices among all bars.  While ara can be calculated, 1 it will be clear soon that 

we will not need the calculation. 

Some of the agreement on the second longest bar (ael) also came from random 

selection among all bars. The amount is the same as those falling on the longest bar, which is 

ara. The rest (ael-ara) came from random selection between two long bars.  Because it is 

random selection between two, the same amount (ael-ara) should fall on the longest bar.  That 

means that right agreement from random choices between long bars is (ael-ara).  

Therefore, based on probability theory, observed chance agreement oac is calculated 

by taking the sum of the above: 

௔௖݋ ൌ ܽ௘ ൅ ܽ௥௔ ൅ ሺܽ௘௟ െ ܽ௥௔ሻ ൌ ܽ௘ ൅ ܽ௘௟ 

Observed true (non-chance) agreement (at) is the observed chance agreement (oac) 

                                                 
1  All agreements on the short bars are results of coders choosing randomly among all 

bars. Such agreement should spread evenly among all categories, and 1/K of which should 

fall on each bar, including the longest bar.  If there are four categories (K=4), and agreement 

on the two short bars is as4, then (as4/2) is the amount of the randomly right agreement 

produced by coders choosing randomly among the four bars. Similarly, if there are six or 

eight categories, and as6 and as8 represent the agreement on the four or six short bars, then 

(as4/4) and (as4/6) are the randomly right agreement resulted from random selection among all 

six or eight bars. So the total amount of right agreement resulted from random selection 

among all bars is ara=(as4/2)+(as4/4)+(as4/6).    
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minus the observed agreement (ao): 

࢚ࢇ ൌ ࢕ࢇ െ 1 )  ࢉࢇ࢕ )

The four variables, oac, at, ae, and ar constitute a set of “gold standards” against which 

various indices can be assessed. None of the four is usually available in typical studies.  

III.2.i. Combining manipulation, behavior, and simulation. 

In the long-session data, which are the main basis of our subsequent analysis, the 

sessions and coders were both partially simulated.  For example, in any 100-item session, the 

randomly selected responses could have come from up to 200 different coders.  It was not a 

pure simulation because it’s based mainly on actual behavior of real human coders, but not on 

purely theoretical assumption.  It was not purely real because no such 100-item sessions 

actually took place. 

I mentioned earlier that random rotation of categories, difficulties, positions etc. 

minimized the effect of individual coders and other idiosyncrasies. The partial simulation 

through random selection and reassembling further minimized the impact of individual 

coders or other idiosyncrasies attached to the original coding. It therefore made the data more 

stable and more representative of “typical” sessions, coders, and responses.  

In a typical behavior experiment, independent variables are manipulated, and human 

responses are observed from real human participants in real experimental sessions. In a 

typical Monte Carlo experiment, however, all manipulation, participants, responses, and 
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experimental sessions are simulated.  This BMC experiment has a mixture of manipulation, 

participation, and simulation. Some independent variables were physically manipulated at 

item level, then re-manipulated through simulation at session level. Other independent 

variables and all dependent variables were gathered from the actual responses of real human 

coders participating in real coding sessions.  But the coders and sessions, as said, were 

reassembled through partial simulation.   

  

III.3. Existing Indices Performed Poorly, Because They Rely on Wrong Factors 

III.3.a. Methodological check one: Short or long sessions did not affect distribution 

effect.  

I mentioned that, while the values of category and difficulty remained unchanged 

during the re-manipulation, values of distribution were changed. An underlying assumption 

was that distribution is not expected to affect chance coding whether a coding session is short 

or long, observed or simulated.  I first checked this assumption at the level of short sessions 

(Ns=984).  Distribution (sk) was not correlated with observed chance agreement (oac, r=0.015, 

t=0.470, p=0.638) or percent agreement (ao, r=0.004, t=0.135, p=0.893).  Comparing them 

with the counterpart correlations (r=-0.023, p>.05, and r=-0.044, p>.05) at the level of long 

sessions shown in Table 3, I conclude that my assumptions are consistent with the data. 

III.3.b. Methodological check two: designed empty cells were not entirely empty.  



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   35 
 

Recall that I made the long bars clearly longer than the short bars, so that the real 

competition would be between the two long bars.  I therefore hoped for largely empty cells, 

especially empty “agreement” cells, for the short bars.  They did not turn out to be as empty 

as I hoped.  On average 2.86% of choices fell on the short bars, which was broken down to 

1.11%, 1.93% and 5.53% for respectively four, six, and eight categories. As expected, 

agreement on short bars is much lower, at an average of 0.45%, and broken down to 0.04%, 

0.12%, and 1.18% for respectively four, six, and eight categories. Although not exactly zero, 

these numbers are still small and therefore did not show a clear effect on our subsequent data 

analysis, theory testing or index development. 2 

III.3.c. Methodological check three: BMC experiment was orthogonal as designed.  

The upper left corner (Columns A~C, Rows 1~3) of Table 3 shows, the correlations 

between the three manipulated variables. These zero correlations verify our orthogonal design. 

Having checked on these methodological issues, I now report our main findings at the 

level of long sessions, which are summarized in Table 3.  Note that the cells involving ai is 

about a new index I will introduce in the next section.  In this section I focus on all other cells 

that are about coder behavior and the six existing indices. 

[Table 3 About Here] 

  
                                                 
2  Interestingly, while category appears to have a small positive effect on choices and agreement on the short bars, it has a 
somewhat negative effect on choices and agreements on the second longest bars.  Probably because the second mechanism is 
a bit stronger, the overall correlation between category and chance agreement is weakly negative.  Overall, our data show 
that the effect of category on chance agreement is weak. 
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III.3.d. Distribution or category correlated strongly with estimated chance 

agreements but not with observed chance agreement. 

The six coefficients at the upper right corner (Columns  D~F; Rows 1&2) tested two 

assumptions implied in the criticisms of the existing indices, which are that distribution (skew) 

or category per se does not affect coder judgment (Grove et al, 1981; Scott, 1955; Gwet , 

2008, 2010; Zhao, 2011a&b; Zhao et al., 2012b). Five of the six correlation coefficients were 

near zero and statistically non-significant, supporting the assumptions.   

The only statistically significant correlation among the six was between category (K) 

and observed chance agreement (oac, r = -.138**).  Further analysis revealed that the negative 

correlation was due to a drop in agreement on the second longest bar when there were eight 

categories (25.36% vs 28.94% as the average for two to six categories).3 As agreement on 

short bars increased with category (as I reported above), and agreement on the second longest 

bar also increased between two and six categories (26.45%, 29.95%, 30.41% for respectively 

two, four, and six categories), the -.138 correlation does not appear to indicate a consistent 

effect of category per se on chance agreement. 

Although actual chance agreement was not affected by distribution or category per se, 

major indices’ estimated chance agreements were affected by one or the other (Feng, 2012, in 

                                                 
3 Although the negative sign coincides with the prediction of three category-based indices, S, Ir and AC1, which also predicts 
a negative K-ac correlation, this -.138 correlation does not lend any support for the three indices, for two reasons.  First, the 
observed process that produced the -.138 correlation is not predicted by any theories behind the three indices. Second, this 
observed K-oac correlation (r = -.138**) is too weak to justify the much stronger K-ac correlations (r = -.813***~-.929) 
theorized by the three indices.  In other words, the correlations bear the same sign by empirical coincidence, but not by 
theoretical necessity. 
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press; Grove et al, 1981; Perreault & Leigh, 1989; Rust & Cooil, 1994; Scott, 1955; Gwet, 

2008, 2010; Zhao, 2011a&b). S and Ir depend on category, κ, π and α depend on distribution, 

and AC1 depends on both category and distribution, according to a mathematical analysis of 

the formulas (Zhao et al., 2012b). Group II (Rows 5~10) of Columns A & B of Table 3 

shows support for these observations and analyses.  Chance agreements estimated by S and Ir 

correlated strongly and negatively with category (r=-.929, A6, A7).  Chance agreements 

estimated by π, κ and α correlated positively and substantially with skew (r=.659~.661, 

B8~B10). Chance agreement estimated by AC1 correlated quite strongly with category (r=-

.813, A5) and relatively weakly with skew (r=-.197, B5).  The last two correlation 

coefficients suggest that Zhao et al’s (2012b) characterization of AC1 may need a revision: 

while AC1 is double-based, it depends on category far more than distribution.    

III.3.e. Difficulty correlated positively with observed chance agreement but not with 

estimated chance agreements.  

While each index’s estimation correlated with skew or category when it should not, it 

did not correlate with difficulty in the way it should.  The argument that task difficulty 

increases the chance coding was supported by the positive and relatively strong correlation 

between difficulty and observed chance agreement (r=.765***, E3).  One may note that 

difficulty was also a good predictor of percent disagreement (r=.882***, D3), true agreement 

(r=-.880***, F3), and percent agreement (r=-.882***, C12), demonstrating again its 
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importance. 

The estimations by the major indices, however, correlated minimally or even 

negatively with difficulty. Group II of Column C (C5~C10) shows that the correlations 

between difficulty and expected chance agreement was zero for the category-based indices (S 

and Ir, r=.000, C6 & C7), close to zero for the double-based index (AC1, r=.095, C5), and 

negative for the distribution-based indices (π, κ, and α, r≤-.351***, C8~C10).  These findings 

support Gwet’s (2008, 2010) criticism that the indices’ before him had not taken difficulty 

into account. Nevertheless, the minimal correlation between difficulty and AC1’s estimation 

(r=.095, C5) may also disappoint Gwet (2008, 2010), whose AC1 was designed to take 

difficulty into account. 

III.3.f. The estimate-estimand (ac-Oac) correlation was negative for κ, π, or α and low 

for S, Ir, or AC1.  

As some might expect by now, these indices’ estimations of the chance agreements 

showed up as poor estimates of the observed chance agreement (Group II, Column E).  The 

highest correlation is a mild r=.273*** for AC1, followed by S and Ir (r=.146***).  The 

correlations for π, κ, and α were even negative (r=-.388*** and r=-.390***).  

A statistical procedure is an estimator that produces estimates to approximate its 

estimand, which is the target phenomenon under estimation (Lehmann & Casella, 1998).  A 

perfect estimator produces a positive and perfect estimate-estimand correlation. A good 



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   39 
 

estimator produces a positive and strong correlation. A negative estimate-estimand 

correlation is unacceptable. A negative and statistically significant correlation is alarming, as 

it suggests that the estimator routinely reports the opposite of the reality.  

As mentioned earlier, the estimated chance agreement (ac) is the most important 

element that defines each index.  These indices remove the estimated chance agreements 

from the observed agreement in order to produce an estimated reliability.  The negative 

correlation means that κ, π, and α regularly remove a large amount of “chance agreement” 

when the actual amount is small, and regularly remove a small amount when the actual 

amount is large. 

The negative correlation is due to a mismatch between coder behavior assumed by the 

indices and the coder behavior observed in this experiment, especially in relation to reported 

distribution. A reported skewed distribution is assumed to indicate  that coders have drawn 

from an equally skewed distribution of  marbles.  As a more skewed marble distribution 

produces more matches of marble color, and coders are assumed to code randomly when the 

colors match, a more skewed reported distribution is assumed to indicate more random 

coding (Perreault & Leigh, 1989; Rust & Cooil, 1994; Zhao, 2011a&b; Zhao et al., 2012b). 

Typical coders, such as the coders in this study, do not code this way. They code 

honestly. When one codes randomly, it’s not because the marble colors match, but because 

the task, the situation, or his or her condition is too difficult. Random coding produces more 
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even, not more skewed, results, according to elementary probability theory. So a more 

skewed reported distribution indicates less random coding (Rust & Cooil, 1994), which 

contradicts the three indices’ estimates, hence the negative correlations. 

 This also explains the negative correlation between difficulty and the three indices’ 

estimated random agreements (Cells C8~C10 in Table 3). In our data more difficult task 

produces more random coding, hence more even reported distribution, which the three 

indices see as an evidence of less random coding under the maximum randomness, 

predetermined quota, and trinity distribution assumptions (Zhao, 2011a&b; Zhao et al., 

2012b). 

This finding may appear even more alarming if we consider that in about half a 

century the three indices have used as the most authoritative indices of intercoder reliability 

across disciplines. They have been used as screeners in various stages of research process, 

from topic identification, protocol development, measurement selection, to publication.  The 

negative estimate-estimand correlation and the underlying mechanism imply that the three 

indices – 

1) favor studies, protocols, measures, and instruments that report more even 

distribution, even when the reports have been generated largely at random, and  

2) disfavor studies, protocols, measures and procedures that report more skewed 

distribution, even when the reports have accurately reflected the underlying target distribution.   
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The application of the three indices on tens of thousands of published, unpublished, 

and unfinished studies might have portrayed a world that look more even than it actually is.  

In communication research, for example, there may have been overestimates of rare 

phenomena and underestimates of common phenomena, due to the widespread use of π and α. 

More worrisome would be in medical research, where prevalence of rare diseases may have 

been inflated, while the prevalence of common conditions may have been deflated, due to the 

enduring use of κ.   

Reported distribution, which is not shown in Table 3, is important for understanding 

the three indices.  This variable and its impact on the three indices deserve a more thorough 

analysis in a separate study. 

III.3.g. Major agreement indices did not improve on percent agreement.  

Column F of Group II lists the correlations between observed true agreement (at) and 

various indices.  The highest are r=.849*** and r=.831*** for AC1 and S, and the lowest is 

r=.559*** for π, κ and α.  The reasonably high correlations do not necessarily indicate AC1 

and S as good indices of intercoder reliability. Although each chance adjusted index was 

meant to be an estimator while the true agreement (at) is the estimand, theses particular 

estimate-estimand correlations are not necessarily the sharpest differentiators between indices, 

for a couple reasons – 

All major indices use the same Equation 7 to remove chance agreements, ac. The 
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indices differ from each other in how to estimate ac. In Equation 7, ac is subtracted in the 

nominator and again in the denominator.  The two subtractions have the opposite effects; the 

first reduces an index and the second increases it by a usually smaller amount.  The partial 

offsetting reduces impact of ac, making percent agreement (ao) the dominant factor in the 

equation and on the indices. As all indices estimate ao exactly the same and ao is highly and 

positively correlated with observed true agreement at (r=.917***, F12, Table 3), all indices 

appear positively and at least moderately correlated with at. But that was not due to the 

unique features of any index, namely estimated chance agreement ac, but due to percent 

agreement ao, which each chance-adjusted index was designed to improve on.   

Therefore, although we want a higher correlation between an index and observed true 

agreement at (Column F, Group III), all these correlations are inflated by ao that dominates 

every index, hence not the most effective differentiator between indices. The correlation 

between an index’s expected chance agreement ac and the observed chance agreement oac 

(Column E, Group II) is a sharper differentiator. 

So if an index-at correlation (Column F, Group III) looks barely acceptable while the 

counterpart ac-oac correlation looks completely unacceptable (Column E of Group II), the 

index, such as π, κ, or α, may be completely unacceptable.  If the former looks reasonably 

good while the latter looks marginally acceptable, the index, such as AC1 and S, may be 

marginally acceptable. 
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One way to properly interpret an inflated indicator is to compare it with the inflator as 

a benchmark. As percent agreement ao is the inflator, the ao-at correlation (r=.917***, F12) 

becomes a proper benchmark. But there is more important reason for ao as the benchmark, 

that is, each of the six indices adjusted for chance for the stated purpose of improving on ao. 

 A comparison of the index-at correlations (r=.559~.849) with the benchmark ao-at 

correlation (r=.917) shows no improvement. While one could argue that the benchmark is so 

high that significant improvement would be difficult, there is no justification for a significant 

impairment, such as the reduction in correlation from r=.917 to r=.559. Unfortunately the 

largest impairment came from the most popular indices, namely κ, π, and α. 

 

III.3.h. Summary of findings so far.  

Our assumption checking verified the following: 

1) The design features of our experiment met our objectives and expectations in 

general. 

2) Distribution or category per se did not affect observed chance agreement, which 

implies that we should not rely on either of the two to estimate chance agreement. 

3) Each of the major indices relied on distribution, category per se, or both to 

estimate chance agreement. 

4) More difficult tasks produced significantly more chance agreement in our data, 
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which implies that an index’s estimation of the chance agreement should also be 

positively correlated with difficulty. More difficult task should lead to a higher 

estimation of the chance agreement. 

5) Each of the major indices available now had a negative or near zero correlation 

with difficulty. 

6) As a result, the major indices’ estimated chance agreements were not positively 

and highly correlated with the observed chance agreement.   

7) The above findings support the call for a new index that uses difficulty, but not 

distribution or category per se, as the main factor affecting chance agreement. 

 

IV. An Index, ab, Under Black-White Randomness Assumption 

This section reports our first attempt to develop an index based on more realistic 

assumptions. A more comprehensive typology of coder agreements and disagreements was 

built as conceptual and theoretical foundation. A good typology is crucial for this type of 

work, as it 1) selects appropriate dimension(s) for classifying types (Zhao, 2002a; 2004a&b, 

2007a); 2) provides an inclusive list to include all types (Zhao, 2002b, 2007b); and 3) sets 

mutually exclusive division(s) between types (Zhao, 2002b, 2007a). If a typology fails on 

any one of the three tasks, the resulted theory, calculation, or formula is likely to err. 
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Based on the first typology I built a new index. But this “new” index turned out to be 

a mathematical equivalent of an existing index. Tracing back the steps, I identified a cause: 

the underlying typology was not comprehensive enough.   After the typology was revised and 

expanded, a truly new index was developed, which I will discuss in the next section. 

  I started with the assumption that all cases are either difficult, which leads to chance 

coding, or easy, which leads to systematic coding. Gwet (2008, 2010, 2012) made the same 

assumption.  This is a black-white version of the variable randomness assumption. A more 

complicated version will be discussed in the next section. 

Coding can be divided into systematic or random (Krippendorff, 1970b, 2008).  

Honest, diligent, and consequently accurate coding is by definition systematic. Such 

behavior produces desired systematic agreements. Cheating, incorrect instruction and 

equipment failure are among those that produce undesired systematic coding, agreements, 

and disagreements.  

Based on this analysis, Table 4 depicts a typology of two dimensions 1) systematic or 

chance coding, which produces 2) agreements or disagreements. Systematic coding is 

further divided into desired and undesired.   

[Table 4 About Here] 

Researchers should do their best to eliminate undesired systematic coding.  Data 

should be void of significant influences from such coding when they are analyzed. If such 
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influences are not eliminated, they are hard to estimate statistically, if possible at all.  So I 

will follow all other indices to assume no undesired systematic miscoding, which means no 

systematic disagreements (Dv in Table 4) and no systematically erroneous agreements (Av ) 

(Krippendorff, 1970b, 2008; Zhao et al., 2012b).   

Systematic and accurate coding should always produce intercoder agreements (Aa), 

but never disagreements (Da).  When there is a disagreement, both coders cannot be right, 

and the instrument cannot be accurate. So Da by definition should be zero.   

ࢋ࡭ ൌ ࢋࡰ ൌ ࢇࡰ ൌ ૙ ( 2 )

Now that two of the three types of disagreements are zero, the remaining type, chance 

disagreements (Dc), should constitute all disagreements (Do): 

ࢉࡰ ൌ 3 ) ࢕ࡰ )

Chance coding (C) produces chance agreement (Ac) and chance disagreement (Dc), 

which according to probability theory tend to be equal to each other when the number of 

cases is sufficiently large:  

࡯ ൌ ࢉ࡭ ൅ ( 4 ) ࢉࡰ

ࢉ࡭ ൌ ࢉࡰ ൌ ( 5 ) ࢕ࡰ

 It means that chance agreement (ac) and chance disagreement (dc) are expected to be 

equal to each other, and both equal the observed disagreement: 

ࢉࢇ ൌ ࢉࢊ ൌ 6 ) ࢕ࢊ )

 Here ac ≡Ac/N and dc≡Dc/N, where N is the total number of cases analyzed.  
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After obtaining ac, almost all popular indices, such as Bennett, Alpert, & Goldstein’s 

S, Scott’s π, Cohen’s κ, and Krippendorff’s α, use Eq. 7 to estimate the agreement index. 

Note that ao is the observed agreement, ac is the estimated chance agreement, and ri is an 

reliability index: 

࢏࢘ ൌ
ࢉࢇെ࢕ࢇ
૚ െ ࢉࢇ

 ( 7 )

 Recent analyses showed that the formula assume maximum randomness, that is, 

coders are assumed to always maximize chance coding, and conduct honest coding only 

when marble colors turn out in a certain pattern, e.g. mismatch. As the assumption is 

inconsistent with typical coder behavior, some argued that the indices should rarely be used if 

ever (Zhao, 2011a&b; Zhao et al., 2012b). 

 The numerator in Equation 7 is problematic, as ac is estimated under the maximum 

randomness assumption.  The denominator is also problematic.  An agreement index is a 

percentage figure, for which the denominator defines the reference scale. The reference scale 

can affect an index as much as the numerator, ao-ac.  For example, if the reference scale is 1, 

an ao-ac=0.4 produces an index value 0.4; but if the reference scale is shrunk to 0.5, the same 

ao-ac=0.4 produces an index value 0.8.  By subtracting ac from 1, Equation 7 shrinks the 

reference scale by an amount ac, which is the chance agreement based on maximum 

randomness assumption.  That means a maximum amount of chance coding is assumed to 
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have taken place before honest coding, and that is a major defect of the chance adjusted 

indices in use today (Zhao et al., 2012b). 

Following this reasoning, I will revise Equation 7. I will still subtract ac in the 

nominator, but will not do so in the denominator.  Hence an agreement index ab for binary 

scales based on a black-white variable assumption: 

࢈ࢇ ൌ ࢕ࢇ െ ࢉࢇ ൌ ࢕ࢇ െ 8 ) ࢕ࢊ )

 Or we may estimate the true agreement Ab by removing chance agreement (Ac) from 

observed agreement (Ao): 

࢈࡭ ൌ ࢕࡭ െ ࢉ࡭ ൌ ࢕࡭ െ ࢉࡰ ൌ ࢕࡭ െ 9 ) ࢕ࡰ )

Under the variable random assumption, Eq. 8 does not shrink the reference scale, 

which means it divides by one, that is, does not divide. 

  Let’s extend this to multiple categories with two coders. Let K be number of 

categories and C be the number of cases chance coded: 

ࢉ࡭ ൌ ࡯
૚

ࡷ ∗ ࡷ
∗ ࡷ ൌ

࡯
ࡷ

 
( 10 )

  As C=Ac+Dc (Equation 4) and Dc=Do (Equation 5), Equation 10 becomes: 

ࢉ࡭ ൌ
ࢉ࡭ ൅ ࢉࡰ

ࡷ
ൌ

ࢉ࡭ ൅ ࢕ࡰ

ࡷ
 

( 11 )

  Solving Equation 11 for Ac, we have the following for multiple categories: 

ࢉ࡭ ൌ
࢕ࡰ

ࡷ െ ૚
 

( 12 )

  and 
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ࢉࢇ ൌ
࢕ࢊ

ࡷ െ ૚
 

( 13 )

  Given that ab=ao-ac (Equation 8), we have: 

࢈ࢇ ൌ ࢕ࢇ െ
࢕ࢊ

ࡷ െ ૚
 

( 14 )

To illustrate the assumptions behind reliability indices, Zhao et al. (2012b) provided a 

scenario for each index they reviewed.  Here I provide a scenario for ab to lay bare its 

assumptions, which I will call Black-White Scenario:  

1. Coders place K sets of marbles into an urn, where K equals the number of coding 

categories.  Each set has an equal number of marbles and has its own color.  The 

coders agree on which color represents which category.  Following Zhao et al. 

(2012b), I use “marble” to refer to any physical, virtual or mental element of 

equal probability, and “urn” to refer to any real or conceptual collection of the 

elements. 

2. They take a target to be coded.  Here target is anything under coding, such as an 

advertisement, a news story, a patient, etc. 

3. Together the two coders decide whether the target is easy or difficult to code, and 

they always reach an agreement. If easy, they will code the target as it is, and go 

back to Step 2 to code another case.  If difficult, they will go to Step 4. 
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4. One coder draws a marble randomly from the urn, notes the marble’s color, and 

puts it back. He will code the target following the marble color according to the 

pre-determined color-category scheme.   

5. The other coder does the same. 

6. The coders repeat Step 2 and the subsequent steps, and end the coding session 

when they have thus “coded” all targets. 

  Comparing this Black-White Scenario with Bennett Scenario (Zhao et al., 2012b), we 

see that the assumptions behind ab are very different from those behind Bennett et al’s S. 

Nevertheless, as do=1-ao, Equation 14 can be re-written as: 

࢈ࢇ ൌ ࢕ࢇ	 െ
૚ െ ࢕ࢇ
ࡷ െ ૚

ൌ
ࡷ࢕ࢇ െ ૚
ࡷ െ ૚

 
( 15 )

   Note that Bennett et al (1954) sets ac as a function of K: 

ࢉࢇ ൌ
૚
ࡷ

 
( 16 )

   When ac is inserted into Equation 7, we have Bennett et al’s S: 

ࡿ ൌ
࢕ࢇ െ

૚
ࡷ

૚ െ ૚
ࡷ

ൌ
ࡷ࢕ࢇ െ ૚
ࡷ െ ૚

 

( 17 )

  Comparing Equation 17 with Equation 15, we can see ab is mathematically the same 

as S, even though they are based on very different assumptions. Different assumptions led to 

the same formula, suggesting the following: 
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  First, different assumptions led to the same index. Under the maximum-randomness 

assumption, Equation 7 overestimates chance agreement, and subtracts the inflated amount 

from the numerator, hence suppresses the index.  But the same assumption requires us to 

subtract the same amount from the denominator, which inflates the index. The two effects 

offset each other to produce an index identical to that of under the black-white variable-

randomness assumption. 

  Second, the black-white assumption may not be a sufficient improvement over the 

assumptions behind Bennett et al’s S. The assumption is closer to actual coding situations, 

therefore an improvement in conceptualization, but not enough to also produce an 

improvement in actual computation.  We need a computation under even more realistic 

assumption, which I will call mixed-random assumption.  

 

V. Agreement Index, ai, Under Mixed Randomness Assumption 

Eqs. 8, 13, and 15 derive an agreement index based on a black-white assumption. A 

case is either sufficiently simple, so both coders code it completely systematically and 

accurately, or it is sufficiently difficult, so both coders code it completely randomly. The 

assumption has two statistical implications:  
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1) The two coders’ chance coding has the same pattern.  So their chance judgments 

that cause disagreements are the mirror images of each other.  It would mean that each pair of 

off-diagonal cells equal each other, e.g.,  J12=J21, J13= J31, and J23=J32 in Table 5.  

2) Consequently, each coder’s chance coding is evenly distributed across categories. 

That means chance disagreements (Dc), which equals observed disagreements (Do), are also 

evenly distributed. If we tabulate the coders’ judgments as shown in Table 5, it would mean 

D11=D12= D13, D21=D22= D23, etc. 

[Table 5 About Here] 

Together, the two assumptions expect all off-diagonal cells to be evenly distributed, 

that is, to have equal number of cases in such cells.  Deviations from this pattern are assumed 

to be random variations, hence routinely ignored by Equations 13 & 15.  

Alternatively, we may assume mixed randomness.  Besides the sufficiently simple and 

extremely difficult, many cases are somewhere in between.  A case may be sufficiently 

simple for one coder, who codes it systematically, yet too difficult for another, who codes it 

randomly. Or one coder codes with sufficient care and attention, while the other does so 

while being board or tired. Or one coder may pay attention some times, while get tired other 

times. Or he may pay half attention, or find the task somewhat difficult, so he codes partially 

randomly and partially systematically. Or, when there are three or more categories, a coder 
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may find the differences between some categories clear while others unclear, so he 

differentiates accurately between some categories while randomly between others.  

[Table 6 About Here] 

Table 6 presents a typology of coding based on mixed-randomness assumption.  The 

typology modifies the black-white typology in Table 4 by inserting a new Column 3 for 

mixed coding, including mixed agreements (Am) and mixed disagreements (Dm). Earlier we 

set three criteria for a good typology. 1) It selects appropriate dimension(s) for classifying 

types (Zhao, 2002a; 2004a&b, 2007a); 2) It provides an inclusive list to include all types 

(Zhao, 2002b, 2007b); and 3) It sets mutually exclusive division(s) between types (Zhao, 

2002b, 2007a). If a typology fails on any one of the three tasks, the resulted theory, 

calculation, or formula is likely to err. If we compare Tables 4 and 6, we may say that the 

black-white typology failed to provide an inclusive list. 

Under the mixed randomness assumption, chance coding is still seen as a main factor 

behind all disagreements, but no longer the only factor.  Systematic coding also contributes to 

disagreements. So disagreeing patterns of two coders are not necessarily the mirror images of 

each other, and disagreeing judgments of each coder is not necessarily evenly distributed 

across categories. The uneven pattern of disagreements is not disregarded as random 

variation.  Instead, they are seen as useful information for estimating chance agreement.   
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Consider two scenarios: 1) Both coders code completely randomly; and 2) One coder 

codes completely randomly, while the other systematically and accurately.  With a binary 

scale, both scenarios are expected to generate a 50% disagreement (do) and a 50% agreement 

(ao).  But the agreements in Scenario 1 are expected to be half right and half wrong, while the 

agreements in Scenario 2 should be all right and no wrong.  

 Chance agreement usually has been seen as a unitary concept.  Rarely if ever have 

scholars discussed different types of chance agreements.  The mixed randomness assumption 

challenges this view.  Chance functions differently in mixed coding (Column 3 of Table 6) 

and the purely chance coding (Column 4 of Table 6 ), therefore produces different types of 

chance agreements.   

[Table 7About Here] 

 A target may be coded by both coders accurately, or by one coder accurately while by 

the other randomly, or by both randomly.  When both code randomly, they may randomize 

between all categories or between some categories, e.g., one coder’s difficulty is between 

three categories while the other’s is between two categories.  For a three-category scale, each 

coder has four possible ways of coding, and two coders have 16 possible combinations in 

Table 7. 

 When both coders code randomly, called pure chance coding, it produces either 

erroneous chance agreement (ae), e.g., two coders agree that a target belongs to Category 1 
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when it actually belongs to Category 2, or non-consequential chance agreement (an), which is 

a type of correct chance agreements (ar), e.g., two coders agree that a target belongs to 

Category 1 when it indeed belongs to Category 1.  Mixed coding can produce only one type 

of chance agreement, mixed chance agreement (am), which is also a type of correct chance 

agreements (ar). Mixed coding means that at least one coder codes accurately.  So it cannot 

produce erroneous agreements.  

[Table 8 About Here] 

 The unitary view of chance coding needs to be replaced by a multi-element view, and 

the concept of chance agreement should be replaced by the concept of chance-affected 

agreements. Table 8 shows a typology of chance-affected agreements based on this theory. 

 Some may argue that all chance-affected agreements must be removed. Others may 

focus only on the erroneous chance agreement, and emphasize that the other two types, mixed 

and non-consequential agreements, produce correct results, albeit by accident.  A midway 

approach is to remove all pure chance agreements, including non-consequential and 

erroneous ones.  Together, the three types may constitute an “acceptable range” between 

what must be removed (erroneous agreements) and what could be removed (all chance-

affected agreements). 

 Ideally, we would like to estimate each of the three types, so that researchers may 

pick and choose what to remove.  But typical reliability data contain only observed 
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agreement, observed disagreement, distribution pattern, and scale category, and not much 

more.  So we may not be able to precisely calculate each of the three types.  To be realistic, 

we may have to set a target range between erroneous agreements and all chance-affected 

agreements, and work out a “fuzzy” index whose will hit somewhere in the range. 

 Since we are estimating a type of agreement, that is, chance agreement, our instinct 

might direct our attention to the observed agreements (ao).  But ao may not tell us much.  The 

“agreement row” in Table 6 shows why -- its composition is too complex.  Three cells are not 

empty – Honest and accurate agreement (aa), mixed agreement (am), and, finally, purely 

chance agreement (ac).  We want to estimate ac. But it is mixed with the other two types of 

agreements, especially aa, which comes from systematic coding. Systematic behavior does 

not follow the expected probability of a random process, hence cannot be estimated using 

statistical means.  The composition of ao varies from study to study.  Under Grove-Riffe 

Scenario, if the task is extremely easy, aacould be 100%, so ao=aa=1, and am=ac=0; if the task 

is extremely difficult, it could be 0%, so ao=ac, and aa=am=0. We probably have no way of 

estimating the directly which part of aooccupies how large a share.  While we always want 

more accurate agreements (aa), it is also the main un-estimable part.  

 Parallel to observed agreement (ao) is observed disagreement (do), which may provide 

more useful information for estimating chance agreement.  In Table 6, directly under aa is da, 

disagreement resulted from both coders coding accurately, which is a logical impossibility. If 
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both coders code accurately, they have to agree with each other, so disagreement is 

impossible, which means da is zero by definition  

 Further, deliberate and systematic disagreement (de) is assumed to have been 

prevented or eliminated by the time of data analysis. Therefore the observed disagreement (do) 

have only two components left, mixed disagreement (dm) and pure chance disagreement (dc). 

So do=dm+dc, which implies that composition of observed disagreement (do) is simpler than 

observed agreement (ao), making do more useful for estimating chance agreement.   

 As both dm and dc are chance affected, the distribution pattern of the observed 

disagreement (do) may be a good indicator of the distribution pattern of chance coding. For 

example, in Table 9, of all the disagreements, Coder 1 placed 51.9% in Category 2 (d12=.296), 

while Coder 2 placed 37.0% in the same category (d22=.370). Based on this, we may estimate 

that, of all the chance-affected coding done by Coder 1, 51.9% resulted in his choosing 

Category 2.  Similarly, of all the chance-affected Coding done by Coder 2, 37.0% resulted in 

his choosing Category 3.  The product of the two, .519*.37.0, estimates the percent of 

chance-affected coding that resulted in the two coders agreeing on Category 2 by chance.  

[Table 9 About Here] 

In general, we use D1c/Do to estimate the proportion of the chance-affected coding 

that Coder 1 puts into Category C, and D2c/Do to estimate the proportion of the chance-

affected coding that Coder 2 puts into the same category.  Further, we use the product 



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   58 
 

D1c*D2c /Do
2 to estimate the probability that the two coders’ chance-affected coding 

producing chance-affected agreements on Category C, which I denote as ccc: 

ࢉࢉࢉ ൌ
ࢉ૚ࡰ

࢕ࡰ
∗
ࢉ૛ࡰ

࢕ࡰ
 

 ( 18 )

For example, Eq. 19 calculates cc1, the probability that Coder 1 and Coder 2 agree on 

Category 1 from their chance-affected coding. 

૚ࢉࢉ ൌ
૚૚ࡰ
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 ( 19 )

Adding ccc probability across all categories, we get cc, the probability of two coders 

producing chance-affected agreements from their chance-affected coding: 
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( 20 ) 

 Do=0 indicates zero disagreement, hence no evidence of chance-affected coding, 

therefore no chance-affected agreement, hence cc should be defined as zero, 

ࢉࢉ ൌ ૙ ࢌ࢏ ࢕ࡰ ൌ ૙ ( 21 )

 Note a potential discrepancy between the stated objective and the actual calculation 

reflected in Equation 20.  I set out to estimate chance-affected agreement, which includes 

mixed agreement that is not only affected by chance coding but also by systematic and 

accurate coding.   Equations 19 and 21, however, assume the process is purely by chance. As 

systematic coding does not follow any probability rule, there is no easy way of estimating it. 

Consequently cc may not precisely estimate all chance-affected agreements.  Instead, it 
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measures only a portion of it.  As a result, we may underestimate chance-affected agreements 

when we use cc as a main factor in our estimation. 

When disagreements are evenly distributed between two categories and do not appear 

in any other categories, cc reaches its maximum at 1/2. This can happen when there are no 

other categories or when other categories contain no disagreements.  In Table 9, it means all 

disagreements are in one pair of off-diagonal cells, and are evenly distributed between the 

two cells, e.g. J21=J12 and J1c=J2c=0 for all other off diagonal cells.  

From 1/2, cc decreases in two ways: (1) When distribution between the two cells of 

the pair becomes uneven; e.g. J21≠J12.  It reaches its minimum, zero, when all disagreements 

are in one cell. (2) When disagreements also appear in other categories, that is, when J1c>0 or 

J1c>0 for some other off diagonal cells; cc approaches zero when disagreements are evenly 

distributed in a large number of categories.  Hence,  

0 ≤ cc ≤ ½ ( 22 )

For a binary scale with two coders, cc would be: 

ࢉࢉ ൌ
૚૚ࡰ ∗ ૛૚ࡰ

࢕ࡰ ∗ ࢕ࡰ
൅
૚૛ࡰ ∗ ૛૛ࡰ

࢕ࡰ ∗ ࢕ࡰ
ࢌ࢏ ࢕ࡰ ൐ ૙ 

( 23 )

ࢉࢉ ൌ ૙	 ࢌ࢏ ࢕ࡰ ൌ ૙ ( 24 )

Focusing on conceptual meaning, cc, the probability of two coders producing purely 

chance agreements from their chance-affected coding, may also be defined in terms of Af, the 

number of chance-affected agreements, and Df, the number of chance-affected disagreements: 
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ࢉࢉ ൌ
ࢌ࡭

ࢌ࡭ ൅ ࢌࡰ
 

( 24 )

 Under the assumption that all observed disagreements, Do, is chance affected, Do=Df, 

Eq. 24 becomes: 

ࢉࢉ ൌ
ࢌ࡭

ࢌ࡭ ൅ ࢕ࡰ
 

( 25 )

Rearranging Eq. 25, we have: 

ࢌ࡭ ൌ ࢕ࡰ
ࢉࢉ

૚ െ ࢉࢉ
 ( 26 )

 Defining ac=Af/N, and dividing both sides of Equation 26 by N, we have 

ࢉࢇ ൌ ࢕ࢊ
ࢉࢉ

૚ െ ࢉࢉ
  ( 27 )

 Deriving from Equation 8 (ab=ao-ac) and Equation 27, we have an agreement index, ai, 

based on mixed-randomness assumption: 

࢏ࢇ ൌ ࢕ࢇ	 െ ࢉࢇ ൌ ࢕ࢇ െ ࢕ࢊ
ࢉࢉ

૚ െ ࢉࢉ
 ( 28 )

Because 0 ≤ cc ≤ 1/2 (Inequality 22). 

0 ≤ cc/(1- cc) ≤ 1, hence 0≤do ≤do*cc/(1- cc) 

With this in mind, we compare Eqs. 27 and 28 with Eqs. 6 and 8. We can see that ac 

estimated under the black-white assumption is equal to or larger than ac estimated under the 

mixed randomness assumption; hence ab under the black-white assumption is equal to or 

smaller than ai under the mixed randomness assumption. 
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Under black-white randomness assumption, Equations 13 & 15 treat do as the only 

factor, hence treat the two scenarios as if they are the same. Under mixed randomness 

assumption, the size of do is insufficient to estimate chance agreement. We need to also 

consider the distribution pattern of do. 

Under the mixed randomness assumption, the size of do is still the most important 

factor affecting ac and ai,
4 but the distribution pattern of disagreements becomes another 

factor.  When the pattern is completely even between two categories, ac=do, and ai is simply 

the difference between ao and do. When the disagreement distributes to more categories, or 

distributes unevenly, ac is smaller than do, and can be as small as zero; and ai is larger than 

the difference between ao and do, and can be as large as ao. 

Replacing cc in Equation 28 with the right side of Eq. 20, we have: 

࢏ࢇ ൌ ࢕ࢇ െ ࢕ࢊ ∗
∑ሺࡰ૚ࡰࢉ૛ࢉሻ

࢕ࢊ ∗ ࢕ࢊ െ ∑ሺࡰ૚ࡰࢉ૛ࢉሻ
ሺ࢘࢕ࢌ ࢕ࢊ ൐ ૙ሻ  

 ( 29 )

࢏ࢇ ൌ ૚		ሺ࢘࢕ࢌ ࢕ࢊ ൌ ૙ሻ      

Like all other agreement indices, ai assumes a certain pattern of coder behavior (See 

Zhao et al., 2012b), which is described in the following ai Scenario: 

1. The coders take a target to be coded.  Here target is anything under coding, such 

as an advertisement, a news story, a patient, etc. 

2. Each coder decides whether the target is easy or difficult to code. If he finds it 

easy, he codes the target as it is, then goes back to Step 1 to code another case. If 
                                                 
4  This is equivalent to saying “ao is the most important factor,” since ao=1- do. 
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he finds it difficult, he puts it aside to be coded later, and then go back to Step 1 to 

code another case. The two coders repeat Steps 1 and 2 until all targets have been 

coded by both coders, put aside by both coders, or coded by one and put aside by 

another, at which point they go to Step 3.   

3. For each difficult target, the coder also judges whether it is difficult between two 

categories, three categories, etc., and between which of the categories.  For each 

category, he calculates the percentage frequency of cases he judged difficult, 

which we call “difficulty distribution.”   

4. Each coder prepares a physical or mental urn. He fills the urn with physical or 

mental marbles using “difficulty distribution” as the distribution for marble colors. 

Each coder draw marbles from his urn with replacement to code every target that 

he judged as difficult. 

 In comparison with the scenarios assumed by other major indices (see Zhao et al., 

2012b), ai Scenario appears closer to typical coder behavior, hence should be a more 

reasonable estimate of true agreement from typical studies.  Nevertheless, ai still contains a 

portion in Steps 3-5 that seems to deviate from typical coder behavior.  A revised Steps 3-5 

would be closer to typical coder behavior:  
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3. For each target that a coder decided to be difficult, he judges whether it is difficult 

between two categories, three categories, etc., and between which of the 

categories.   

4.  Each coder prepares K-1 urns, where K equals the number of coding categories.  

The first urn has K sets of marbles, where each set has an equal number of 

marbles and has its own color.  The second urn has K-1 sets of marbles, and so on, 

and the last urn has two sets of marbles. The coders agree on which color 

represents which category.  Here, again, “marble” refers to any physical, virtual 

or mental element of equal probability, and “urn” refers to any real or conceptual 

collection of the elements. 

5. Each coder draws marbles from an appropriate urn with replacement to code every 

target that he judged as difficult.  In the “appropriate urn” the marble colors equal 

the categories between which the coder judges as difficult.  For example, if a 

coder judges the decision to be difficult between three categories, he would draw 

from an urn with three marble colors. 

Index ai is not based on this revised scenario because I have not found a way to model 

the behavior pattern.   

 

VI. Evaluating ai Against Paradoxical  Scenarios and Experimental Data 
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VI.1. Agreement Index (ai) Is Void of Known Paradoxes and Abnormalities 

 Researchers have reported unexpected behavior of various intercoder reliability 

indices (Brennan & Prediger, 1981; Cohen, 1960; Feinstein & Cicchetti, 1990; Grove et al, 

1981; Gwet, 2008, 2010; Hayes & Krippendorff, 2007; Kraemer, 1979; Krippendorff, 2004b; 

Lombard et al, 2002; Riffe et al., 2005; Scott, 1955; Spitznagel & Helzer, 1985; Zwick, 1988).  

Zhao et al. (2012a&b) reviewed 23 indices and identified 23 paradoxes and abnormalities 

 We applied ai to the situations or examples related to each of the 23 paradoxes and 

abnormalities, and performed calculations where needed. During this scrutiny ai did not 

display any sign of the paradoxical or abnormal behaviors of the other indices that Zhao and 

coauthors (2012a&b) described. With regard to avoiding the known paradoxes and 

abnormalities, ai is a clear improvement over each of the 23 indices. 

 

VI.2. Agreement Index (ai) Performed Well in BMC experiment, Because It Relies on 

Right Factors 

Since Benini (1901), dozens of reliability indices have been introduced without the 

support of large-scale empirical data, simulated or observed.  Gwet (2008) started a new 

practice by supporting his AC1 with a Monte-Carlo simulation using computer generated data. 

This study took a step further.  I conducted a controlled experiment that manipulated category 

and difficulty, and measured responses. I then sampled from the individual responses to 
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simulate an experiment with hundreds of coding sessions and various distributions.   

The data support the prior criticism of major indices that they rely on the “wrong” 

factors, namely category or distribution, and do not rely on the “right” factor, namely 

difficulty.  Consequently, these indices’ estimated chance agreements do not predict the 

actual chance agreement accurately, and the most “sophisticated” indices, namely κ, π, and α, 

predicts the opposite of the observations.   

In this section, I extract and analyze the data from the same experiment to evaluate ai 

and compare it with the other indices. The results are inserted into Table 3 for easy 

comparison. 

VI.2.a. Observed disagreement is a reasonable indicator of difficulty. 

While difficulty appears to be the most important factor affecting chance agreement, 

it is not directly observable in typical studies.  To produce a new index based on difficulty, 

we needed a surrogate measure.  Through theoretical analysis, I identified observed 

disagreement, which is readily available in typical studies with two or more coders, 

diagnosticians, or other raters.  Cell D3 of Table 3 shows that observed disagreement (do) is a 

good surrogate, as it is positively and highly correlated with difficulty (r=.882***). 

VI.2.b. Existing indices did not use observed disagreement to estimate chance 

agreement. 

 The six major indices do not appear to take advantage of the observed disagreement. 
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As shown in Cells D5~D10, none of the indices’ estimated chance agreement is highly and 

positively correlated with disagreement.  The highest correlation is a statistically non-

significant r=.088 for Gwet’s estimation. The correlations for κ, π and α are negative and 

substantial, r=-.472*** and r=-.475***, showing again a source of these indices’ 

inaccuracies – not relying on what they should rely on.   

VI.2.c. Chance agreement estimated by ai correlated highly with observed 

disagreement and difficulty but not with distribution or category per se. 

If the major indices do what they shouldn’t and don’t do what they should, ai appears 

to do just the opposite, as is shown in Table 3.  It is not correlated with distribution (r=-.008) 

and is mildly although negatively correlated with category (r=-.186***). This negative 

correlation was due to the same factor that produced the negative correlation between 

category and observed chance agreement (r=-.138**) discussed earlier.  The closeness of the 

the two correlations with each other indicates that the effect of category on ai is about right in 

direction and in magnitude.    

Further, agreement index (ai) successfully used observed disagreement (do) as a 

surrogate measure of difficulty (df) -- ai’s estimated chance agreement (aiac) has an r=.946*** 

with do and an r=.853*** with df (D11 and C11 of Table 3).  Among the estimations of all 

indices, aiac is by far the best predictor of do and df. The second best is AC1 estimation which 

has an r=.088 with do and r=.095 with df. 
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VI.2.d. Chance agreement estimated by ai is the best predictor of observed chance 

agreement.  

It should not be surprising by now that aiac, the chance agreement estimated by ai, is 

by far the best predictor of the observed chance agreement oac.  The correlation between aiac 

and oac is r=.745***, in comparison with the second highest, r=.273*** between Gwet’s 

ACac and oac. 

VI.2.e. Agreement index (ai) is the best predictor of true agreement.  

It should also not be surprising that ai is the best predictor of the observed true 

agreement, at, producing an r=.921***, which is slightly higher than the correlation between 

percent agreement (ao) and at, which has an r=.917***.  Among all the correlations in this 

block (Group III of Column F), these are also the only two that are above 0.9. 

VI.2.f. An on-line software for calculating ai.  

To facilitate the calculation of ai, we have developed an online software that is now 

available http://reliability.hkbu.edu.hk/. It was initially programmed by Guangchao Charles 

Feng and Chi Yang, then further developed and now maintained by Tenly Software. 

 

VII. Conclusion 

The performances of six major indices of intercoder reliability were evaluated against 

actual judgments of human coders in a behavioral Monte Carlo (BMC) experiment. It’s 



A RELIABILITY INDEX (ai) THAT ASSUMES HONEST CODERS AND VARIABLE RANDOMNESS   68 
 

discovered that true random agreement is a function of difficulty but not distribution or 

category per se.The major indices’ estimations, however, rely heavily on distribution, 

category per se, or both, but not on difficulty. Consequently, the correlations between the 

indices’ estimated chance agreements (ac) and the observed chance agreement (oac) were mild 

or negative. When estimating true agreement (at), all six indices underperformed percent 

agreement (ao), which the indices had been designed to improve on. 

The poor or negative correlations between the calculated estimates and the observed 

estimands question the validity of the estimators, namely the indices. The findings support 

the emerging theory that reliability indices available today assume dishonest coders who 

deliberately maximize chance coding, and they are therefore unsuitable for typical studies 

where coders perform chance coding involuntarily when the task is too difficult.  We should 

suspend the use of some indices, especially κ, π and α, until new evidences emerge to show 

when they can play a positive role. A new index or indices are needed.  

This manuscript reports the effort to develop such a new index, agreement index (ai), 

which assumes honest coders and involuntary chance coding. Unlike all other indices, the 

chance agreement estimated by ai is not a function of distribution or category per se, but a 

function of observed disagreement. The BMC experiment has shown that observed 

disagreement is an excellent surrogate indicator of task difficulty.  
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Subsequent analysis shows that ai is void of the 23 known paradoxes that plague other 

indices. In the BMC experiment, the chance agreement estimated by ai was by far the best 

predictor of the observed chance agreement between coders. Index ai also outperformed 

percent agreement and all other six indices while predicting true agreements among the 

coders.  

No index is perfect.  None will be.  Empirical testing of theories and indices and the 

search for a better index will continue. They should continue, especially by different 

researchers using different methods.  Different results may emerge with different tasks, 

designs, coders, instructions, etc. Until new evidences or better indices are available, however, 

ai should be considered a reasonable measure of true agreement between two coders on a 

nominal scale. To facilitate calculation, we have developed an online software available at 

http://reliability.hkbu.edu.hk/. 

It’s hoped that researchers and methodologists will apply ai to actual data and 

compare it with other indices, especially Cohen’s κ (1960), Scott’s π (1955), Krippendorff’s 

α (1970a, 1980), Bennett et al’s S (1954), Perreault and Leigh’s Ir (1989) and Gwet’s AC1 

(2008, 2010, 2012).  It was after years of usage and scrutiny that deficiencies of κ and some 

other indices became known.  It may also take time and application before we know the 

nature of ai. 
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The experimental design may be another contribution of this study.  In a typical 

Monte Carlo experiment, the universe of data is defined by theory-guided assumptions 

assembled to simulate a certain conditions of the real world.   The computer-calculated 

results may simulate human responses to the simulated conditions, but may not test the 

theories and assumptions used to set up the simulation. 

 In this behavior-based Monte Carlo (BMC) experiment, the universe of data is 

defined by actual human behavior in response to the experimental conditions physically 

manipulated by the researcher.  The results may test the theories and assumptions not used to 

set up the experiment.   

What makes this BMC experiment different from typical human behavior experiment 

is that BMC data were not directly analyzed, but instead reorganized through Monte Carlo 

sampling before analysis, so that the data are more representative of real environment under 

which human coders actually behave. In that sense, this BMC experiment is more a behavior 

experiment than a Monte Carlo experiment. The design may also be useful in other studies 

where behavior needs to be observed at individual level but analyzed at group level, such as 

organizational studies. 
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Figure 1. A sample screen seen by some coders in the BMC experiment (for category = 6, difficulty = 1). 
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Table 1  

A Category (4) by Difficulty (8) by Distribution (3) Behavioral Monte Carlo 
(BMC) Experiment * 

 Across:  
Distribution  

(Skew)   

 
50%&50% 

(sk=0.5) 

 25%&75% 
and  

75%&25%  
(sk=0.75) 

1%&99% 
and  

99%&1%  
(sk=0.99) 

 Across:  
Category (K) 

2 4 6 8 2 4 6 8 2 4 6 8

D
if

fi
cu

lt
y 

(d
f)

 

difference 
in pixels (px)

Difficulty 
df=(8-px)/7

            

1 =1.000 4 4 4 4 4 4 4 4 4 4 4 4
2 ≈0.8571 4 4 4 4 4 4 4 4 4 4 4 4
3 ≈0.7143 4 4 4 4 4 4 4 4 4 4 4 4
4 ≈0.5714 4 4 4 4 4 4 4 4 4 4 4 4
5 ≈0.4286 4 4 4 4 4 4 4 4 4 4 4 4
6 ≈0.2857 4 4 4 4 4 4 4 4 4 4 4 4
7 ≈01429 4 4 4 4 4 4 4 4 4 4 4 4
8 =0.0000 4 4 4 4 4 4 4 4 4 4 4 4

* Main cell entries are number of simulated coding sessions (subjects) in each 
experimental condition (cell). 
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Table 2 

A Summary of Main Estimators and Estimands 

 
 Estimators 

 
Indices of 
intercoder 
reliability 
and their 
properties 

 
Author(s) / Designer 

Estimator I 
index 

(estimated true agreement)

Estimator II 
chance agreement  

estimated by each index 
Agreement Index (this manuscript) ai aiac 
Bennett et al (1954) S Sac

Cohen (1960) κ κac 
Gwet (2008, 2010) AC1 ACac 
Krippendorff (1970, 1980) α αac 
Percent Agreement (unknown author) ao aoac 
Perrault and Leigh (1989) Ir Irac 
Scott (1955) π πac

    
  Estimand I Estimand II 

 
Estimands 

 
Observed 

coder 
judgments 

 
Main Estimands 

at  
Observed true (non-
chance) agreement 

oac  
Observed chance 

agreement 
 

 
 

Secondary Estimands 

ar  
Observed right 

agreement 

ae  
Observed erroneous 

agreement 
 

ao 
Observed Agreement 

do 
Observed disagreement  
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Table   3  
Main Findings from Behavioral Monte Carlo (BMC) Experiment (Nt=100, Ns=384) 
 

  Manipulated Variables Observed Variables 
 
 

 A.  
Category 

 
(K) 

B.  
Target 

Distribution 
(Skew) (sk) 

C. 
Difficulty 

 
(df) 

D.  
Percent 

Disagreement  
(do) 

E.  
Chance 

Agreement 
(oac) 

F.  
True 

Agreement 
(at) 

        
Group I. 

Manipulated 
variables 

  1. Category (K) 1.000***  .000  .000   .044 -.138**   .059 
  2. Distribution (Skew) (sk)  .000 1.000***  .000  -.004 -.023   .016 
  3. Difficulty (df)  .000  .000 1.000***   .882***  .765***  -.880*** 

        
 
 

Group II. 
Chance 

Agreement 
Estimated 
by Indices 

  4. Percent Agreement (aoac=0) --- --- --- --- --- --- 
  5. Gwet (ACac) -.813*** -.197***  .095   .088  .273***  -.202*** 
  6. Bennett et al (Sac) -.929***  .000  .000  -.065  .146**  -.053 
  7. Perrault and Leigh (Irac) -.929***  .000  .000  -.065  .146**  -.202*** 
  8. Cohen (κac) -.117*  .659*** -.354***  -.475*** -.390***   .461*** 
  9. Scott (πac) -.116*  .661*** -.351***  -.472*** -.388***   .458*** 
10. Krippendorff (αac) -.116*  .661*** -.351***  -.472*** -.388***   .458*** 

11. Agreement Index (aiac) -.186*** -.008  .853***   .946***  .745***  -.900*** 
        

 
 

Group III. 
Inter-coder 
Reliability 

Indices 

12. Percent Agreement ao -.044  .004 -.882*** -1.000*** -.729***   .917*** 
13. Gwet’s AC1  .351***  .057 -.744***  -.844*** -.743***   .849*** 
14. Bennett et al’s S  .418***  .003 -.752***  -.832*** -.723***   .831*** 
15. Perrault and Leigh’s Ir  .430*** -.021 -.659***  -.747*** -.697***   .774*** 
16. Cohen’s κ  .038 -.540*** -.624***  -.644*** -.415***   .559*** 
17. Scott’s π  .037 -.541*** -.624***  -.644*** -.415***   .559*** 
18. Krippendorff’s α  .037 -.541*** -.624***  -.644*** -.415***   .559*** 

19. Agreement Index (ai)  .071  .006 -.879***  -.987*** -.747***   .921*** 
aoac is the chance agreement estimated by percent agreement ao.  Because it is a constant at zero, the correlation coefficients cannot be calculated.  The 
line serves as a reminder that ao has an estimated chance agreement. 
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Table 4  

A Typology of Coding Based on Black-White Randomness Assumption 

  Systematic Coding Chance Coding 
Right: Source of Variation 
Down: Coding Outcome 

1. Undesired Miscoding 
 

2. Honest & Accurate 
Coding 

3. Honest & Radom Coding 

 
 
 
 

Agreements 
 

Av: Agreement from 
Deliberate Miscoding 

 
(Undesired and assumed zero 

for data analysis) 
 

Systematic miscoding, such as 
deliberate quota, which should 
be prevented through 
monitoring and training. 

Aa: True (Accurate) 
Agreement 

 
 

(Desired) 
 

Most desirable.  

Ac: Chance Agreement 
 

(Undesired and needs 
to be estimated) 

Undesirable but removable in 
estimation. 

 
 
 
 

Disagreements 

Dv: Disagreement from 
Deliberate Miscoding 

 
 (Undesired and assumed zero 

for data analysis) 
 

Systematic miscoding, such as 
deliberate quota, which should 
be prevented through 
monitoring and training. 

Da: Accurate Disagreement 
 

This concept does not exist, 
hence the cell is by definition 

empty.  
    

Dc Chance Disagreement 
 

(Undesired and observed) 
 

Undesirable but removable in 
estimation, and useful in estimating 

the systematic disagreements. 
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Table 5   

Agreements and Disagreements with Two Coders and Three Categories 

  Coder 1   

  Category 1 Category 2 Category 3 D2c d2c N2c 

 

Coder 2 

Category 1 J11 J21 J31 D21=J21+J31 d21=D21/Do N21=J11+J21+J31 

Category 2 J12 J22 J32 D22=J12+J32 d22=D22/Do N22=J12+J22+J32 

Category 3 J13 J23 J33 D23=J13+J23 d23=D23/Do N32=J13+J23+J33 

 D1c D11=J12+J13 

 
D12=J21+J23 D13=J31+J32 Do=D11+D12+D13 

    =D21+D22+D23 
  

d1c d11=D11/Do 

 
d12=D12/Do d13=D13/Do  do= Do/N  

N1c N11=J11+J12+J13 N12=J21+J22+J23 N13=J31+J32+J33   N=N11+N12+N13 
   =N21+N22+N23 

 ao=(J11+J22+J33)/N cc= d11*d21+ d12*d22+ d13*d23 ac= do*(cc/(1-cc) ai=ao-ac 
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Table  6  
A Typology of Coding Based on Mixed-Randomness Assumption 
 
 Systematic Coding Chance Affected Coding 
Right: Source of Variation 
Down: Coding Outcome 

1. Deliberate Miscoding 
 

2. Honest and 
Accurate Coding 

3. Honest and 
Mixed Coding 

4. Honest and Pure 
Chance Coding 

 
 
 
 

Agreements 
 

av (Deliberately miscoded 
agreements, Undesired and 

assumed zero for data 
analysis) 

 
Systematic miscoding, such 
as deliberate quota, which 
should be prevented through 
monitoring and training. 

aa (Purely Accurate 
Agreements, 

Desired) 
 

Most desirable.  

am (Mixed chance agreement.  
Non-consequential) 

At least one coder codes 
systematically, hence 
accurately, while at least 
another codes randomly. It’s 
not bad because the agreed 
result is still accurate  

ac (Pure Chance Agreement, undesired 
and needs 

to be estimated) 
Undesirable but removable in estimation. 

ac=an+ae 
an: correct agreement that is purely by 

chance 
ae: erroneous agreement, which is 
assumed to be all purely by chance  

 
 

 
 

Disagreements 

dv (Deliberately miscoded 
disagreements, undesired 
and assumed zero for data 

analysis) 
Systematic miscoding, such 
as deliberate quota, which 
should be prevented through 
monitoring and training. 

da: True, Purely 
Accurate 

Disagreement 
 

This sub-concept 
does not exist, 

hence the cell is by 
definition empty.  

   

dm (Mixed Disagreement, 
Undesired and observed) 

 
Undesirable but observed 

together with Dc, and useful in 
estimating the pure-chance 

agreements. 

dc (Pure Chance Disagreement, 
undesired and observed) 

 
Undesirable but observed together with 
Dm, and useful in estimating the pure-

chance agreements . 

1. I call dc “pure chance disagreement,” or “chance disagreement.” 
2. df =dm+ dc. I call df “chance affected disagreement” or “chance disagreement.”  
3. Because da is by definition zero and dv is assumed zero, dm+ dc=df constitutes all observed disagreement do, that is, df=do. Hence all disagreements are 
    chance disagreements, while all agreements are not chance agreements. 
4. I call ac “pure chance agreement” or “chance agreement.” 
5. af =am+ac. I call af “chance affected agreement” or “chance agreement.”   
6. ar=aa+am+an. I call ar “right agreement.” Also, ar=ao-ae. 
7. at=aa+am.  I call at “true agreement.” 
8. cq=ac+dm+dc=cc+do where cq is defined as “consequential chance coding.” 
9. Note the difference between aa, at, ar, and an.  They are all “correct.” But their sources and/or compositions are different. 
10. The task is to estimate af.   
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Table  7  

Chance Agreements with Three Categories 

Across: Coder A 
Down: Coder B 

a.  Random between 3 
categories 

b. Random between 
Categories 1&2 

c. Radom between 
Categories 2&3  

d. Accurate Coding 

1. Random between 3 
categories 

a1. Pure Chance 
Agreement  

(Correct & Erroneous) 

b1. Pure Chance 
Agreement  

(Correct & Erroneous) 

c1. Pure Chance 
Agreement 

(Correct & Erroneous) 

d1. Mixed Chance 
Agreement 
(all correct) 

2. Random between 
Categories 1&2 

a2. Pure Chance 
Agreement 

(Correct & Erroneous) 

b2. Pure Chance 
Agreement  

(Correct & Erroneous) 

c2. Pure Chance 
Agreement 

(Correct & Erroneous) 

d2. Mixed Chance 
Agreement 
(all correct) 

3. Random between 
Categories 2&3 

a3. Pure Chance 
Agreement  

(Correct & Erroneous) 

b3. Pure Chance 
Agreement  

(Correct & Erroneous) 

c3. Pure Chance 
Agreement 

(Correct & Erroneous) 

d3. Mixed Chance 
Agreement  
(all correct) 

4. Accurate Coding a4. Mixed Chance 
Agreement 
(all correct) 

b4. Mixed Chance 
Agreement 
(all correct) 

c4. Mixed Chance 
Agreement  
(all correct) 

d4. 
Non-Chance 
Agreement 
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Table 8  

A Typology of Chance-Affected Agreements 

Across: Type of Coding 
Down: Resulted Agreements 

Mixed Coding 
am+dm 

Pure Chance Coding 
ac+dc=an+ae+dc 

Correct Chance Agreement 
(ar=an+am) 

mixed chance agreement 
(am) 

correct chance agreement 
(an) 

Erroneous Chance Agreement 
(ae) 

 
* 

erroneous chance agreement 
(ae) 

* This is an empty cell, as mixed coding cannot produce erroneous agreements.  
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Table 9  

An Example for Calculating Agreement Index ai with Two Coders and Three Categories 

  Coder 1   
  Category 1 Category 2 Category 3 D2c d2c N2c 
 
 
 
Coder 2 

Category 1 J11 

=3 
J21 

=5 
J31 

=1 
D21 

=5+1=6 
d21 

=6/27=0.222 
N21 

=3+5+7=9 
Category 2 J12 

=6 
J22 

=8 
J32 

=4 
D22 

=6+4=10 
d22 

=10/27=0.370
N22 

=6+8+4=18 
Category 3 J13 

=2 
J23 

=9 
J33 

=7 
D23 

=2+9=11 
d23 

=11/27=.407 
N32 

=2+9+7=18 
 D1c D11 

=6+2=8 
D12 

5+9=14 
D13= 

1+4=5 
Do= 

6+10+11=27
  

 d1c d11 

=8/27=.296
d12 

=14/27=.519
d13 

=5/27=.185
 do 

=27/45=0.6 
 

 N1c N11 

=3+6+2=11
N12 

=5+8+9=22 
N13 

=1+4+7=12
  N 

=9+18+18=45
 ao 

=0.4 
cc 

=.296*.222+.519*.370+.185*.407=0.333
ac 

=.6*.333/(1-.333)=0.3 
ai 

=.4-.3=0.1 

 


