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Deep learning inference, providing the model utilization of deep learning, is usually deployed as a
cloud-based framework for the resource-constrained client. However, the existing cloud-based frame-
works suffer from severe information leakage or lead to significant increase of communication cost. In
this work, we address the problem of privacy-preserving deep learning inference in a way that both
the privacy of the input data and the model parameters can be protected with low communication
and computational costs. Additionally, the user can verify the correctness of results with small overhead,
which is very important for critical application. Specifically, by designing secure sub-protocols, we intro-
duce a new layer to collaboratively perform the secure computations involved in the inference. With the
cooperation of the secret sharing, we inject the verifiable data into the input, enabling us to check the
correctness of the returned inference results. Theoretical analyses and extensive experimental results
over MNIST and CIFAR10 datasets are provided to validate the superiority of our proposed privacy-
preserving and verifiable deep learning inference (PVDLI) framework.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In past years, deep neural network (DNN) has achieved
remarkable progresses in various fields, such as object detection
[39,26], object classification [18,10], machine translation [6,7]
and face recognition [40,33]. As the size of datasets increases, the
computational intensity of deep learning grows proportionally.
Recently, significant advances have been made in GPU hardware,
network architectures and algorithms; but for a resource-
constrained client, the large-scale DNN training and inference still
take an impractically long time and massive computational power.

Fortunately, many DNN frameworks have been suggested to
leverage the cloud service to perform the extensive computations.
However, these cloud-based frameworks also bring new security
and privacy challenges. The privacy disclosure would occur at both
the training and the inference phases. Many privacy-preserving
frameworks have been proposed to deal with the privacy issues
at the training phase [27,8,28,37,23,4,13,19], and the inference
phase [46,12,16,32,42]. In the following, we mainly focus on the
privacy issues at the inference phase, which are most relevant to
our work.

In the deep learning inference phase, the privacy leakage mainly
comes from the input data and the deep model itself. Specifically,
the input data usually contain lots of sensitive information that
should be kept private against the cloud server, which cannot be
fully trusted. In addition, the parameters of the well-trained model
also should not be revealed to the unauthorized party. Because the
well-trained model is usually treated as an important asset due to
its extensive training cost. In other words, protecting the privacy of
model parameters has the same significance as keeping the input
data private.

To address these issues, Ocia et al. [24,25] and Chi et al. [5] pro-
posed to split the neural network into two parts: one is conducted
locally, and the other is performed by the cloud. Xu et al. [43] and
Shen et al. [36] suggested to utilize obfuscation neural network
[43] or data morphing [36] to protect the privacy of input data
locally. Additionally, to provide higher security, Zhang et al. [46]
and Tian et al. [41] incorporated with homomorphic encryption
(HE) [2] to encrypt parts of computations in the inference. They
categorized all the DNN computations into two groups: linear
and non-linear computations. Only the linear computations are
performed on the cloud server in the encrypted domain.
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Although the above frameworks preserved the input privacy,
the privacy of model parameters was not considered. Recently, sev-
eral privacy-preserving frameworks that focus on protecting the
privacy of both the input and model parameters were investigated.
The works [12,9,15] employed HE to encrypt the whole network
and conducted the inference in the encrypted domain. Juvekar
et al. [16] proposed a framework that utilizes garbled circuits
(GC) [44] and HE to provide the input privacy and model privacy,
similar to frameworks[32,29,31,30].

Also, many works resorted to secure multi-party computation
to achieve the protection of both input and model parameters.
Ma et al. [22] introduced fully non-interactive privacy-preserving
inference framework under two non-colluding servers. Further-
more, Liu et al. [21] presented MiniONN for transforming the
well-trained neural network to an oblivious neural network with
reasonable efficiency. Shamsabadi et al. [35] investigated a private
DNN training and inference framework for classification, where the
private inference based on secret sharing scheme [34] was con-
ducted among two non-colluding servers.

Additionally, the cloud server may return invalid results for
financial incentives. In many deep learning based applications,
such as autonomous driving and financial risk assessment, invalid
results may cause catastrophic events. Hence, it is very important
that the user has a mechanism to verify the correctness of the
returned results from the cloud server. Certainly, the overhead
induced in performing the verification should be minimized.

In this work, we propose a privacy-preserving and verifiable
deep learning inference (PVDLI) framework that the privacy of
both the input and model parameters can be protected with low
communication and computational costs. Additionally, the user
can also verify the correctness of inference results with small over-
head. Inspired by the proxy pattern of software design pattern [11],
we introduce N þ 1 nodes, called proxy layer, to collaboratively
perform the secure computations involved in the inference. To
securely perform the activation function (non-linear operation),
we approximate the activation function with polynomials during
the fine-tuning phase [3]. By injecting labeled verifiable data into
the input, we can effectively verify the correctness of the inference
results with a high probability. Thanks to the secret sharing, the
injected verification data are indistinguishable from the normal
ones, and hence, preventing the potential attacks which only
return correct results for verification data. It is shown theoretically
that the proposed framework can provide verifiability and privacy
of both input and model parameters against honest-but-curious
participants, even under the challenging case that there exists col-
lusion among the participants. Extensive experimental results are
also provided to validate the superiority of our proposed PVDLI
framework.

The rest of this paper is organized as follows. Section 2 intro-
duces the preliminary. The system model and design goals are
given in Section 3. Section 4 presents the proposed sub-
protocols. The details of the proposed PVDLI framework are
described in Section 5. In Section 6, we provide verifiability analy-
sis and security analysis for evaluating our proposed framework,
under the designed security experiments. Section 7 offers the
experimental results and finally we conclude in Section 8.
2. Preliminary

Deep learning aims to extract complex features from high-
dimensional data and use them to build a model which can relate
inputs to outputs. Usually, deep learning architectures are con-
structed as multi-layer networks so that more abstract features
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are computed as non-linear functions of lower-level ones. Each
layer is connected with the output of the previous layer. In Fig. 1,
we show an example of deep neural network inference. By per-
forming a series of computations, the DNN outputs the logit value.
Then it produces the class prediction probability of the input by
conducting a softmax function with the logit value. Without loss
of generality, we detailedly describe a typical block in VGG16
model [38], which is composed of linear computation, batch nor-
malization, activation and pooling.

Linear Computation. Assume that an input x 2 Rn is fed in this
block. Then it performs linear computation as

z ¼W� xþ b ð1Þ
where the matrixW and vector b denote the weights and bias. Since
the convolutional operation can be transformed to matrix multipli-
cation efficiently, we only consider (1) in the linear computation.

Batch Normalization. After the linear computation, batch nor-
malization is applied to solve internal covariate shift. At the infer-
ence phase, the parameters of batch normalization are fixed. The
batch normalization can be considered as a linear operation
expressed as

u ¼ czþ b ð2Þ
where c and b are well-trained and fixed.

Activation Function. Upon receiving the output of batch nor-
malization, activation function is adopted to selectively activate
neurons. Here, the widely-used ReLU is adopted, which can be
expressed as

t ¼ ReLU uð Þ ð3Þ
Pooling. A pooling layer can be considered as a down-sampling

operation. Here, an average pooling is employed to divide the input
into rectangular pooling regions and computing the average values
of each region. Letting Avg denote the average operation, the pro-
cedure can be expressed as

y ¼ Avg tð Þ ð4Þ
Then, the output of the pooling layer is fed into the next layer for
the subsequent computations. Finally, the DNN network outputs a
logit value and produces the class prediction probability with a soft-
max function.
3. System model and design goals

In this section, we provide the details of our proposed frame-
work, starting with the descriptions on design goals and the sys-
tem model.

3.1. Design goals

We consider a privacy-preserving and verifiable deep learning
inference framework with three entities: one model owner O,
one user U and N þ 1 nodes, called proxy layer placed in between
the user and the model owner. In general, the security threats
faced by the proposed PVDLI come from the behavior of the proxy
layer. Assume that the framework is operated under the honest-
but-curious setting. It implies that the adversary may follow the
framework specification, but are curious about the input data
and model parameters. Additionally, from the aspect of verifiabil-
ity, some nodes in the proxy layer could be lazy. It indicates that
the proxy layer may generate the random/false results to save
the computational power. To provide the privacy protection and



Fig. 1. The architecture of deep learning inference.
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verifiability of the proposed framework, we identify the following
four design goals.

� Privacy: The privacy includes the privacy of input data and the
privacy of model parameters. Specifically, the input data of the
user should be kept secret against the proxy layer. Furthermore,
the model parameters should not be revealed to the proxy layer.
� Efficiency: The computational complexity of the user should be
substantially less than the original inference computation on its
own. Also, the communication cost among the participants
should be minimized.
� Verifiability: The correct results must be verified successfully
by the user. No false results from a cheating proxy layer can
pass the verification with non-negligible probability.
� Accuracy: The inference accuracy of the model should be close
to the one if the deep learning inference is performed on a sin-
gle server.
3.2. System model

The proposed privacy-preserving and verifiable deep learning
inference framework (PVDLI) is illustrated in Fig. 2. As can be seen,
we introduce N þ 1 nodes E ¼ E0;E1; � � � ;ENf g as a proxy layer,
which is inspired by the proxy pattern [11]. In software design pat-
tern, a proxy [11] is an agent object that links the client and the
real serving object behind the scenes. Similarly, our proposed
proxy layer also provides the access of the logical operation, but
hides the information of input data and model parameters.

The pseudocode of the whole framework is shown in Algorithm
1. More specifically, the model owner possesses a well-trained
deep learning model F composed of the model parameters
H ¼ h1; h2; � � � ; hMf g, whereM is the total number of the parameters
in the network. The user U requests to feed a private input x into
the model F for the inference. Firstly, the model owner O negoti-
ates with the user U to choose a proxy layer E composed of one
auxiliary node E0 and N computing nodes E1; � � � ;ENf g. Here, the
computing nodes E1; � � � ;ENf g are responsible for the computation
of DNN inference. The auxiliary node E0 mainly communicates
with each computing node to collect and distribute the temporary
results involved in the inference.
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Algorithm 1.

Algorithm 1The procedure of performing PVDLI

Input:Security parameter k, input data x 2 Zn
p , deep learning

model F, the number of computing nodes N.
Output: Inference result y or error ?.
1: The model owner O and the user U select a proxy layer

E ¼ E0;E1; � � � ;ENf g with N þ 1 nodes.
2: The user U generates a verifiable dataset D.
3: The model owner O obtains the approximation modelF by

polynomial approximations. Then it splits the model
parameters H into N shares:

H 1ð Þ; � � � ;H Nð Þ
n o

 Split H; k;Nð Þ:
4: The user U inserts the verifiable data

X;V; rvf g  Insert x;Dð Þ:
5: The user splits the mixed data X into N shares:

X 1ð Þ; � � � ;X Nð Þ
n o

 Split X; k;Nð Þ:
6: The proxy layer � conducts a series of deep learning

inference computations to obtain logits:

L 1ð Þ; � � � ; L Nð Þ
n o

 f X 1ð Þ;H 1ð Þ
� �

; � � � ; f X Nð Þ;H Nð Þ
� �n o

:

7: The user U aggregates the logits:

R Aggregation L 1ð Þ; � � � ; L Nð Þ
� �

:

8: The user U extracts the result y ¼ R rv½ �, and the verifiable
results R ¼ R i½ �ji 2 1;N½ �; i – rvf g:

9: if verifiable results R ¼¼ V
10: Return y as the inference result of input data x.
11: else
12: Return an error ?.
13: end if

Secondly, the model owner O adopts the polynomials to approx-
imate the activation functions of the well-trained modelF. To pro-
tect the model parameters, the model owner splits the model
parameters H into N shares and distributes the shares to the proxy
layer. Here, the shares of the model parameters are generated
through a simple yet effective secret sharing scheme [34]. To pro-



Fig. 2. The system model of the PVDLI framework.
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vide verifiability, the user U mixes several labeled verifiable data
with the input data x to generate the mixed data X. Similarly,
the user U also splits the mixed data X into N shares and dis-
tributes them to proxy layer to preserve the input privacy.

Upon receiving the shares of model parameters H ið Þ and the

shares of input X ið Þ, each computing node Ei in the proxy layer
makes secure matrix computation collaboratively. The details will
be presented in the subsections below. Eventually, each computing

node in the proxy layer outputs and returns its logit value L ið Þ to the
user U. The user U aggregates them to obtain the results R. At last,
the user U verifies the correctness of labeled verifiable data. If it
passes the verification, the user U outputs the predicted result y
of the input x. Otherwise, it rejects and outputs an error.

The proposed PVDLI framework consists of the six key modules:

� Init Nð Þ ! E;Dð Þ: The model owner O negotiates with the user U
to chooses a proxy layer with N þ 1 nodes E ¼ E0;E1; � � � ;ENf g
for the subsequent collaborative privacy-preserving computa-
tions. The user U generates a verifiable dataset D for the subse-
quent verification.
� DeployModel F; k;Nð Þ ! H 1ð Þ; � � � ;H Nð Þ� �

: The model owner O

approximates the activation functions of the model F with
the polynomials. Then, on input the security parameter k, the
model owner O splits its model parameters of the approximated
model into N shares and distributes them to the computing
nodes in the proxy layer. The details of approximation and dis-
tributing shares will be provided in the subsequent section.

� GenSplitData x;D; k;Nð Þ ! X 1ð Þ; � � � ;X Nð Þ;V; rv
� �

: On input the

security parameter k, the user U randomly selects several veri-
fiable data from the verifiable dataset D. The matrix V repre-
sents the labels of the verifiable data. Then the user U picks
up a random key rv and utilizes the key to combine verifiable
data with the input x to generate the mixed data X. At last,
the user U splits the mixed data X into N shares and distributes

the share X ið Þ to the computing node Ei in the proxy layer.

� Compute H 1ð Þ; � � � ;H Nð Þ;X 1ð Þ; � � � ;X Nð Þ
� �

! L 1ð Þ; � � � ; L Nð Þ
� �

: Upon

receiving the input share X ið Þ and model parameter share H ið Þ,
each computing node Ei in the proxy layer performs the specific
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linear operations of the deep learning model, where 1 6 i 6 N.

Finally, the computing node Ei outputs a logit value L ið Þ and
returns it to the user U, where 1 6 i 6 N.

� Aggregation L 1ð Þ; � � � ; L Nð Þ
� �

! R: Upon receiving all the logit

value L 1ð Þ; � � � ; L Nð Þ
n o

from the proxy layer, the userU aggregates

them to obtain the result R of the mixed data X over the deep
learning model F.
� Verify R;V; rvð Þ ! y [ ?: On input the predicted results R and
the key rv , the user U checks the predicted results of verifiable
data with the labels V. If the verification is successful, it extracts
and outputs the predicted result y of the input x. Otherwise, it
rejects the results and produces an error ?.

4. Secret sharing based secure sub-protocols

Essentially, deep learning inference is completed by a series of
mathematical operations. In our proposed framework, to avoid
the leakage of input and model parameters, all the operations have
to be conducted in a privacy-preserving manner. Based on secret
sharing scheme, we design and implement three secure computa-
tion sub-protocols: secure addition, secure division and secure
multiplication.
� Secure Addition Protocol(SecAdd): Given the random

shares A 1ð Þ
;B 1ð Þ

� �
; A 2ð Þ

;B 2ð Þ
� �

; � � � ; A Nð Þ
;B Nð Þ

� �
of two input matrices

A 2 Zu�n
p and B 2 Zn�v

p , the proxy layer perform secure addition and

output shares C 1ð Þ;C 2ð Þ; � � � ;C Nð Þ
� �

, where

C 1ð Þ þ C 2ð Þ þ � � � þ C Nð Þ ¼ Aþ B. During the execution, no intermedi-
ate values are exchanged.

Specifically, due to the additive property of secret sharing, it can
naturally perform the additive operation in a secure manner. Each
computing node Ei in the proxy layer possesses a pair of share

A ið Þ;B ið Þ
� �

of two input matrices A and B, where 1 6 i 6 N. Then

Ei just adds the shares and outputs the result C ið Þ. Here, it should
be noted that the auxiliary node E0 does not involved in the
computation.
� Secure Division Protocol(SecDiv): Given a division factor

k 2 Zp, and the random shares A 1ð Þ
;A 2ð Þ

; � � � ;A Nð Þ
� �

of input
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A 2 Zu�n
p , the proxy layer performs secure division and output

shares C 1ð Þ;C 2ð Þ; � � � ;C Nð Þ
� �

, where C 1ð Þ þ C 2ð Þ þ � � � þ C Nð Þ ¼ A=k.

Here, the division denotes the element-wised division.

Specifically, Each computing node Ei possesses a share A ið Þ of
input matrix A 2 Zu�n

p , where 1 6 i 6 N. Then the computing node
Ei just divides the share with the factor k and outputs the result

C ið Þ.
� Secure Matrix Multiplication Protocol (SecMul): Given the

random shares A 1ð Þ
;B 1ð Þ

� �
; A 2ð Þ

;B 2ð Þ
� �

; � � � ; A Nð Þ
;B Nð Þ

� �
of two inputs

A 2 Zu�n
p and B 2 Zn�v

p , the proxy layer performs secure multiplica-

tion and outputs shares C 1ð Þ;C 2ð Þ; � � � ;C Nð Þ
� �

, where

C 1ð Þ þ C 2ð Þ þ � � � þ C Nð Þ ¼ A� B. It should be noted that any share of
input and the model parameters should not be sent to the auxiliary
node E0. The auxiliary node E0 merely communicates with the
computing nodes to collect and distribute the temporary result
during the multiplication.

Specifically, each computing node Ei in the proxy layer pos-

sesses shares A ið Þ
;B ið Þ

� �
of two input matrices A 2 Zu�n

p and

B 2 Zn�v
p , where 1 6 i 6 N. Since the multiplication is not sup-

ported by the secret sharing scheme, the proxy layer requires extra
auxiliary random matrices to obtain the production of A and B in a
secure manner. Assume that there exists random matrices
P 2 Zu�n

p ;Q 2 Zn�v
p and O 2 Zu�v

p , where O ¼ P� Q . Each computing

node Ei in the proxy layer can only access the share P ið Þ;Q ið Þ;O ið Þ
� �

of the matrices P;Q and O, respectively, where 1 6 i 6 N. But the
matrices P;Q and O are kept secret against all the nodes in the
proxy layer (including the auxiliary node E0). Here, the shares of
the matrices P;Q and O can be easily generated by the generating
shares algorithm [8]. It should be noted that the auxiliary random
matrices can be prepared efficiently in an offline manner, implying
that the communication and computational cost do not increase.
The procedure of the proposed secure matrix multiplication, illus-
trated in Fig. 3, consists of the following four parts:

� GenAux 1k
� �

! P ið Þ;Q ið Þ;O ið Þ
n oN

i¼1
: Given the security parameter

k, the proxy layer negotiates to choose the auxiliary random

matrices shares P ið Þ;Q ið Þ;O ið Þ
n oN

i¼1
, where P ið Þ;Q ið Þ;O ið Þ present

the i-th share of matrices P 2 Zu�n
p ;Q 2 Zn�v

p ;O 2 Zu�v
p , and
Fig. 3. The architecture of secu
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O ¼ P� Q . The computing node Ei in the proxy layer can only

possess the corresponding share P ið Þ;Q ið Þ;O ið Þ
� �

, where

1 6 i 6 N.

� Mask A ið Þ
;B ið Þ;P ið Þ;Q ið Þ

n oN

i¼1

� �
! E ið Þ; F ið Þ

n oN

i¼1
: The computing

node Ei in the proxy layer, where 1 6 i 6 N, performs the fol-
lowing operations to mask the input matrices shares:
E ið Þ ¼ A ið Þ � P ið Þ; F ið Þ ¼ B ið Þ � Q ið Þ ð5Þ

Then, the computing node Ei sends the share E ið Þ;F ið Þ
� �

to the

auxiliary node E0, where 1 6 i 6 N.

� Split E ið Þ; F ið Þ
n oN

i¼1

� �
! E; F; G ið Þ

n oN

i¼1

� �
: Upon receiving all the

shares E ið Þ; F ið Þ
n oN

i¼1
from N computing nodes in the proxy layer,

the auxiliary node E0 first aggregates the shares to reconstruct
the matrices E and F, and then computes the production of
them.
E ¼
XN
i¼1

E ið Þ; F ¼
XN
i¼1

F ið Þ; G ¼ E� F ð6Þ

Finally, the auxiliary node E0 utilizes additive secret sharing

scheme to split the production G into shares G 1ð Þ; � � � ;G Nð Þ
n o

.

The algorithm details of the generating shares will be described
in the subsequent section. Finally, the auxiliary node E0 returns

E;F;G ið Þ
n o

to the computing node Ei in the proxy layer, respec-

tively, where 1 6 i 6 N.

� Cal E; F; G ið Þ;P ið Þ;Q ið Þ;O ið Þ
n oN

i¼1

� �
! C ið Þ

n oN

i¼1
: Upon receiving

E; F;G ið Þ
n o

from the auxiliary node E0, each computing node

Ei in the proxy layer, where 1 6 i 6 N, computes:
re m
S ið Þ ¼ E� Q ið Þ; T ið Þ ¼ P ið Þ � F ð7Þ
Finally, the computing node Ei in the proxy layer, where
1 6 i 6 N, outputs a matrix share

C ið Þ ¼ G ið Þ þ S ið Þ þ T ið Þ þ O ið Þ ð8Þ
All the shares satisfy the following equation:

C ¼ C 1ð Þ þ � � � þ C Nð Þ ¼ A� B ð9Þ
atrix multiplication.
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The correctness of the secure matrix multiplication can be
demonstrated by the following equations:

C ¼ PN
i¼1C

ið Þ

¼ PN
i¼1 G ið Þ þ S ið Þ þ T ið Þ þ O ið Þ

� �
¼ Gþ Sþ Tþ O
¼ E� Fþ E� Q þ P� Fþ P� Q
¼ A� Pð Þ � B� Qð Þ þ A� Pð Þ � Q
þP� B� Qð Þ þ P� Q

¼ A� B

ð10Þ

Compared with the existing secure matrix multiplication protocols
[35,16,22], our proposed sub-protocols can securely support two
matrix multiplication with more than 2 parties, even under the col-
luding settings. Specifically, since the N � out � of � N secret shar-
ing scheme is adopted, even though some parties collude with
each other, our proposed protocols can still effectively protect the
privacy of the input and output. Additionally, our proposed protocol
can support secure matrix multiplication with small communica-
tion cost. Since the random masks matrices P;Q ;Of g can be pre-
pared offline and reused, it reduces the communication cost
among all the computing parties.
5. The proposed framework

In this section, we provide the details concerning the six parts of
our proposed PVDLI framework.

5.1. Init Nð Þ ! E;Dð Þ

Firstly, the model owner O negotiates with the userU to select a
proxy layer with N þ 1 nodes including one auxiliary node E0 and
N computing nodes E1; � � � ;ENf g for the subsequent collaborative
computations. Here, it is reasonable to assume that N P 2, which
is a requirement raised from the secret sharing scheme to be
adopted.

Here, it should be noted that the number of nodes will not affect
the accuracy of the inference since all the nodes only involve the
secure sub-protocols, which are proved to be equivalent to the
original computations. But the number of nodes does have impact
on the privacy guarantees. Specifically, the larger number of nodes
indicates higher privacy-preserving level when collusion occurs
among the nodes. More security analysis will be provided in the
Section 6.

Then, to provide the verifiability, the user U generates a verifi-
able dataset D ¼ d1; � � � ;dLf g. Here, the verifiable dataset can be
generated offline and reusable. The requirement of each di is that
its inference result (the label) can be easily estimated or obtained.
Since the privacy of input data can be well-preserved via secret
sharing scheme, in the view of the proxy layer, all the input data
are random values. Therefore, the proxy layer cannot distinguish
the verifiable data di and the input x. There are many options when
choosing the verifiable data di; it could be labeled testing data or
even dummy data (noise or meaningless data) that can be easily
verified.

5.2. DeployModel F; k;Nð Þ ! H 1ð Þ; � � � ;H Mð Þ� �
With the well-trained model F, security parameter k and the

number of computing nodes N, this module approximates the acti-
vation function of the model F with polynomials, and splits the
model parameters into N shares.
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Since the activation functions are usually non-linear operations,
which cannot be securely performed with secret sharing scheme.
Although many works focused on investigating secure computa-
tions of non-linear operations, e.g. secure division, secure compar-
ison and secure exponentiation, high communication cost and
inefficiency make these methods impractical in real applications.
To solve these challenges, we replace the activation functions with
polynomials to facilitate the subsequent secure computations.
Specifically, the model owner O adopts polynomials with degree
d to approximate all the activation functions of the well-trained
model F. The criterion of choosing the degree d will be discussed
in Section 7. The polynomial f xð Þ can be formulated as

f xð Þ ¼ a0 þ a1xþ � � � þ adxd

Here, all the coefficients a0; a1; � � � ; adf g in the polynomials are train-
able. After the replacement, the model owner O continues to fine-
tune the model F with a few iteration to obtain the new approxi-
mation model �F.

Let H ¼ h1; � � � ; hMf g denote the flatten vectors of all the weight
variables of the deep learning model �F, whereM denotes the num-
ber of parameters in the model. To protect the privacy of the model
parameters H, we propose to use a simple yet effective N-out-of-N
additive secret sharing scheme [34]. Specifically, the model owner
O splits the model parameters H into N shares, and distributes the
share H ið Þ to the computing node Ei in the proxy layer, where
1 6 i 6 N. In this way, each computing node in the proxy layer only
possesses a share of the model parameters H.

Specifically, the procedure of generating the parameter shares
consists of the following two parts:

� Setup 1k
� �

! Ko: Given the security parameter k, model owner O

generates a secret key Ko from a specified key space 0;1f gk.
Both the resource requirements of the cryptographic algorithm
and the adversary’s probability of breaking the security can be
expressed in terms of the security parameter k.
� GenShares Ko;H;Nð Þ ! H 1ð Þ; � � � ;H Nð Þ� �

: The model owner O uti-
lizes the secret key Ko to generate pseudorandom number
sequence so as to split the model parameters H into N shares.
Specifically, on input a seed Ko, a �-forward secure pseudoran-
dom number generator (PRNG) [1] is adopted to produce a
pseudorandom sequence ro ¼ rif gti¼1, where t ¼ M � N � 1ð Þ
and ri 2 0;1f gl1 . Then the model owner employs this sequence
ro to generate shares of the model parameter H by employing
the generating algorithm [8], denoted as Alg. Then the proce-
dure can be expressed as
Alg H; ro;Nð Þ ! H 1ð Þ; � � � ;H Nð Þ� 	 2 ZM�N
p ð12Þ

Finally, the model owner O distributes the share H ið Þ to the com-
puting node Ei in the proxy layer, respectively, where 1 6 i 6 N.

5.3. GenSplitData x;D; k;Nð Þ ! X 1ð Þ; � � � ;X Nð Þ;V; rv
� �

With the security parameter k and the verifiable dataset D, the
user U mixes the verifiable data and input data to generate mixed
data X. Then, the user U splits the mixed data X into N shares and
distributes them to the proxy layer. Specifically, to provide verifia-
bility, the user U randomly chooses J verifiable data
I1; � � � ; IJ

� 	 2 Rn�J from dataset D. Here, let V ¼ V1; � � � ;VJ
� 	

denote
the labels of J verifiable data. Then, the user U randomly picks up
an index rv , where 1 6 rv 6 J, and mixes the input data x and the
verifiable data I to construct the mixed data
X ¼ I1; � � � ; Irv�1;x; Irv ; � � � ; IJ

� 	 2 Rn� Jþ1ð Þ.
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Similarly, a secret key Ku is randomly selected from all bit-
strings of length k, then the user U splits the mixed data X into

shares X 1ð Þ; � � � ;X Nð Þ
n o

by the shares generating algorithm in [8].

Additionally, the user U distributes the share X ið Þ to the computing
node Ei in the proxy layer, respectively, where 1 6 i 6 N. In this sit-
uation, each computing node in the proxy layer only accesses a
share of the mixed data X, indicating that the input privacy can
be provided. Since splitting the mixed data into shares, the verifi-
able data can be perfectly mixed with the input data, implying that
the adversary cannot separate them apart.

5.4. Compute H 1ð Þ; � � � ;H Nð Þ;X 1ð Þ; � � � ;X Nð Þ
� �

! L 1ð Þ; � � � ; L Nð Þ
� �

In this module, the proxy layer securely performs the deep
learning inference with the shares of the input and model param-
eters. Based on secret sharing scheme, we propose three secure
sub-protocols: SecAdd, SecDiv and SecMul, whose details have been
provided in Section 4. As described in Section 2, the operations in
the deep learning inference consist of linear computation, batch
normalization, activation and pooling. All these computations can
be securely conducted by utilizing proposed sub-protocols. With-
out loss of generality, we consider a typical block in VGG16 [38]
which is composed of linear computation, batch normalization,
activation and average pooling, illustrated in Fig. 4. Here, to pro-
vide the verifiability, we feed a batch of data X (consisting of the
original input x and verifiable data I) into the network for infer-
ence. The computation of this block can be expressed as:

Z ¼W� Xþ B ð13Þ

U ¼ cZ þ b ð14Þ

T ¼ a1Uþ � � � þ adU
d ð15Þ

Y ¼ Avg Tð Þ ð16Þ
where Avg denotes the average operation, c and b are well-trained
and fixed. Subsequently, we present how to securely perform these
computations with the proxy layer in details.

Linear Computation. Recall that each computing node Ei pos-

sesses the model parameters share H ið Þ and input share X ið Þ, con-
sisting of the shares of input x and verifiable data I. Firstly, the
computing node Ei extracts and reformatsH ið Þ to obtain the weight

matrix W ið Þ 2 Zu�n
p and bias b ið Þ 2 Zu

p . Here, due to the change of

input data X ið Þ 2 Zn� Jþ1ð Þ
p (rather than the original input x 2 Zn

p),
Fig. 4. Performing the computati
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the bias b ið Þ 2 Zu
p is required to extend to matrix B ið Þ 2 Zu� Jþ1ð Þ

p for

batch inference, where B ið Þ ¼ b ið Þ � 1. Then, to perform the linear
computation Z ¼W� Xþ B, the proxy layer merely performs
secure matrix multiplication and secure addition, expressed as:

SecMul W ið Þ;X ið Þ
n oN

i¼1

� �
! C 1ð Þ; � � � ;C Nð Þ ð17Þ

SecAdd C ið Þ;B ið Þ
n oN

i¼1

� �
! Z 1ð Þ; � � � ;Z Nð Þ ð18Þ

The output Z 1ð Þ; � � � ;Z Nð Þ
n o

are the shares of Z, where Z ¼W� Xþ B.

Batch Normalization. After linear computation, batch normal-
ization is applied to solve internal covariate shift. Since the param-
eters in the batch normalization are fixed at the inference phase,
the batch normalization operation can be performed as a linear
computation described in (14). Similarly, each computing node Ei

in the proxy layer can extract from H ið Þ and reformat to obtain
the shares c ið Þ and b ið Þ, where 1 6 i 6 N. Then, the proxy layer per-
forms secure matrix multiplication and secure addition to com-
plete the batch normalization, expressed as

SecMul c ið Þ;Z ið Þ
n oN

i¼1

� �
! C 1ð Þ; � � � ;C Nð Þ ð19Þ

SecAdd C ið Þ; b ið Þ
n oN

i¼1

� �
! U 1ð Þ; � � � ;U Nð Þ ð20Þ

Activation. As described in Section 5.2, we have replaced the
activation functions with the approximated polynomials [3]. In this
way, the non-linear operation is transformed to linear computa-
tions. Since it is similar with the above linear computation, we just
provide the major procedures. Specifically, in (16), the coefficients
a1; a2; � � � ; adf g are extracted from H ið Þ. The element-wise exponen-
tiation can be securely implemented by several multiplications.
Hence, the computation of activation can be approximated with
polynomials by securely performing a series of secure multiplica-
tions and additions. Eventually, each computing node Ei outputs

a share T ið Þ, where 1 6 i 6 N.
Average Pooling. The main procedure of average pooling is to

add the values in a rectangular region and perform the average.
It consists of addition and division with pool size. Hence, we can
also utilize the secure addition and secure division to complete
the average pooling.

Finally, all the computations in the deep learning inference can
be performed one layer by one layer. Finally, in the last layer, each

computing node Ei outputs a logit value share, expressed as L ið Þ,
where 1 6 i 6 N.
ons by secure sub protocols.
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5.5. Aggregation L 1ð Þ; � � � ; L Nð Þ
� �

! R

Upon receiving all the logit value shares L 1ð Þ; � � � ; L Nð Þ
n o

from the

proxy layer, the userU aggregates them to obtain the logit value of
the deep model.

L ¼
XN
i¼1

L ið Þ ð21Þ

The final inference result R depends on the type of the deep learn-
ing task. If the deep learning model is a prediction task, then R ¼ L.
If it is a classification task, then R ¼ softmax Lð Þ.

5.6. Verify R;V; rvð Þ ! y [ ?

Upon aggregating all the shares to obtain the inference results
R, the user U checks the correctness of the inference. Specifically,
on input the key rv , the user U extracts the rv-th column vector
y ¼ Rrv . Let R denote the rest of the matrix R. Then the userU com-
pares the results R with the labels V. If it is the same, the user U
accepts y as the inference result of the input x. Otherwise, it rejects
and outputs an error ?.

It should be noted that, if the input privacy is not provided,
meaning that the proxy layer can easily distinguish the verifiable
data from input data x, the proxy layer can output the correct
result of verifiable data and false result of input data to destroy
the verifiability. Hence, the success of verification is coupled with
the protection of input privacy.

6. Security experiments, security analysis and verifiability
analysis

In this section,we theoretically analyze our proposed framework
under the honest-but-curious setting. Similar with the works
[45,14], we conduct the security analysis based on the computa-
tional indistinguishabilitywith designed experiments. Before giving
the analysis, we first describe the security experiments, based on
which we then present the security analysis. We use the notation

x R S to denote that x is chosen uniformly at random from the set
S. A function f nð Þ is said to be negligible if for a sufficiently large
n, its value is smaller than the inverse of any polynomial poly nð Þ.

6.1. Security experiments

The security requirement of privacy includes the privacy of input
data and the privacy of model parameters, meaning that both the
privacy of input data and the model parameters should be pro-
tected. Before discussing the security of the whole framework,
we first analyze the security experiments of three sub-protocols:
secure addition, secure division and secure multiplication.

We first assume that the proposed framework is operated under
non-collusion situation, indicating that there is no collusion
between the auxiliary node E0 and computing nodes E1; � � � ;ENf g
in the proxy layer. Due to the natural property of secret sharing
scheme, secure addition protocol SecAdd and secure division proto-
col SecDiv are secure against honest-but-curious proxy layer. In the
following, we mainly focus on analyzing security experiments of
secure multiplication protocol.

Firstly, we analyze the security game of secure matrix multipli-
cation with honest-but-curious nodes in the proxy layer. Since the
auxiliary node E0 and computing nodes E1; � � � ;ENf g have different
knowledge of the intermediate data, we consider the auxiliary
node E0 and computing nodes E1; � � � ;ENf g separately. We first
analyze the security game of secure matrix multiplication with
honest-but-curious computing nodes E1; � � � ;ENf g. Under this sce-
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nario, all the computing nodes E1; � � � ;ENf g in the proxy layer fol-
low the system specification; but each computing node attempts
to obtain or recover the matrix A and B. Since the secure matrix
multiplication protocol performs the same operation with the
matrix A and B, we only need to analyze one, and the result is
applicable to the other one. For simplicity, we consider to analyze
the privacy of A as an example, and consider the computing node
E0 as the challenger, who protects the matrix A from other com-
puting nodes’ attack. In the experiment, the adversaryA is allowed
to query the protocol on the matrix Aj of its choice a polynomial

times, and obtain the input matrix shares A ¼ A 2ð Þ
; � � � ;A Nð Þ

n o
, cor-

responding results shares Cj ¼ C 2ð Þ; � � � ;C Nð Þ
n o

, the intermediate

result Ej; Fj and Gj ¼ G 2ð Þ
j ; � � � ;G Nð Þ

j

n o
, where j is the index for the

query. A outputs two matrices A 0½ � and A 1½ � on which it would like

to be challenged. A random bit b is drawn. A is then given C b½ �,
which is the output share of A b½ � and B b½ �. Eventually, the adversary
A outputs its guess for b and wins if it could correctly determine
the value of b, i.e., distinguishing between A 0½ � and A 1½ �. Since the
query is almost the same as that of distinguishing procedure, in
the below, we only provide the procedures after q times queries
for simplicity.

Experiment ExpCPA�M�I
A k;Nð Þ

A 0½ �;A 1½ �
� 	 A Aj;Cj;Gj;Ej; Fj

n oq

j¼1

� �

b R 0;1f g; Ko;Ku  Setup 1k
� �

; B b½ �  R Zn�v
p

P ið Þ
b½ �

n oN

i¼1
 R Zu�n

p ; Q ið Þ
b½ �

n oN

i¼1
 R Zn�v

p ; O ið Þ
b½ �

n oN

i¼1
 R Zu�v

p

B 1ð Þ
b½ � ; � � � ;B Nð Þ

b½ �

n o
 GenShares Ku;B b½ �;N

� �
A 1ð Þ

b½ � ; � � � ;A Nð Þ
b½ �

n o
 GenShares Ko;Aj;N

� �
E ið Þ

b½ �; F
ið Þ
b½ �

n oN

i¼1
 Mask A ið Þ

b½ �;B
ið Þ
b½ �;P

ið Þ
b½ �;Q

ið Þ
b½ �

n oN

i¼1

� �

E b½ �; F b½ �; G ið Þ
b½ �

n oN

i¼1

� �
 Split E ið Þ

b½ �;F
ið Þ
b½ �

n oN

i¼1

� �

C ið Þ
b½ �

n oN

i¼1
 Cal E b½ �;F b½ �; G ið Þ

b½ �;P
ið Þ
b½ �;Q

ið Þ
b½ �;O

ið Þ
b½ �

n oN

i¼1

� �

C b½ � , C ið Þ
b½ �

n oN

i¼2
; A b½ � , A ið Þ

b½ �

n oN

i¼2
; G b½ � , G ið Þ

b½ �

n oN

i¼2

b̂ A Aj;Cj;Gj;Ej;Fj

n oq

j¼1
;A b½ �;C b½ �;G b½ �;E b½ �;F b½ �

� �
if b̂ ¼ b return 1; else return0

For any k 2 N, we define the advantage of an adversary A mak-
ing at most q ¼ poly kð Þ queries in the above security game as

AdvCPA�M�I
A k;N; qð Þ ¼ jPr ExpCPA�M�I

A k;Nð Þ ¼ 1
h i

� 1=2j ð22Þ

Definition 1. We say that a secure matrix multiplication protocol
ensures the privacy of the matrix A against any honest-but-curious
computing nodes E1; � � � ;ENf g in the proxy layer if for any
adversary A and k, it holds that the advantage

AdvCPA�M�IA k;N; qð Þ is negligible.

Secondly, we analyze the security game of secure matrix multi-
plication with honest-but-curious auxiliary node E0 in the proxy
layer. Under this scenario, all the nodes in the proxy layer follow
the system specification; but the auxiliary node E0 attempts to
obtain or recover the matrix A and B. For simplicity, we consider
to analyze the privacy of A as an example. In the experiment, the
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adversaryA is allowed to query the protocol on the matrix Aj of its
choice a polynomial times, and obtain the corresponding result

shares bCj ¼ C 1ð Þ; � � � ;C Nð Þ
n o

the intermediate result Ej; Fj;Gj and

bGj ¼ G 1ð Þ
j ; � � � ;G Nð Þ

j

n o
, where j is the index for the query. A outputs

two matrices A 0½ � and A 1½ � on which it would like to be challenged. A

random bit b is drawn. A is then given C b½ �, which is the output
share of A b½ � and B b½ �. Eventually, the adversary A outputs its guess
for b and wins if it could correctly determine the value of b, i.e., dis-
tinguishing between A 0½ � and A 1½ �. Since the query is almost the
same as that of distinguishing procedure, in the below, we only
provide the procedures after q times queries for simplicity.

For any k 2 N, we define the advantage of an adversary A mak-
ing at most q ¼ poly kð Þ queries in the above security game as

AdvCPA�M�II
A k;N; qð Þ ¼ jPr ExpCPA�M�II

A k;Nð Þ ¼ 1
h i

� 1=2j ð23Þ

Definition 2. We say that a secure matrix multiplication protocol
ensures the privacy of the matrix A against any honest-but-curious
auxiliary node E0 in the proxy layer if for any adversary A and k, it

holds that the advantage AdvCPA�M�IIA k;N; qð Þ is negligible.

Experiment ExpCPA�M�II
A k;Nð Þ

A 0½ �;A 1½ �
� 	 A bCj; bGj;Ej;Fj;Gj

n oq

j¼1

� ��

b R 0;1f g; Ko;Ku  Setup 1k
� �

;B b½ �  R Zn�v
p

P ið Þ
b½ �

n oN

i¼1
 R Zu�n

p ; Q ið Þ
b½ �

n oN

i¼1
 R Zn�v

p ; O ið Þ
b½ �

n oN

i¼1
 R Zu�v

p

B 1ð Þ
b½ � ; � � � ;B Nð Þ

b½ �

n o
 GenShares Ku;B b½ �;N

� �
A 1ð Þ

b½ � ; � � � ;A Nð Þ
b½ �

n o
 GenShares Ko;Aj;N

� �
E ið Þ

b½ �;F
ið Þ
b½ �

n oN

i¼1
 Mask A ið Þ

b½ �;B
ið Þ
b½ �;P

ið Þ
b½ �;Q

ið Þ
b½ �

n oN

i¼1

� �

E b½ �; F b½ �; G ið Þ
b½ �

n oN

i¼1

� �
 Split E ið Þ

b½ �;F
ið Þ
b½ �

n oN

i¼1

� �

C ið Þ
b½ �

n oN

i¼1
 Cal E b½ �; F b½ �; G ið Þ

b½ �;P
ið Þ
b½ �;Q

ið Þ
b½ �;O

ið Þ
b½ �

n oN

i¼1

� �

C b½ � , C ið Þ
b½ �

n oN

i¼2
; G b½ � , G ið Þ

b½ �

n oN

i¼2

b̂ A bCj; bGj;Ej;Fj;Gj

n oq

j¼1
; bC b½ �; bG b½ �;E b½ �;F b½ �;G b½ �

� �

if b̂ ¼ b return 1; else return 0
6.2. Security analysis

To formulate the data secrecy in our proposed framework, we
proceed with security games and analyze the adversaryA’s advan-
tage in winning the experiment.

Theorem 1. The proposed secure matrix multiplication protocol holds
indistinguishability with honest-but-curious computing nodes
E1; � � � ;ENf g in the proxy layer according to the Definition 1.
Proof. The proof is based on the analysis of A’s advantage

AdvCPA�M�I
A k;N; qð Þ. Similar to the proof of above theorems, we

can also define security games to analyze the adversary’s
advantage.
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Game Game0. Define Game0 to be the same as ExpCPA�M�I
A k;Nð Þ.

Specifically, A wins the game if the experiment returns 1,
indicating that the adversary A can distinguish A 0½ � from A 1½ �.
When A b½ � is given, where b 2 0;1f g is a random bit, the computing

nodes output the production result shares C 2ð Þ
b½ � ; � � � ;C

Nð Þ
b½ � . Here, the

generation procedure of A b½ � is driven by a �-forward secure PRNG.
We now construct a detailed version of the security game.

Game Game1. Define Game1 in the pseudocode below. Let T1 be

the event that b̂ ¼ b in the game Game1. It can be easily seen that
the probability of distinguishing A 0½ � from A 1½ � is equal to Pr T1½ �.

GameGame2. DefineGame2 to be the sameasGame1 except that

the sequence r 1ð Þ ¼ r 1ð Þ
1 ; � � � ; r 1ð Þ

t

n o
is replaced by a truly randomone.

Let T2 be the event that b̂ ¼ b in the game Game2. Due to the

employment of the truly random sequence, the adversary’s output b̂
is independent of the hidden bit b. Hence, the adversary A can
correctly guess the bit b with probability 1=2, i.e.,

Pr T2½ � ¼ 1
2

ð24Þ

Experiment ExpCPA�M�I
A k;Nð Þ

A 0½ �;A 1½ �
� 	 A Aj;Cj;Gj;Ej; Fj

n oq

j¼1

� �

b R 0;1f g; Ko;Ku  Setup 1k
� �

;B b½ �  R Zn�v
p P ið Þ

b½ �

n oN

i¼1
 R Zu�n

p ;

Q ið Þ
b½ �

n oN

i¼1
 R Zn�v

p ; O ið Þ
b½ �

n oN

i¼1
 R Zu�v

p

B 1ð Þ
b½ � ; � � � ;B Nð Þ

b½ �

n o
 GenShares Ku;B b½ �;N

� �
r b½ � , r1; � � � ; rtf g  Gt

fs Koð Þ; A 1ð Þ
b½ � ; � � � ;A Nð Þ

b½ �

n o
 Alg A b½ �; r b½ �;N

� �
E ið Þ

b½ �; F
ið Þ
b½ �

n oN

i¼1
 Mask A ið Þ

b½ �;B
ið Þ
b½ �;P

ið Þ
b½ �;Q

ið Þ
b½ �

n oN

i¼1

� �

E b½ �; F b½ �; G ið Þ
b½ �

n oN

i¼1

� �
 Split E ið Þ

b½ �;F
ið Þ
b½ �

n oN

i¼1

� �

C ið Þ
b½ �

n oN

i¼1
 Cal E b½ �;F b½ �; G ið Þ

b½ �;P
ið Þ
b½ �;Q

ið Þ
b½ �;O

ið Þ
b½ �

n oN

i¼1

� �
;

C b½ � , C ið Þ
b½ �

n oN

i¼1
b̂ A Aj;Cj;Gj;Ej;Fj

n oq

j¼1
;A b½ �;C b½ �;G b½ �;E b½ �;F b½ �

� �

if b̂ ¼ b return 1; else return 0

Here, Alg denotes the generating algorithm in [8], and Gt
fs repre-

sents a �-forward secure PRNG [1].
Then, we can infer that jPr T1½ � � Pr T2½ �j is equivalent to the

adversary’s advantage for �-forward secure PRNG, i.e.,

jPr T1½ ��Pr T2½ �j ¼ jPr D Gt
fs Koð Þ

� �
¼1

h i
�Pr D r01; � � � ;r0t

� �¼1

 �j6 � ð25Þ

where the last inequality holds from the definition of �-forward
secure PRNG [8]. Then, combining (24) and (25), we have

jPr T1½ � � 1=2j 6 � ð26Þ
where � is considered as negligible. It implies that the probability of
distinguishing A 0½ � from A 1½ � is arbitrarily close to 1=2. Alternatively,
the adversary’s advantage can be formulated as

AdvCPA�M�I
A k;N; qð Þ ¼ jPr T1½ � � 1=2j 6 � ð27Þ

Therefore, we conclude that the adversary’s advantage is negligible
in wining the game Game0. This completes the proof. h
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Theorem 2. The proposed secure matrix multiplication protocol holds
indistinguishability with honest-but-curious auxiliary node E0 in the
proxy layer according to the Definition 2.
Proof. The proof can be also based on the analysis of the adver-
sary’s advantage in the security experiment ExpCPA�M�II

A k;Nð Þ. Sim-
ilar to the proof of Theorem 1, we can also define security games to
analyze the adversary’s advantage. For simplicity, we only provide
a proof sketch. In the secure matrix multiplication protocol, the
auxiliary node E0 only has the knowledge of E; F (masked version
of input matrix A;B), their production matrix G and the shares

G 1ð Þ; � � � ;G Nð Þ
n o

. As the input matrix is masked by two random

matrices P and Q , which are generated by a �-forward secure
PRNG, the auxiliary node E0 cannot distinguish the input matrix
from a random matrix. Therefore, secure matrix multiplication
protocol holds the indistinguishability against the honest-but-
curious auxiliary node E0. This completes the proof. h
Theorem 3. The proposed secure matrix multiplication protocol can
protect both the matrix A and B (the input and the model parameters)
against honest-but-curious auxiliary node E0 and computing nodes
E1; � � � ;ENf g in the proxy layer under the no-collusion situation.
Proof. Since secure matrix multiplication protocol performs the
same operation with the matrix A and B, we can similarly prove
that secure matrix multiplication protocol can protect the privacy
of the matrix B against the honest-but-curious the auxiliary node
E0 and computing nodes E1; � � � ;ENf g according to Theorem 1
and Theorem 2. According to the above analysis, it can be inferred
that our proposed sub-protocols can protect the input privacy
against the proxy layer under the no-collusion situation, implying
that the input data and model parameters are both protected. Since
our proposed framework is essentially composed of a series of
secure sub-protocols, it implies that our proposed framework can
also preserve the privacy of input and model parameters against
the proxy layer under the no-collusion situation. h

At last, we consider the challenging case, when the collusion
exists in the proxy layer. It implies that some computing nodes col-
lude with the auxiliary node to obtain the input or model
parameters.

Theorem 4. The proposed PVDLI framework protects the privacy of
the model parameters and the input against the honest-but-curious
proxy layer under collusion situation if and only if there exists at least
one trustful node among the computing nodes E1; � � � ;ENf g.
Proof. Firstly, we analyze the case when the number of the trust-
ful computing node jEjP 1, and then consider the extreme case
when jEj ¼ 1. Without loss of generality, we assume that the trust-
ful node is E1, and the rest of participants E2; � � � ;ENf g collude with
the auxiliary node E0.

The adversary has the knowledge of input shares

X 2ð Þ; � � � ;X Nð Þ
n o

, model parameter shares H 2ð Þ; � � � ;H Nð Þ
n o

and the

intermediate values G 2ð Þ; � � � ;G Nð Þ
n o

;E and F. Since the protection

strategy of input is the same as that of model parameters, we
consider the privacy of input as an example. The adversary tries to
aggregate the known input shares to recover the input X,
expressed as

X ¼
XN
i¼2

X ið Þ ð28Þ
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According to the generating algorithm in [8], it can be inferred that
the difference between the input X and the recovered input X is the
share X 1ð Þ. Since the share is split by a �-forward secure PRNG, X 1ð Þ is
random drawn from Zn� Jþ1ð Þ

p . It implies that the adversary cannot

distinguish it from the truely random values when jEj ¼ 1.
Now we analyze the situation when the number of trustful

computing node jEj < 1. It implies that all the computing nodes
collude with the auxiliary node E0. Assume that each computing
node has the probability p of colluding with the other nodes, then
the collusion probability can be easily computed as pN . The

adversary has the knowledge of input shares X 1ð Þ; � � � ;X Nð Þ
n o

,

model parameter shares H 1ð Þ; � � � ;H Nð Þ and the intermediate values

E; F and G 1ð Þ; � � � ;G Nð Þ
n o

. Similar to the analyses above, we also

consider the privacy of input as an example. The input X can be
easily recovered by

X ¼
XN
i¼1

X ið Þ ð29Þ

It implies that, in this case, the input and the model parameters are
leaked. This completes the proof. h
6.3. Verifiability analysis

.

Theorem 5. The user U can verify the correctness of the inference

result with the probability of J
Jþ1, where J denotes the number of

verifiable data.
Proof. As described in Section 5.6, the proxy layer returns J þ 1
results. Our framework checks the correctness of J verifiable data
to verify the inference result y of original input x. If the inference
results of J verifiable data are correct, then the user U accepts
the inference result y. Now we analyze the probability that the
proxy layer returns a false result but the user U still accepts it. It
implies that the proxy layer must perform correct inference of J
verifiable data and return a false result of the original input x. Since
the indistinguishability between the input and random values, the
proxy layer cannot distinguish the original input and verifiable
data. Let Tv denote this event, then the probability can be calcu-
lated as

Pr Tv½ � ¼ 1
J þ 1

ð30Þ

Hence, we can demonstrate that the event Ts that the user verifies
the correctness of the inference result y successfully with the
probability:

Pr Ts½ � ¼ 1� Pr Tv½ � ¼ J
J þ 1

ð31Þ

This completes the proof. h
7. Experimental results

In this section, we conduct the experiments to evaluate the per-
formance of our proposed PVDLI framework. We implement our
framework on Ubuntu 18.04 operation system by using Pytorch
framework. All the following experiments are performed on a com-
puter with a Intel Core i7 CPU, a GTX 2080 Super GPU and 32 GB
RAM.



Table 1
The accuracy comparison between our proposed framework and traditional insecure counterpart.

Traditional Proposed

MLP-MNIST 99:01% 98:14%
VGG16-CIFAR10 91:40% 89:35%

Table 2
The results of adversary guessing the random choice b.

Size Repeat Correct Wrong Advantage
u n Q b̂ ¼ b b̂– b AdvCPA�M�IA k;N; qð Þ
10 8 200 99 101 0:005
10 8 500 251 249 0:002
50 40 200 100 100 0
50 40 500 248 252 0:004
100 80 200 101 99 0:005
100 80 500 249 251 0:002
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We evaluate our proposed framework on two widely-used data-
sets: MNIST [20] and CIFAR-10 [17]. MNIST dataset1 consists of
70000 handwritten digits images of size 28� 28, among which
60000 images are used for training and the remaining 10000 for test-
ing. CIFAR-10 dataset2 contains 60000 color images of size 32� 32
for 10 classes. There are 50000 training images and 10000 test
images. To evaluate on different models, we adopt multi-layer per-
ceptron (MLP) for MNIST dataset and a typical convolutional neural
network VGG16 [38] for CIFAR-10. Here, average pooling and batch
normalization are employed in the settings of VGG16.

Firstly, we evaluate the performance of our framework on two
datasets, and compare it with the traditional deep learning infer-
ence scheme, where the server possesses the model parameters
and user’s input. In this scenario, the server performs the inference
and outputs a result to the user, where the privacy and verifiability
are compromised. As can be seen from Table 1, compared with tra-
ditional insecure scheme, our proposed PVDLI framework sacrifices
1%-2% accuracy. This accuracy degradation mainly comes from the
approximation of the activation function. In real applications, to
achieve privacy and verifiability, this accuracy degradation can
be considered as acceptable.

Secondly, to validate the security analysis above, we conduct an
experiment to evaluate the advantage of the adversary derived in
Section 6.1. As the capabilities of the adversary are difficult to be
measured, many works [45,14] resorted to analyze the advantage
of adversary theoretically. Here, we simulate the adversary with
a deep neural network to execute the security experiment
ExpCPA�M�I

A k;Nð Þ. Specifically, we perform the secure matrix multi-
plication SecMul q times. As described in Section 6.1, the adversary
has the knowledge of the input matrix choices A 0½ �;j;A 1½ �;j, the input

matrix shares Aj, output matrix shares Cj, and intermediate results

Ej; Fj;Gj, where j is the index of query. The target of adversary is to
guess/predict the random choice b (0 or 1). Here, we utilize q times
queries as training data and q ground truth choices bj

� 	q
j¼1 as labels

to train a deep neural network. Then we utilize the well-trained
network as the adversary to repeat ExpCPA�M�I

A k;Nð Þ Q times. Here,
we set the number of the computing nodes N ¼ 5, and query times
q ¼ 500. We vary the size u;vð Þ of the input matrix A. The value of
Q is in the range of 200;500f g. As can be seen from Table 2, the
probability that the adversary can correctly determine the value
b is very close to 1=2. Alternatively, the advantage of the adversary
in wining the security game is in the range of 0;0:005½ �, which can
1 http://yann.lecun.com/exdb/mnist/
2 http://www.cs.toronto.edu/ kriz/cifar.html
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be considered as negligible in practice. This validates our security
analysis in Section 6.2.

Then, to demonstrate the privacy of our proposed PVDLI, we
also investigate the visual comparison of the mixed data (input
and verifiable data) together with their encrypted versions. To
assist the illustration, we employ the images from CIFAR-10 data-
set. As described in Section 5.3, the input and verifiable data are
split into shares and sent to the computing nodes E1;E2; � � � ;ENf g
in the proxy layer. Here, we set the number of computing nodes
N ¼ 5 and the polynomial degree d ¼ 2. The original input, verifi-
able data and the shares received by the computing nodes are
shown in Fig. 5. As can be seen, in the view of the computing nodes,
both the input and verifiable data are meaningless images, making
it impossible to distinguish. In a word, our proposed framework is
effective in destroying the semantic meaning of the input images
and verifiable data, implying that the PVDLI can well preserve
the privacy of the input. Additionally, due to the well-preserved
privacy, the verifiability can be also provided.

Thirdly, to prove the verifiability of our proposed PVDLI, we also
conduct the verifiable experiments. As described in Section 5.3, we
mix J verifiable data with the original input x, where the number
of verifiable data J is in the range of 4;6;8;10;12f g. Assume that
the proxy layer returns e false inference results and J þ 1� e correct
results to save the computational power, where 1 6 e 6 J þ 1. Since
the proxy layer cannot distinguish the input data and verifiable data,
the false results are randomly selected and generated. We fix the
number of computing nodes N ¼ 5 and the polynomial degree
d ¼ 2. For each J in the range of 4;6;8;10;12f g, we test 100 times,
and record the rate that our proposed framework successfully
detects the false inference result. The detection results are shown
in Fig. 6. According to Theorem 1, we can easily obtain the detection
probability under different choices of J. The experiments also
demonstrate the correctness of Theorem 1. As can be seen, when
the number of false result e > 1, our proposed verification method
can perfectly detect the false result. When the proxy layer only
return 1 false result and correctly perform J inference, the detection
rate can reach 90% if the number of verifiable data J P 10.

We would also like to investigate the impact of the polynomial
degree on the model approximation accuracy. Here, we utilize dif-
ferent polynomials of degree in the range 2;3;4;5;6f g to approxi-
mate the well trained MLP and VGG16 model. The model
accuracies are given in Fig. 7. Since the errors spread and propagate
from one layer to the next layer, higher degree polynomials, which
also have more coefficients to learn, may cause bad approximation
performance. As can be noticed, the accuracy decreases with the
increasing of the polynomial degrees.



Fig. 6. Detection rate on different number of verifiable data.

Fig. 7. (a) Accuracy on MNIST dataset with different polynomial degrees. (b) Accuracy on CIFAR-10 dataset with different polynomial degrees.

Fig. 5. The input images and their shares located in different computing nodes.

Fig. 8. Communication cost under different number of computing nodes N.
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Table 3
Comparison of communication cost and time cost.

Framework Communication
Cost (MB)

Time Cost (seconds)

Deploy Inference Total

CryptoNets [12] 372.2 297.5 0.15 297.65
Chameleon [30] 12.9 1.34 1.36 2.7
MiniONN [21] 47.6 0.88 0.4 1.28
DeepSecure [32] 791 1.98 9.67 11.65
Our proposed w/o

verification
12.02 2.13 0.081 2.211

Our proposed w/
verification

60.1 2.13 0.412 2.542
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Then, tomeasure the influence of different number of computing
nodes on the model communication cost, we employ MLP network
ondatasetMNISTandvaryN from3 to11.Here,we consider twosce-
narios: one is inference with verification; the other is without veri-
fication. Regarding the verification scenario, the number of
verifiable data J is fixed to 4. It implies thatwe choose 4 extra images
to verify the correctness of the returned resultwith the confidenceof
80%. As can be seen in Fig. 8, the communication cost increases
almost linearly with respect to the number of computing nodes N.

Prior to concluding this section, let us give some comparisons
with the existing privacy-preserving framework. To be consistent
with [30], we utilize MLP model on dataset MNIST for comparison.
Here, the number of computing nodes N is fixed to 5. Under the
verification scenario, the number of verifiable data J ¼ 4. As can
be seen from Table 3, our proposed framework takes less commu-
nication cost while performing the inference task around 3 s.
Although it takes 60:1 MB communication cost with the verifica-
tion, it provides verifiability for the user to check the correctness
with the probability of 80%.
8. Conclusion

We have designed and implemented a PVDLI framework that
enables the user can keep both the input and the model parame-
ters private with low communication and computational cost. In
this way, the user can also verify the correctness of the inference
with high probability. It has been proved theoretically that the
input and the model parameters can be protected in a satisfactory
manner against the honest-but-curious participants. Finally,
experimental results have been demonstrated to show the superior
performance of our proposed PVDLI framework.
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