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Abstract— Vision-based intelligent systems such as driver
assistance systems and transportation systems should take into
account weather conditions. The presence of haze in images
can be a critical threat to driving scenarios. Haze density
measures the visibility and usability of hazy images captured
in real-world conditions. The prediction of haze density can be
valuable in various vision-based intelligent systems, especially in
those systems deployed in outdoor environments. Haze density
prediction is a challenging task since the haze and many scene
contents have a lot in common in appearance. Existing methods
generally utilize different priors and design complex handcrafted
features to predict the visibility or haze density of the image.
In this article, we propose a novel end-to-end convolutional neural
network (CNN) based method to predict haze density, named as
HazDesNet. Our HazDesNet takes a hazy image as input and
predicts a pixel-level haze density map. The density map is then
refined and smoothed, and the average of the refined map is
calculated as the global haze density of the image. To verify
the performance of HazDesNet, a subjective human study is
performed to build a Human Perceptual Haze Density (HPHD)
database, which includes 500 real-world hazy images and 100 syn-
thetic hazy images, and the corresponding human-rated percep-
tual haze density scores. Experimental results show that our
method achieves the best haze density prediction performance
on our built HPHD database and existing databases. Besides
the global quantitative results, our HazDesNet is capable of
predicting a continuous, stable, fine, and high-resolution haze
density map. We will make the database and code publicly
available at https://github.com/JiaheZhang/HazDesNet.

Index Terms—Haze detection, haze density, haze, visibility,
deep learning.

I. INTRODUCTION

ISION based intelligent driver assistance systems and
transportation systems may malfunction when they
encounter adverse weather conditions such as haze, snow, hail,
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and rain [1]. This issue is mainly caused by the degraded
visibility of captured images in bad weather conditions [2].
Since poor performance may be introduced by various adverse
weather conditions, many specific methods have been pro-
posed for severe weather conditions, such as nighttime vis-
ibility estimation [3], adverse weather forecasting system [4]
and traffic surveillance [5]. Besides, visibility enhancement
methods related to intelligent transportation systems have also
been widely researched [6], [7].

Among these systems and applications, single image dehaz-
ing [2], [8]-[10], haze density prediction [11]-[13], and quality
evaluation of dehazing algorithms [14], [15] have been widely
studied by researchers due to the common appearance of hazy
weather in driving images. For instance, fog detection methods
based on on-board cameras for driving assistance systems
have been proposed in [16], [17]. Haze density quantifies
visibility of images captured in hazy conditions, and provides
an important clue to understanding the machine perception
of the environment. For example, the measurement of haze
density can be considered as a warning signal for autonomous
vehicles, so that the strategies of autonomous systems can be
adjusted according to haze density prediction. Highly relevant
to the visibility, the usability of images can be also measured
according to the haze density. Besides, visual tasks such as
image acquisition can adjust their parameters to the best
according to the haze density. (We do not differentiate the
haze and fog in this article, since the visibility degradation
caused by haze and fog is similar).

It is a challenging task to predict haze density, since the haze
density is highly related to the uncertain image depth. Besides,
many image scene contents which have similar appearance
with haze can be easily deemed as haze. With a correspond-
ing haze-free image as a reference, haze density prediction
becomes easy and precise. However, it is almost impossible to
obtain the corresponding haze-free image of exactly the same
scene in practice. Similar to no-reference (NR) image quality
assessment (IQA) [18]-[20], we can possibly measure haze
density from a single hazy image. However, haze perception
is different from the perception of traditional digital image
distortions.

Although, the haze density prediction is a difficult visual
task for machines, humans can perceive haze at a short glance
without much prior knowledge. With the success of deep
learning-based models for image dehazing [21]-[24], it is
reasonable to propose a deep learning based model to predict
haze density. In these image dehazing methods, a critical
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step is to reconstruct the transmission and predict the global
atmospheric light from a hazy image. The transmission
map is determined by the scene depth, and it may indicate
the haze density to some extent. However, it is not precise
enough to use the transmission map to describe the haze
density map. A detailed discussion about the differences
between the transmission map and haze density map is given
in Section VI-B. Thus, despite the good performance of these
models in image dehazing, the outputs of these methods
might not be directly used for the haze density prediction. The
image dehazing and haze density prediction are two different
tasks. To the best of our knowledge, the deep learning based
haze density prediction method is still absent in the literature.

Data shortage is a critical problem that hinders the develop-
ment and the application of data-driven based methods to some
degree. It is the same for deep learning based haze density
prediction. It is hard to build a large scale haze density data-
base with human labeled haze density maps. Although some
methods overcome the data shortage problem by augmentation
[25], [26] and few-shot learning [27], and some other methods
are proposed using a small number of training samples
[28], [29], these tasks are different from the haze density
prediction task.

In this article, we propose HazDesNet, a novel CNN based
method to predict haze density, which is the first of its kind
in the literature. This model predicts haze density of a hazy
image in an end-to-end way. The system overview is shown
in Fig. 1, which includes a training procedure and an inference
procedure. To overcome the issue of data shortage, we pro-
pose to use synthetic hazy images for training. Specifically,
hazy images are synthesized from haze-free images using the
widely accepted haze model [30]. In Section IV-C, we apply
full-reference (FR) image quality assessment (IQA) metrics to
measure the visibility degradation from the haze-free image to
the synthesized hazy image. We find that the structural simi-
larity (SSIM) metric can describe the haze density well. Thus,
we propose to use the scores computed by FR IQA metric as
the training labels of the haze densities of the synthetic hazy
images. HazDesNet is trained by these synthetic hazy patches
and the corresponding haze density scores labeled by SSIM.

In the inference procedure, the HazDesNet is fixed.
Different from the training procedure in which synthetic hazy
images are fed, any real-world hazy image can be taken as
input in the inference procedure. We find that the HazDesNet
trained with synthetic hazy images generalizes very well to
realistic hazy images. The input of the network can be an
RGB image of any size, and the output is the haze density
map whose size is about half of the input image. The global
haze density score is the average of the refined density map.
Compared to the baseline method FADE [11], our proposed
approach makes great progress in both qualitative results and
quantitative results. Specifically, the high-resolution pixel-level
haze density map predicted by our model is continuous, and
does not have blocking effect. Besides, our method does not
rely on extra distance information, the corresponding haze-free
images, or complex handcrafted features.

The interpretability and visualization for deep neural net-
works are as important as the theory [31]. Some researchers
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Fig. 1. The system overview. This system illustrates the training and inference
modules of our proposed HazDesNet.

have proposed methods to enable deep neural networks to
be interpretable to human [32], [33]. As for our proposed
HazDesNet, it is also very interesting to explore the output
feature of intermediate layers and establish its connection with
traditional haze related features. In our experiments, we find
that a certain layer output of our proposed model is similar
to the dark channel [8]. This similarity can be explained
mathematically.

Our proposed model is first evaluated on the LIVE Defog-
ging Image database [11] which contains 100 hazy images
and the corresponding human perceptual judgments. However,
as a haze density benchmark, this database is kind of small.
To this end, we conduct a subjective haze perception exper-
iment to build a Human Perceptual Haze Density (HPHD)
database. The HPHD database contains two parts. One part
includes 500 real-world hazy images, and another part includes
100 synthetic hazy images. All 600 hazy images are labeled
with the human rated haze density scores. Quantitative results
demonstrate that our HazDesNet outperforms existing methods
on both databases in terms of Pearson’s linear correlation
coefficient (PLCC) and Spearman’s rank ordered correlation
coefficient (SROCC). Another advantage of the proposed
HazDesNet lies in that it can also predict a pixel-level haze
density map, which is absent from the existing methods. The
HPHD database and the code of our HazDesNet will be
publicly available to promote further study in this field.

The remainder of this article is organized as follows.
In Section II, we review some existing methods. In Section III,
we introduce some background of this work. The details
and explanations of our proposed model are presented in
Section IV. The subjective human study and our built HPHD
database are introduced in Section V. Extensive experiments
are performed to validate the proposed method in Section VI.
Finally, we draw a conclusion in Section VII.
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II. RELATED WORKS

There are some existing works that conducted in recent
years on the haze density prediction. Huang et al. [34] propose
a haze thickness estimation module to restore single-image
visibility. But their proposed module is only used to refine the
transmission map and it is limited to the sandstorm weather
condition. Hautiére et al. [13] use an onboard camera to
detect haze and estimate visibility distance. Nevertheless, their
method depends on extra distance information obtained by the
onboard camera, thus it works only in a certain condition
and it is not a general method to predict haze density.
Choi et al. [35] propose the first fog density prediction model,
which is named as fog aware density evaluator (FADE) in [11].
Their model can predict haze density in general hazy weather
conditions without a corresponding haze-free image, and also
without other extra distance information. Unfortunately, their
model involves many complex handcrafted features that may
not generalize well. Moreover, their predicted haze density
map has blocking effect and it is not smooth.

We overcome the above mentioned drawbacks existed in the
existing methods. Specifically, our HazDesNet is a data-driven
method so that it has better generalizability to predict haze
density. We apply the end-to-end training method to avoid
handcrafted features, which improves the accuracy of haze
prediction to a large extend. Moreover, The input hazy images
need not be divided into patches, thus the resolution of the
predicted haze density map is much larger than that of the
existing methods.

III. BACKGROUND

In this section, we introduce some prior knowledge which
includes atmospheric scattering model, structural similarity
and dark channel prior.

A. Atmospheric Scattering Model

The atmospheric scattering model is proposed by
McCartney [36] and simplified by Narasimhan and Nayar [30].
In our proposed method, the synthetic hazy image can be
generated from the haze-free image by this model. The
reflected light from particles will scatter in the atmosphere,
and enter into the camera diffusely. The mathematical
description [30] of the model is

I(x)=J@)t(x)+ Al —1(x)], (1

where I(x) is the hazy image, J(x) is the haze-free image,
t(x) € [0, 1] is the medium transmission at each pixel x, and
A is the global atmospheric light.

The medium transmission 7(x) indicates the degree of
unscattered light, which is defined as

1(x) = e P4, (2)

where d(x) is the depth of the scene, and f is the medium
attenuation coefficient of atmosphere.
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B. Structural Similarity

The structural similarity (SSIM) index is proposed by
Wang et al. [37] to measure the similarity between two
images. The SSIM predicts the degradation of image based
on the properties of the human visual system. Different from
traditional image quality assessment, the perception-based
SSIM considers more about the perceived change of image
structure.

In this article, the SSIM index is applied to measure the
degradation between the synthetic hazy image patch and the
corresponding haze-free patch. As shown in Fig. 1, one of
the most important steps of our framework is to measure the
haze density of synthetic hazy images using FR IQA. We find
that the SSIM scores can indicate the haze density well, thus
the scores computed by SSIM metric are used as the training
labels of HazDesNet, and the synthetic hazy image patches are
used as the training input. The correlation of SSIM scores and
haze densities perceived by human is shown in Section IV-C.

C. Dark Channel Prior

The dark channel prior is an image property which describes
that at least one channel of the haze-free image patch has some
low-density pixels [8]. The dark channel is an important haze
feature used for haze removal [38], [39]. In our experiments,
we find that intermediate result of our CNN based haze density
prediction model is related to the dark channel.

IV. METHODOLOGY

To predict the haze density of a hazy image, we propose
our end-to-end trainable network. In this section, we present
the architecture of HazDesNet and discuss the reasons for the
network design. In addition, the correlation between structural
similarity and haze density labeled by human is explored.
The training method is also presented. Finally, we visualize
the extracted feature and establish the connection between the
certain layer output of our model and the dark channel.

A. Model Architecture

Our proposed model consists of feature extraction, feature
mapping, local maximum and average calculation, maximum
and average mix, and sigmoid activation modules. These
modules are implemented by convolutional layers and pooling
layers. The design of our model is illustrated in Fig. 2.
We explain each module in detail.

1) Feature Extraction: In many digital image processing
algorithms, the first and important step is feature extraction.
The CNNs are successfully used to extract features without
human intervention. To avoid the duplicate layers of Maxout
units [40], we propose our feature extraction module to effi-
ciently extract haze-related features by cross-channel fusion.
The effectiveness of this module is verified in Section IV-D.
The module consists of two convolutional layers. The first con-
volutional layer includes 24 filters of size 5 x5, and the second
layer includes 24 filters of size 1 x 1. The 1 x 1 convolution
operator is first introduced to enhance model discriminabil-
ity in [41], and is used to increase more non-linearity in
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The architecture of our proposed model. The input is a hazy image in arbitrary size, and the output is haze density map whose size is about half

of the original image. The procedure includes feature extraction, feature mapping, local maximum and average calculation, maximum and average mix, and

sigmoid activation.

GoogleNet [42] and ResNet [43]. We use 1 x 1 convolution to
achieve cross-channel fusion in our feature extraction module.
The output dimension of these two layers is both 24. Note that
we do not set any zero paddings around the border, thus the
output size of this module will be reduced by 4.

2) Feature Mapping: Max pooling layer is a downsampling
operator performed along the spatial dimension. The max
pooling is extensively used in CNNs for spatial size reduction,
so that the parameters and computation can be reduced pro-
gressively [44]. We apply a max pooling layer of size 2 x2 with
a stride of 2 to downsample the feature. The output size is half
of the previous layer size. A convolution layer is connected to
the max pooling layer to map the features.

3) Local Statistics Computation: After the feature mapping,
we calculate the local maximum and local average of the
feature map. We assume that the medium transmission is
locally constant. In other words, the transmission values within
a small image patch (e.g. 16 x 16, 32 x 32) tend to be similar,
since the pixels in a small patch have similar depths. This
assumption is widely applied in haze removal methods, where
the local maximum [21], [45] and local minimum [8], [9]
are considered. Similarly, the haze density is also constant
and continuous [35]. However, if the features are not very
sparse, many local details are reduced by the local maximum
computation [46]. To this end, we calculate the local average
and local maximum together to maintain the details of features
and density continuity.

4) Max-Avg Mix and Activation: The local maximum and
local average have their own weakness [47]. The local max-
imum only considers the extremum and ignores the rapid
change of the local region. On the other hand, the local
average considers all the magnitudes of features, but reduces
the contrast of the feature map. Therefore, many mix methods
have been proposed [47]—-[49]. These methods directly add the
average and maximum together by a weight 1. The weight A
is always randomly initialized and learned by a new trainable
layer. In our maximum and average (Max-Avg) mix module,
two trainable convolutional layers are applied to mix the

maximum and average, which is defined as
F:wl*Fa0g+w2*Fmax+b7 (3)

where Fyyg and Fy,q, are the local maximum and local average
respectively, w1, wy € ROX6x48 and b € R are the filter kernel
and bias respectively.

The activation function is used for increasing the nonlin-
earity of deep neural networks. Common activation functions
include Rectified Linear Unit (ReLU), sigmoid, TanH, etc.
The ReLU is successfully used for image classification and
overcomes the vanishing gradient issue. But there is no upper
limit to the output of ReLU. The desired regression goal of
our model is between 0 and 1. Thus, ReLU is not suitable
for our regression task. Likewise, TanH is not suitable for our
model. To sum up, the desired properties of activation function
in our model include sufficient nonlinearity, range between
0 and 1, and continuity. Therefore, we choose sigmoid as our
activation function. Although the vanishing gradient problem
may occur with sigmoid, this issue can be alleviated through
batch normalization [50]. The batch normalization layer is
embedded into the feature mapping module. A summary of
the configuration of our model is given in Table I.

The above modules construct our end-to-end trainable
HazDesNet. The filter kernels and biases are parameters need
to be learned. Based on the assumption that the medium
transmission is locally constant, we can post-process the pre-
dicted haze density map. To get stable and continuous results,
haze density map can be refined by performing a smoothing
operator. Some simple and explicit filters such as average filter
and Gaussian filter can smooth the haze density map, but can
not preserve the edges. Therefore, we apply the guided filter
[51] which is an edge-preserving smoothing technique to refine
the predicted haze density map. Then, the global haze density
score is the mean of the refined density map.

B. Training Method

It is not practical to collect plenty of hazy images and the
corresponding haze-free images of exactly the same scene.
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TABLE I
CONFIGURATION OF OUR MODEL

Layer Filter Num  Stride  Output Shape
Input / / / 32x32x3
Conv2 5x5x%3 24 1 28x28x24
Conv2 1x1x24 24 1 28x28x24
MaxPool2 2x2 24 2 14x14x24
Batch Normalization / / / 14x14x24
Conv2 Sx5x24 48 1 10x10x48
MaxPool/AvgPool 5x5 48x2 1 6X6x48x2
Max-Avg Mix 6X6Xx48%2 1 1 IxIx1
Activation sigmoid

Therefore, the lack of training images and their corresponding
haze density scores is a challenging issue. Fortunately, hazy
images can be synthesized with haze-free images using the
atmospheric scattering model in Equation (1). Besides, we find
that SSIM scores between synthetic hazy images and haze-free
images can represent the haze densities well. Thus, we propose
to use the synthesized images and the corresponding SSIM
scores for training. It is difficult to train the model that takes
a full-size synthetic hazy image as the input and its SSIM
map as the target. Thus, HazDesNet is trained using hazy
image patches and the corresponding SSIM labels, as shown
in Fig. 1. An assumption can be introduced that the image
content is independent of the transmission. This assumption
is made based on the fact that the same image patch (image
content) might have different scene depths. With this assump-
tion, a haze-free image patch can be synthesized to hazy
image patches with various transmissions. Therefore, we ran-
domly crop haze-free image patches and synthesized hazy
patches with various transmissions. The SSIM scores between
the synthesized hazy patches and the corresponding original
patches serve as the regression targets. The training dataset
includes the synthetic hazy patches and the corresponding
SSIM labels.

To sum up, the model can be denoted as F and training
parameters are denoted as ®. The loss function is defined as

1< 2
L(©) = ; H}"(@, 1,.”) — SSIM? H : @)

where 1% is hazy image patch, SSIM? is the SSIM index of
I?, |||l is L2 norm, and i is the index of image patches and
the corresponding SSIM labels.

C. Relation Between SSIM and Haze Density

Hazy images are usually characterized with low contrast,
shifted intensity, and faint color [35], thus it is possible to
design objective algorithms to precisely measure the haze
density of hazy images. But when designing and evaluating
objective haze density prediction algorithms, the correspond-
ing ground-truth of haze density is needed. Based on the
fact that humans are good at identifying hazy areas [21],
and humans are usually regarded as the ultimate arbiters
of appearance of visual signals [11], [18], [35], [52], [53],
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Fig. 3. SSIM scores and MOSs of synthetic hazy images.
TABLE II

PLCC AND SROCC BETWEEN FR IQA METRICS
AND THE MOSS OF SYNTHETIC HAZY IMAGES

Metric SSIM PSNR MSE
PLCC 0.9095 0.8060 0.6842
SROCC 0.8947 0.7817 0.7817

we believe that human can perceive haze and judge haze
density for a single hazy image accurately, thus the human
labeled haze density scores are used as the ground-truth during
the evaluation, which is the same as what has been done
in [35]. The mean squared error (MSE), the peak signal-
to-noise ratio (PSNR), and the structural similarity (SSIM)
are three common metrics of FR IQA. The SSIM metric is
more consistent with the human perception than MSE and
PSNR [37]. To this end, we use the SSIM scores between
the synthetic hazy images and the haze-free images as the
training labels in the training procedure. SSIM scores are used
because we observe that they are more suitable to describe
the haze densities of synthetic hazy images than the MSE and
PSNR scores. To justify this, we have included 100 synthetic
hazy images in our subjective haze density study which is
described in Section V. The Mean Opinion Scores (MOSs)
in our subjective study represent the ground-truth haze den-
sity scores. The correlations between the three FR IQA
scores and the ground-truth haze density scores are analyzed
here.

The Spearman and Pearson corelation coefficients are calcu-
lated, as shown in Table II. Quantitatively, the SROCC and the
PLCC between the SSIM scores and the MOSs are 0.8947 and
0.9095, respectively, which are better than the correlations for
the PSNR and MSE. It is clear that the SSIM is a much
better metric to describe the haze density than PSNR and
MSE. A scatter plot between the SSIM scores (mapped using a
logistic non-linearity function introduced in Section VI-C) and
the ground-truth human labeled haze density scores is shown
in Fig. 3. It is observed that the SSIM and ground-truth haze
density scores are highly correlated.
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(b) (©)

Fig. 4. Feature visualization. (a) is the original image, (b) is the dark channel
with 2 x 2 slide window, and (c) is the output feature at the 14th slice of the
feature extraction module.

D. Relation Between Inter-Network Feature and the Dark
Channel

Deep neural networks need to be interpretable and explain-
able to humans [31]. The feature visualization plays an impor-
tant role to understand the neural network and find out the
function of a certain layer. We find that the output features
of a certain layer in HazDesNet are related with the dark
channel of the image. It can be explained in terms of the
model architecture. The calculation process of dark channel
includes two steps, i.e., a r x r slide windowing and an
RGB cross-channel selection. This process is similar to our
feature extraction module which contains a 5 x 5 convolutional
operator and a cross-channel fusion layer.

We extract the dark channel of hazy images and show
these images in Fig. 4 (a) and (b). The output features at the
14th slice of the feature extraction module are also illustrated
in Fig. 4 (c). These output features are mapped into the range
between 0 and 1 linearly for better visualization. It is clear
that the dark channel features and our extracted features look
very similar.

V. SUBJECTIVE ASSESSMENT OF
PERCEPTUAL HAZE DENSITY

For evaluation of the image haze density prediction
algorithms, ground-truth haze density scores of the hazy
images are needed. Since it is not practicable to collect
real-world hazy images and corresponding haze-free images,
Choi et al. [11] perform a subjective human study using
100 images to construct the LIVE Image Defogging database
to evaluate the FADE. In their human study, they ask the
subjects to give a perceptual rating of the haze density
for each hazy image. The statistical average of the ratings
for each image is calculated as the ground-truth of the
haze density. This database can be found in [54]. However,
the database is kind of small for comprehensive evaluation.
Therefore, we build another database called Human Perceptual

(a)MOS =0

(b)MOS = 1.67 (c) MOS =3.80

(d)MOS =5.60 () MOS =7.67 (f) MOS =9.33

Fig. 5. Some samples and their corresponding MOSs in our HPHD database.

Haze Density (HPHD) which contains a real-world hazy
image (RHI) subset and a synthetic hazy image (SHI)
subset. The former includes 500 real-world hazy images
and the later includes 100 synthetic hazy images. A similar
subjective human study is performed on this database. In total,
the HPHD database includes 600 hazy images and their Mean
Opinion Scores (MOSs) which represent the ground-truth
haze densities. We evaluate the performance of HazDesNet
using the HPHD and LIVE databases in Section VI.

A. Test Image

In the real-world hazy image (RHI) subset, we collect
500 hazy images from Flickr, which is an image hosting
service. All images can be shared under the creative commons
license. These images are searched by keywords like “haze”,
“fog”, “mist”, etc. The content of these images is of diversity
including square, mountain, forest, road, etc. These images
have no weather restrictions. Since the database in [11] has
included some well-known hazy test images, we do not repeat
these images. The image resolution varies from 368 x 650 to
2048 x 1751. Fig. 5 shows some examples of the collected
500 hazy images. The MOS results of these samples are also
listed for a better intuition of our subject study.

In the synthetic hazy image (SHI) subset, we collect syn-
thetic haze images from various haze image datasets, which
include I-HAZE [55], D-hazy [56], and HazeRD [57]. These
three synthetic haze image datasets include various scenes with
various haze densities. The resolutions of these images are
different, and we resize the longest dimension of the image
to 800 while maintaining its aspect ratio. Finally, we select
100 images from these synthetic haze image datasets to
constitute the SHI subset. The number of images of the SHI
subset is only 100, which is smaller than that of the RHI
subset, because the main objective of the SHI subset is to
verify the assumption that the SSIM metric can describe the
haze density well. Besides, synthetic hazy images are not as
realistic as real-world hazy images, thus we tend to include
more images in the RHI subset.

B. Subjective Study

We invite 15 volunteers as subjects of our human study.
All subjects have a corrected-to-normal vision. Before the
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TABLE III
SUBJECTIVE EXPERIMENT SETTINGS

Categroy Item Detail
. Model Dell U2417H
Monitor .
Resolution 19201080
Method Single-stimulus
Methodology Quality-scale 11-grade categorical

Presentation order Random

Subjects number 15

Test setting Viewing distance 3 times screen height

Envrionment Laboratory

experiment starts, all subjects are instructed to evaluate the
haze density of the shown image. A training session is added
before the formal study. The subjects can have a sensation of
the haze density range of the whole database and also learn
how to rate the haze density in the training session.

A MATLAB user interface program is developed in a
Windows PC for this study. This user interface displays a hazy
image, and the subjects can give the corresponding haze den-
sity rating. The screen has a resolution of 1920 x 1080 pixels
and its refresh rate is 60 Hz. The user interface is presented
at the center of 24” monitor whose type is Dell U2417H.

A single-stimulus  continuous  quality  evaluation
(SSCQE) [58] strategy is adopted. The subjective study
is performed in a quiet laboratory environment, and no
external events will interfere the subjects during the study.
The subject is required to rate the haze density of the
displayed image. There are 11 integer score labels ranging
from O to 10 in the rating bar. These score labels indicate
the degrees of haze density. Score 0 represents that there is
hardly any haze in the image. Score 10 indicates that the
image is excessively hazy. After finishing rating an image,
the user interface automatically displays the next image right
away. The display order of testing images is randomly set for
each subject. There is no time limit for rating each image,
and the whole test procedure of one subject lasts about 30 to
45 minutes. A summary of the experiment settings is given
in Table III.

C. Data Processing

We follow the method in [58] to exclude outliers and
reject subjects. The raw haze density rating for a hazy image
is detected as outlier, if it is far from the average (2 or
/20 standard deviations for the Gaussian or non-Gaussian
case). Besides, a subject with more than 5% outlier ratings
is rejected as an outlier subject. Both outlier ratings and
outlier subjects are excluded from following processes. Since
the rating score of our subjective human study ranges from
0 to 10, we do not apply score mapping to preprocess the
raw ratings. Mean Opinion Score (MOS) is calculated to
represent the ground-truth of the haze density of each image.
The histograms of MOS of two sets are shown in Fig. 6. It is
clear that the MOS distributes widely from 0 to 10.
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Number of Real-world hazy Images
Number of Synthetic Hazy Images

Fig. 6. Statistics of MOS for two sets of HPHD database. (a) is histogram
of MOS of the RHI subset, (b) is histogram of MOS of the SHI subset.

VI. EXPERIMENTAL VALIDATION

In this section, various experiments and studies are per-
formed to validate HazDesNet. We first introduce the exper-
imental settings including training data, training parameters,
etc. Then, the performance of our model architecture is
illustrated. The quantitative results of our model and the
FADE [11] are compared on different databases. Finally,
the qualitative results on real-world images are shown, and
they demonstrate the improvements of our model.

A. Network Training Details

To train our model, we collect some haze-free images
from the Internet to generate our training set. A total
of 4,000 haze-free patches of size 32 x 32 are randomly
cropped from these images. For each patch, we uniformly
sample ¢ € (0, 1) to generate 10 synthetic hazy patches and
calculate the SSIM scores between the hazy and haze-free
patches. Thus, a total of 40,000 hazy image patches and the
corresponding SSIM labels are used to train our model. These
patches are split into two parts randomly: a training set with
75 percent of patches and a validation set with 25 percent of
patches.

We implement our model using the Keras package. The
configuration of the model is shown in Fig. 2 and summarized
in Table I. RMSprop is used to optimize our model with a
learning rate of 0.001 and a default rho of 0.9. The decay
rate of learning rate is 10~3 for every epoch. We set the batch
size to 512 and train the model with 1,000 rounds. We do
not apply any data augmentation techniques to enlarge our
training set, since it is easy to generate more training data and
the current data is enough for the network training. Based on
these configurations, HazDesNet is trained on a server with
Nvidia GeForce GTX 1080 GPU.

B. Comparison Between the Transmission Map and the
Haze Density Map

There is no doubt that both transmission map and haze
density map can reflect the degree of hazing in the image,
however they still have significant differences. In this section,
the differences between the transmission map and the haze
density map are discussed. According to the atmospheric
scattering model, ¢ (x) = e #4™) s the so called transmission,
where —pfd(x) is the optical thickness. Therefore, if f is a
constant, the transmission map is determined by the depth
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(a) Haze-free image. (b) Synthetic hazy image.

RIS 5,
(c) Reversed transmission map.  (d) Haze density map.

Fig. 7. Comparison between the transmission map and the haze density map.

of a scene. The pixels at the same depth have the same
transmission. However, these pixels of the same transmission
might have different visual features, such as edges, textures,
colors, etc. Thus, even if the pixels have the same transmission,
they still have different haze perceptions, and transmission
map for these pixels will also be different from their haze
density map. Fig. 7 is an illustration, showing a haze-free
image, a synthetic haze image, the corresponding transmission
map and a predicted haze density map. The transmission map
is reversed to be positively related to the haze density map. It is
clear that the texture variation of the wall is not reflected in the
transmission map, however it is reflected in the haze density
map. Another apparent example is the region of the large white
window, which has a similar transmission but a relatively lower
haze density than its surroundings. The difference between the
large white window and its surroundings is easily observed in
the haze density map, while the transmission map can not
reflect this difference.

C. Performance Evaluation Criteria

The Pearson’s linear correlation coefficient (PLCC) and
Spearman’s rank ordered correlation coefficient (SROCC)
between the haze density scores D and MOSs are calculated
to evaluate the performance. Before PLCC and SROCC com-
putation, the predicted haze density scores D are mapped by
a logistic non-linearity function [18], [59], [60].

D. Ablation Study: Performances of HazDesNet With
Different Configurations

In the proposed HazDesNet, two components are designed
and chosen especially for certain purposes. The maximum
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Fig. 8. Training process with different maximum and average layers.
TABLE IV

HAZE ESTIMATION ACCURACY OF HAZDESNET
WITH DIFFERENT FUSION LAYERS

Fusion Layer Max-only Avg-only Max-Avg Mix
LIVE Defogging Database

PLCC 0.8819 0.8451 0.9156

SROCC 0.8708 0.8326 0.9056
RHI subset of HPHD Database

PLCC 0.7784 0.7210 0.8184

SROCC 0.7938 0.7381 0.8392
SHI subset of HPHD Database

PLCC 0.8891 0.8634 0.9082

SROCC 0.8712 0.8418 0.8822

and average (Max-Avg) mix module is designed for local
maximum and local average fusion in an automatically learn-
ing way. The sigmoid activation function is chosen because
of the reasonable nonlinearity, range, and continuity. In this
section, the effectiveness of Max-Avg mix module and sigmoid
function is illustrated. In addition, the number of filters in the
feature mapping module is an important hyperparameter, and
we explore the trade-off between the number of parameters
and performance.

1) Effectiveness of Max-Avg Mix: To evaluate the effective-
ness of Max-Avg fusion, we remove the Max-Avg mix module
and replace it with either a local maximum layer or a local
average layer. These modified models are trained under the
same settings.

The performance of Max-Avg mix module and the effec-
tiveness of Max-Avg fusion are illustrated in Fig. 8, which
shows the training process of HazDesNet with a Max-Avg
mix module, or with the maximum-only or average-only
layer. The convergence speed of Max-Avg mix module is the
fastest, and the convergence result is also the best. Besides,
the haze estimation accuracy is also compared to verify the
effectiveness of Max-Avg fusion, as shown in Table IV.

2) Comparison of Activation Functions: The performance
of sigmoid activation is compared with the performance
of Tanh, linear, and BReLU activation functions. The
BReLU [21] is the special case of adjustable bounded rec-
tifier [61]. BReLU is useful for image restoration whose
definition is f(x) = min(0, max(1, x)).
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Fig. 9. Training process with different activation functions.
TABLE V
HAZE ESTIMATION ACCURACY OF HAZDESNET
WITH DIFFERENT ACTIVATION METHODS
Activation Linear Tanh BRelu Sigmoid
LIVE Defogging Database
PLCC 0.8564 0.8560 0.8767 0.9156
SROCC 0.8455 0.8437 0.8621 0.9056
RHI subset of HPHD Database
PLCC 0.7409 0.7342 0.7589 0.8184
SROCC 0.7510 0.7493 0.7797 0.8392
SHI subset of HPHD Database
PLCC 0.8708 0.8698 0.8944 0.9082
SROCC 0.8491 0.8428 0.8751 0.8822

Fig. 9 illustrates the comparison of different activations
during the training process. The sigmoid has the smallest
convergence loss. The loss of linear and Tanh activations
vibrates intensely during the first 300 rounds. The final stable
convergence of linear and Tanh is larger than the BReLU and
sigmoid, since the range of BReLLU and sigmoid is between
0 and 1 which is consistent with SSIM index. The BReLU
has a good performance in [21] because their model applies
more nonlinear mapping layers than HazDesNet. Clearly,
the nonlinearity of sigmoid improves convergence precision.
In addition, the sigmoid also improves haze estimation accu-
racy. In Table V, the PLCC and SROCC performances of
sigmoid are the best comparing with other activation functions.

3) Filter Number of Feature Mapping: In the feature map-
ping module of HazDesNet, the number of filters highly affects
the performance of the model. In common sense, the larger
the number of filters, the more precise convergence. However,
with a large number of filters, the model parameters increase.
Therefore, the trade-off between the filters number and per-
formance needs to be investigated. In the feature mapping
module, we use 24, 48, and 96 as the number of filters to
fine-tune HazDesNet.

In Table VI, we list the training results using different
numbers of filters. This table includes the information
including training/validation mean square error (MSE) and
number of parameters. From Table VI, it is shown that the
24-filter layer has the smallest number of parameters, but the
training performance is the worst. In addition, the MSE of
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TABLE VI
TRAINING RESULTS USING DIFFERENT FILTER NUMBERS

Filter No.  Training MSE  Validation MSE  Parameter No.
24 0.0121 0.0196 14424
48 0.0098 0.0180 28848
96 0.0093 0.0178 57696

the 96-filter layer is nearly equal to the MSE of the 48-filter
layer. However, the smaller network is preferred if the desired
goal is accomplished. That is why we apply a 48-filter layer
in the feature mapping module in our model.

E. Quantitative Evaluation

In this subsection, we evaluate the proposed HazDesNet
quantitatively, and compare it with the state-of-the-art.
HazDesNet takes a hazy image as input and predicts its haze
density map. The haze density map is refined by the guided
filter. The mean of the refined density map is calculated as the
overall haze density D. The performance of the HazDesNet
is evaluated on 7 representative surveillance images, LIVE
Defogging database, and our built Human Perceptual Haze
Density (HPHD) database.

1) Compared Methods: The previous studies of haze den-
sity prediction are limited to certain conditions, such as the
onboard camera, geographical information, sandstorm environ-
ment, etc. Our HazDesNet is not limited by these restrictions,
thus it is not compared with these methods with limitations.
Instead, our HazDesNet is compared with the following meth-
ods: a haze density prediction model and three baseline models
created on the basis of several widely recognized network
architectures.

o FADE: It can predict the haze density using only one
single hazy image. It is the most widely recognized haze
density prediction model in the literature.

o ResNet50: We remove the fully connected layers at
the end of the pre-trained models and add a 1 x 1
convolutional filter, and the mean of the final feature maps
is used to represent the haze density.

o GoogleNet: The first seven inception modules of
GoogleNet are applied to extract the feature maps.
We also add a 1 x 1 convolutional filter, and calculate
the average of the final feature maps as the haze density.

« NASNet-Mobile: We set the input size to 32 x 32x3, and
the output size is exactly 1 x 1x1, which represents the
haze density of the input image patch.

The training method of these models is the same with our
HazDesNet. The activation functions of the final layers of
these three models are all sigmoid. For all three networks
except the traditional method FADE, we apply transfer learn-
ing, and fine-tune the models pre-trained on ImageNet.

2) Quantitative Results on Representative Surveillance
Images: 1t is difficult to evaluate haze prediction algorithms
and haze removal algorithms, because the corresponding
haze-free image of a hazy image is unavailable. Fortunately,
there are still a small number of surveillance images for haze
prediction evaluation. First, seven representative surveillance
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Fig. 10. Seven representative hazy surveillance images of the same scene with different haze densities and their predicted haze density scores D.

TABLE VII

PLCC AND SROCC BETWEEN PREDICTED DENSITY SCORES D AND THE
MOSS OF 7 REPRESENTATIVE SURVEILLANCE IMAGES

Image index a b c d e f g
Density D | 0.2153 | 0.3072 | 0.3596 | 0.4296 | 0.4801 | 0.5467 | 0.5385
MOS 8.10 | 1645 | 30.85 | 43.90 | 59.95 | 77.05 | 81.90
PLCC 0.9960
SROCC 0.9643

images, as shown in Fig. 10, are used to evaluate our method.
These seven surveillance images are captured in the same
scene, at the same location, but at different times. With the
weather changing, hazy images of different haze densities
are captured by the surveillance camera. These time-varying
real-world images are suitable to measure the performance
of haze prediction method. Fig. 10 shows these seven sur-
veillance hazy images from LIVE Defogging Image database.
We calculate haze density score D for each hazy image
using HazDesNet, and observe the consistency between these
predicted scores and the MOSs labeled by human. The PLCC
and SROCC are listed in Table VII.

From Table VII, we can observe that the PLCC and SROCC
are 0.9960 and 0.9643, respectively. It is concluded that the
predicted density scores of HazDesNet have a high correlation
with the MOS of human judgment on these surveillance
images. In addition, it is also proves that our method can be
applied to monitor the haze condition in surveillance systems
and autonomous vehicles.

The predicted haze densities of Fig. 10 (f) and (g) are
not consistent with MOSs, i.e., the predicted haze density of
Fig. 10 (f) is larger but its MOS is smaller. This inconsistency
may be introduced by the following reasons. The brightness of
Fig. 10 (g) is darker than Fig. 10 (f), thus the haze density of
Fig. 10 (g) perceived by human is larger. However, in our
training procedure, we set the global atmospheric light in
Equation (1) as A = 1 for simplification. If the original
image J(x) # 1 and 7(x) # 1, this simplification results

in an increase of brightness. Therefore, in this surveillance
situation, our HazDesNet gives Fig. 10 (f) a higher haze
density comparing with Fig. 10 (g). This also suggests that
some future work is needed to improve the proposed method’s
robustness against global luminance variations.

3) Quantitative Results on LIVE Defogging Database:
Besides a small number of surveillance images, our proposed
model HazDesNet is also evaluated on LIVE Defogging
database [54]. The quantitative results of HazDesNet are
compared with FADE [11] and other three deep learning based
methods in this part. The LIVE Defogging database contains
100 real-world hazy images and their corresponding MOSs.
We also utilize PLCC and SROCC between the predicted haze
density scores and MOSs to verify the performance of our
method.

The performances of these methods are shown in Table VIII.
FADE needs to divide the hazy image into small patches
first and then estimates the haze density of the entire image.
Therefore, FADE needs to select a best patch size during
practice. Except for NASNet whose input is 32 x 32x 3, other
deep learning based methods can predict haze density maps
for hazy images of any size. In Table VIII, the performances
of FADE with different patch sizes which range from 4 x 4 to
32 x 32 are tabulated. The best PLCC and SROCC of FADE
are 0.8934 and 0.8756, respectively, but they are calculated
with different patch sizes. The PLCC and SROCC of our
HazDesNet are 0.9156 and 0.9056, respectively, which are
better than FADE. What’s more, HazDesNet has an advantage
that it does not need any extra parameters such as patch
sizes. Besides, our HazDesNet outperforms other deep learn-
ing based methods. That is mainly because these models
are originally designed for other purposes, and the model
architectures are not proper for this task.

Fig. 11 illustrates the scatter plots of HazDesNet and
FADE on the LIVE Defogging database. These plots show the
relation between the predicted haze density scores and MOSs
judged by human subjects in the LIVE Defogging database.
Higher density score represents heavier perceptual haze in the
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TABLE VIII
PLCC AND SROCC BETWEEN THE PREDICTED HAZE DENSITY SCORES AND THE MOSS OF HAZY IMAGES ON THE LIVE DEFOGGING DATABASE

Method HazDesNet FADE ResNet50 GoogleNet NASNet-Mobile
Patch size / 4x4 8x8 10x10 16x16 32x32 / / 32x32
PLCC 0.9156 0.8896 0.8899 0.8922 0.8934 0.8835 0.8752 0.8643 0.8514
SROCC 0.9056 0.8720 0.8756 0.8742 0.8723 0.8647 0.8641 0.8589 0.8464
100 T T T T T T 5 T 100 o
90 - o 5 O A 90 - o ° 04
2 s0f o » 3 , 2 80l O . 8 oo 1
8 o & 3 o o oé) o8 °
£ 70 o O i S 5l o 5 ° |
8 o Y @ o 8 o © 002 o o)
2 60t o® By ° . 2 60t oo ® o 1
3 o Op o O = o o o 00
~§50* SRS @%OOOO B '% 50 - O@é) o Ooo ]
a a} o
Y40t ° % oo’ 68 1 w gl © ooo@og ]
= o o = o o
— o o - o [¢]
G 30r o® 1 G 30r &o ]
0 o %)
g 20 8% o OOOO 1 g 20—0088 00% 1
10 00 70 0 o8
Ic @ o 1 M s ® 4
OQ@ | © | ‘ ‘ ‘ ‘ ‘ 0 & o ‘ ‘ ‘ | |
0 01 02 03 04 05 06 07 08 09 0 1 2 3 4 5 6

Predicted density of HazDesNet (D)

(a) Scatter plot of HazDesNet on the LIVE Defogging database.

Fig. 11.
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(a) and (b) are the scatter plots of HazDesNet and FADE on the Live Defogging database, respectively. Both of these plots show the predicted haze

TABLE IX
PLCC AND SROCC BETWEEN THE PREDICTED HAZE DENSITY SCORES AND THE MOSS OF HAZY IMAGES ON THE HPHD DATABASE

Method HazDesNet FADE ResNet50 GoogleNet NASNet-Mobile

Patch size / 4x4 8x8 10x10 16x16 32x32 / / 32x32
RHI subset

PLCC 0.8184 0.6973 0.7066 0.7127 0.7154 0.7156 0.7744 0.7588 0.7489

SROCC 0.8392 0.7454 0.7550 0.7593 0.7608 0.7592 0.7613 0.7381 0.7334
SHI subset

PLCC 0.9082 0.8754 0.8949 0.8993 0.9064 0.9062 0.8996 0.8967 0.8755

SROCC 0.8822 0.7914 0.8335 0.8419 0.8600 0.8733 0.8704 0.8581 0.8421

image. Fig. 11 (a) indicates that the predicted density scores
of HazDesNet are highly correlated with human perception.
Comparing the two plots in Fig. 11, it is observed that the
scatter points of the HazDesNet are more convergent, which
means that the HazDesNet has better predictions. What’s more,
it is also observed that the predictions of HazDesNet is also
more linear than FADE.

4) Quantitative Results on HPHD Database: Although the
LIVE Defogging database includes hazy images of different
contents and various haze densities, the number of images of
this database is only 100 which is kind of small. Therefore,
we build the HPHD database which includes a RHI subset
and a SHI subset, and conduct a subjective human study
in Section V. HPHD database also contains hazy images of
different contents and their corresponding human judged haze
densities which are described by MOSs.

In this part, HazDesNet is evaluated on the RHI subset
and the SHI subset of the HPHD database, and it is also
compared with FADE and other three fine-tuned neural

network based methods. Similar to what have been done in
Section VI-E, PLCC and SROCC are calculated to verify
the performance of HazDesNet. The predicted haze density
scores are passed through the non-linearity function. The
performances of HazDesNet and FADE other methods are
summarized in Table IX.

From Table IX, it is clearly observed that the performance of
our HazDesNet is also the best. After a non-linearity mapping,
the PLCC and SROCC between predicted density scores D
of HazDesNet and MOSs of the RHI subset are 0.8184 and
0.8392, respectively. In terms of FADE, the best PLCC and
SROCC on the RHI subset are 0.7156 and 0.7608, using the
patch size 32 x32 and 16 x 16, respectively. On the SHI subset,
the PLCC and SROCC of HazDesNet are also better than
FADE. It proves that our HazDesNet is better than FADE. The
performance of HazDesNet is also better than other fine-tuned
models on both the RHI subset and the SHI subset. On the
other hand, compared with the performances of these two
methods on the LIVE Defogging database, the performance
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Fig. 13.
and MOSs of the SHI subset.

on the HPHD database decreases a lot. That is because our
HPHD database includes more hazy images and the included
hazy images are also more challenging.

Fig. 12 (a) illustrates the scatter plot between the predicted
haze density scores of HazDesNet and MOSs on the RHI
subset of the HPHD database. The distribution of points
in Fig. 12 (a) demonstrates that the predicted scores of
HazDesNet are correlated well with the haze densities to
some extent. However, the points in the left-bottom corner of
Fig. 12 (a) are scattered, which reveals that HazDesNet could
be further improved in this region. This imperfect distribution
is probably because some white or gray objects in images
are deemed as haze by the network and thus results in low
predicted haze density scores. Meanwhile, the scatter plot
between the predicted haze density scores of FADE and the
MOSs on the RHI subset of the HPHD database is shown
in Fig. 12 (b). From the scatter plot of FADE, we can observe
that 86.8% of predicted haze density scores are smaller than
3 and only 8 density scores are larger than 7, which means
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(a) and (b) are the scatter plots of HazDesNet and FADE on the SHI subset, respectively. Both of these plots show the predicted haze density scores

that the predictions of FADE are uneven and highly nonlinear.
Fig. 13 (a) illustrates the scatter plot between the predicted
haze density scores of HazDesNet and MOSs on the SHI
subset of the HPHD database, and Fig. 13 (b) illustrates the
scatter plot between the predicted haze density scores of
FADE and MOSs on the SHI subset of the HPHD database.
In conclusion, our HazDesNet has a stronger ability to predict
haze densities than FADE.

F. Qualitative Results

Fig. 14 shows the haze density maps predicted by FADE and
our HazDesNet. These real-world hazy images are samples of
the RHI subset of the HPHD database, as shown in Fig. 14 (a).
Fig. 14 (b), (c), (d) show the results of FADE using patch sizes
of 4 x4, 16 x 16, and 32 x 32, respectively. Fig. 14 (e) shows
the results of our HazDesNet.

It is challenging to predict the haze density map for the
entire hazy image. FADE uses the image patch to predict local
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Original hazy images and predicted haze density maps. (a) is original hazy images. (b), (c), and (d) are haze density maps predicted by FADE

using 4 x 4, 16 x 16, and 32 x 32 patch size, respectively. (e) is haze density maps predicted by HazDesNet. (f) is colorbar showing color scale, where 0-15 is

the indication of (b)-(d) and 0-1 is the indication of (e).

haze density, and then the haze density map is constructed
by these local densities. To get a high-resolution density map,
the patch size that FADE used needs to be as small as possible.
However, the predicted density map of FADE is not continuous
even when using a small patch size such as 4 x 4, as shown
in Fig. 14 (b). To get a stable density map, FADE needs
to apply a large patch size such as 16 x 16 and 32 x 32.
However, these large patch sizes cause the blocking effect,
as shown in Fig. 14 (c) and Fig. 14 (d). On the contrary,
our HazDesNet is capable of predicting a continuous, stable,
and high-resolution density map, as shown in Fig. 14 (e). The
resolution of the predicted haze density map is about half of
the resolution of the input haze image.

In terms of prediction precision, the predicted density maps
of HazDesNet are of high quality and robust. The fourth and
fifth rows of Fig. 14 demonstrate that our HazDesNet is more
reliable than FADE in different scenes.

VII. CONCLUSION

In this article, we have proposed a novel end-to-end
CNN-based method to predict haze density. Since it is hard
to build a large scale haze density database, we first apply
structural similarity (SSIM) index to measure the haze den-
sities of synthetic hazy image patches. It is found that these
SSIM scores indicate the haze densities of hazy images well.
Thus, these hazy image patches and the corresponding SSIM
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labeled haze densities are fed to train the HazDesNet.
Although our HazDesNet is trained by synthetic hazy images,
it can be generalized well for real-world hazy images.
As another main contribution of this article, we construct a
Human Perceptual Haze (HPHD) database which is the largest
of its kind and includes 500 real-world hazy images and
100 synthetic hazy images, and the corresponding haze density
labels judged by human. This database is used to evaluate the
generalization ability of HazDesNet. The quantitative results
of our proposed system on the HPHD database and existing
databases demonstrate that HazDesNet has a good ability
of haze density prediction. Another advantage of the pro-
posed HazDesNet lies in that it can predict a high-resolution
pixel-level haze density map, which describes the haze den-
sities of single pixels in the image. Such a high-quality haze
density map which is absent from the current methods can be
of great value in many haze-relevant applications.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

K. C. Dey, A. Mishra, and M. Chowdhury, “Potential of intelligent
transportation systems in mitigating adverse weather impacts on road
mobility: A review,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3,
pp. 1107-1119, Jun. 2015.

M. Negru, S. Nedevschi, and R. I. Peter, “Exponential contrast restora-
tion in fog conditions for driving assistance,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 4, pp. 2257-2268, Aug. 2015.

R. Gallen, A. Cord, N. Hautiere, E. Dumont, and D. Aubert, “Nighttime
visibility analysis and estimation method in the presence of dense fog,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 310-320, Feb. 2015.
V. R. Tomas, M. Pla-Castells, J. J. Martinez, and J. Martinez, “Forecast-
ing adverse weather situations in the road network,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 8, pp. 2334-2343, Aug. 2016.

C. H. Bahnsen and T. B. Moeslund, “Rain removal in traffic surveillance:
Does it matter?” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 8,
pp. 2802-2819, Aug. 2019.

H. Kuang, X. Zhang, Y.-J. Li, L. L. H. Chan, and H. Yan, “Night-
time vehicle detection based on bio-inspired image enhancement and
weighted score-level feature fusion,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 4, pp. 927-936, Apr. 2017.

M. Rezaei, M. Terauchi, and R. Klette, “Robust vehicle detection and
distance estimation under challenging lighting conditions,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 5, pp. 2723-2743, Oct. 2015.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341-2353, Dec. 2011.

Q. Zhu, J. Mai, and L. Shao, “A fast single image haze removal algorithm
using color attenuation prior,” IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3522-3533, Nov. 2015.

S.-C. Huang, B.-H. Chen, and Y.-J. Cheng, “An efficient visibility
enhancement algorithm for road scenes captured by intelligent trans-
portation systems,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5,
pp. 2321-2332, Oct. 2014.

L. Kwon Choi, J. You, and A. C. Bovik, “Referenceless prediction of
perceptual fog density and perceptual image defogging,” IEEE Trans.
Image Process., vol. 24, no. 11, pp. 3888-3901, Nov. 2015.

M. Pavlic, H. Belzner, G. Rigoll, and S. Ilic, “Image based fog
detection in vehicles,” in Proc. IEEE Intell. Vehicles Symp., Jun. 2012,
pp. 1132-1137.

N. Hautiére, J.-P. Tarel, J. Lavenant, and D. Aubert, “Automatic fog
detection and estimation of visibility distance through use of an onboard
camera,” Mach. Vis. Appl., vol. 17, no. 1, pp. 8-20, Apr. 2006.

X. Min, G. Zhai, K. Gu, X. Yang, and X. Guan, “Objective quality
evaluation of dehazed images,” IEEE Trans. Intell. Transp. Syst., vol. 20,
no. 8, pp. 2879-2892, Aug. 2019.

X. Min et al., “Quality evaluation of image dehazing methods using
synthetic hazy images,” IEEE Trans. Multimedia, vol. 21, no. 9,
pp. 2319-2333, Sep. 2019.

R. Spinneker, C. Koch, S.-B. Park, and J. J. Yoon, “Fast fog detection
for camera based advanced driver assistance systems,” in Proc. 17th Int.
IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 1369-1374.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]

[43]

M. Negru and S. Nedevschi, “Image based fog detection and visibility
estimation for driving assistance systems,” in Proc. IEEE 9th Int. Conf.
Intell. Comput. Commun. Process. (ICCP), Sep. 2013, pp. 163-168.
G. Zhai and X. Min, “Perceptual image quality assessment: A survey,’
Sci. China Inf. Sci., vol. 63, no. 11, Nov. 2020, Art. no. 211301.

X. Min, K. Gu, G. Zhai, J. Liu, X. Yang, and C. W. Chen, “Blind quality
assessment based on pseudo-reference image,” IEEE Trans. Multimedia,
vol. 20, no. 8, pp. 2049-2062, Aug. 2018.

X. Min, G. Zhai, K. Gu, Y. Liu, and X. Yang, “Blind image quality
estimation via distortion aggravation,” IEEE Trans. Broadcast., vol. 64,
no. 2, pp. 508-517, Jun. 2018.

B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “DehazeNet: An end-to-end
system for single image haze removal,” IEEE Trans. Image Process.,
vol. 25, no. 11, pp. 5187-5198, Nov. 2016.

H. Zhang and V. M. Patel, “Densely connected pyramid dehazing
network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3194-3203.

B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “AOD-net: All-in-one
dehazing network,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4780-4788.

W. Ren et al, “Gated fusion network for single image dehazing,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3253-3261.

A. Carlson, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson,
“Modeling camera effects to improve visual learning from synthetic
data,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2018, pp. 1-16.
M. Afifi and M. Brown, “What else can fool deep learning? Addressing
color constancy errors on deep neural network performance,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 243-252.
M. Bucher, T.-H. Vu, M. Cord, and P. Pérez, “Zero-shot semantic seg-
mentation,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 468—479.
K. F. Hussain, M. Afifi, and G. Moussa, “A comprehensive study
of the effect of spatial resolution and color of digital images on
vehicle classification,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3,
pp. 1181-1190, Mar. 2019.

Z. Dong, Y. Wu, M. Pei, and Y. Jia, “Vehicle type classification using
a semisupervised convolutional neural network,” IEEE Trans. Intell.
Transp. Syst., vol. 16, no. 4, pp. 2247-2256, Aug. 2015.

S. G. Narasimhan and S. K. Nayar, “Chromatic framework for vision
in bad weather,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), vol. 1, Jun. 2000, pp. 598-605.

Q.-S. Zhang and S.-C. Zhu, “Visual interpretability for deep learning:
A survey,” Frontiers Inf. Technol. Electron. Eng., vol. 19, no. 1,
pp- 27-39, Jan. 2018.

Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8827-8836.

C.-C.-J. Kuo, M. Zhang, S. Li, J. Duan, and Y. Chen, “Interpretable
convolutional neural networks via feedforward design,” J. Vis. Commun.
Image Represent., vol. 60, pp. 346-359, Apr. 2019.

S.-C. Huang, J.-H. Ye, and B.-H. Chen, “An advanced single-image
visibility restoration algorithm for real-world hazy scenes,” IEEE Trans.
Ind. Electron., vol. 62, no. 5, pp. 2962-2972, May 2015.

L. K. Choi, J. You, and A. C. Bovik, “Referenceless perceptual fog
density prediction model,” in Human Vis. Electron. Imag., vol. 9014,
Feb. 2014, Art. no. 90140H.

E. J. McCartney, “Optics atmosphere: Scattering by molecules particles,”
Phys. Today, vol. 30, no. 5, 1976, doi: 10.1063/1.3037551.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

J.-B. Wang, N. He, L.-L. Zhang, and K. Lu, “Single image dehazing with
a physical model and dark channel prior,” Neurocomputing, vol. 149,
pp. 718-728, Feb. 2015.

S.-C. Pei and T.-Y. Lee, “Nighttime haze removal using color transfer
pre-processing and dark channel prior,” in Proc. 19th IEEE Int. Conf.
Image Process., Sep. 2012, pp. 957-960.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, “Maxout networks,” 2013, arXiv:1302.4389. [Online]. Avail-
able: http://arxiv.org/abs/1302.4389

M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
arXiv:1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 08:56:34 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1063/1.3037551

ZHANG et al.: HazDesNet: AN END-TO-END NETWORK FOR HAZE DENSITY PREDICTION 3101

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

K. Tang, J. Yang, and J. Wang, “Investigating haze-relevant features in a
learning framework for image dehazing,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 2995-3002.

Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. Int. Conf. Mach. Learn., 2010,
pp. 111-118.

D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional
neural networks,” in Rough Sets and Knowledge Technology. Cham,
Switzerland: Springer, 2014, pp. 364-375.

C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree,” in Proc. 19th
Int. Conf. Artif. Intell. Stat., vol. 51, 2016, pp. 464-472.

D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Tremeau, and
C. Wolf, “Mixed pooling neural networks for color constancy,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2016, pp. 3997-4001.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., vol. 37, Jul. 2015, pp. 448-456.

K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397-1409, Jun. 2013.
X. Min, J. Zhou, G. Zhai, P. Le Callet, X. Yang, and X. Guan,
“A metric for light field reconstruction, compression, and display quality
evaluation,” IEEE Trans. Image Process., vol. 29, pp. 3790-3804, 2020.
X. Min, K. Ma, K. Gu, G. Zhai, Z. Wang, and W. Lin, “Unified blind
quality assessment of compressed natural, graphic, and screen content
images,” IEEE Trans. Image Process., vol. 26, no. 11, pp. 5462-5474,
Nov. 2017.

L. K. Choi, J. You, and A. C. Bovik. (2015). Live Image
Defogging Database. [Online]. Available: http://live.ece.utexas.edu/
research/fog/fade_defade.html

C. Ancuti, C. O. Ancuti, R. Timofte, and C. De Vleeschouwer, “I-HAZE:
A dehazing benchmark with real hazy and haze-free indoor images,” in
Advanced Concepts for Intelligent Vision Systems. Cham, Switzerland:
Springer, 2018, pp. 620-631.

C. Ancuti, C. O. Ancuti, and C. De Vleeschouwer, “D-HAZY: A dataset
to evaluate quantitatively dehazing algorithms,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2016, pp. 2226-2230.

Y. Zhang, L. Ding, and G. Sharma, “HazeRD: An outdoor scene dataset
and benchmark for single image dehazing,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2017, pp. 3205-3209.

Methodology for the Subjective Assessment of the Quality of Television
Pictures, document Recommendation ITU-R BT, 2002, pp. 500-513.
H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440-3451, Nov. 2006.

X. Min, G. Zhai, J. Zhou, M. C. Q. Farias, and A. C. Bovik, “Study
of subjective and objective quality assessment of audio-visual signals,”
IEEE Trans. Image Process., vol. 29, pp. 6054-6068, Apr. 2020.

Z. Wu, D. Lin, and X. Tang, “Adjustable bounded rectifiers: Towards
deep binary representations,” 2015, arXiv:1511.06201. [Online]. Avail-
able: http://arxiv.org/abs/1511.06201

Jiahe Zhang received the B.E. degree from
Hangzhou Dianzi University, Hangzhou, China,
in 2018. He is currently pursuing the master’s degree
with the Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai, China.
His research interests include computer vision and
multimedia signal processing.

Xiongkuo Min (Member, IEEE) received the B.E.
degree from Wuhan University, Wuhan, China,
in 2013, and the Ph.D. degree from Shanghai Jiao
Tong University, Shanghai, China, in 2018. From
January 2016 to January 2017, he was a Visiting Stu-
dent with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada. He is
currently a Post-Doctoral Fellow with Shanghai Jiao
Tong University. His research interests include visual
quality assessment, visual attention modeling, and
perceptual signal processing. He received the Best
Student Paper Award at IEEE ICME 2016.

Yucheng Zhu received the B.E. degree from Shang-
hai Jiao Tong University, Shanghai, China, in 2015,
where he is currently pursuing the Ph.D. degree with
the Institute of Image Communication and Network
Engineering. His research interests include image
quality assessment, visual attention modeling, and
perceptual signal processing. He was a recipient of
the Grand Challenge Best Performance Award in
ICME 2017 and 2018.

Guangtao Zhai (Senior Member, IEEE) received
the B.E. and M.E. degrees from Shandong Univer-
sity, Shandong, China, in 2001 and 2004, respec-
tively, and the Ph.D. degree from Shanghai Jiao Tong
University, Shanghai, China, in 2009. From 2008 to
2009, he was a Visiting Student with the Department
of Electrical and Computer Engineering, McMaster
: University, Hamilton, ON, Canada, where he was
3 a Post-Doctoral Fellow from 2010 to 2012. From
‘ “/ 2012 to 2013, he was a Humboldt Research Fellow
o with the Institute of Multimedia Communication and
Signal Processing, Friedrich Alexander University of Erlangen—Nuremberg,
Germany. He is currently a Research Professor with the Institute of Image
Communication and Information Processing, Shanghai Jiao Tong University.
His research interests include multimedia signal processing and perceptual
signal processing. He received the Award of National Excellent Ph.D. Thesis
from the Ministry of Education of China in 2012.

Jiantao Zhou (Senior Member, IEEE) received the
‘ B.Eng. degree from the Department of Electronic
Engineering, Dalian University of Technology,
in 2002, the M.Phil. degree from the Department
of Radio Engineering, Southeast University,
in 2005, and the Ph.D. degree from the Department
of Electronic and Computer Engineering, The
Hong Kong University of Science and Technology,

\ in 2009. He held various research positions with the
> ll University of Illinois at Urbana—Champaign, The
! - Hong Kong University of Science and Technology,
and McMaster University. He is currently an Associate Professor with the
Department of Computer and Information Science, Faculty of Science and
Technology, University of Macau. He holds four granted U.S. patents and
two granted Chinese patents. His research interests include multimedia
security and forensics, multimedia signal processing, artificial intelligence,
and big data. He has coauthored two papers that received the Best Paper
Award at the IEEE Pacific-Rim Conference on Multimedia in 2007 and
the Best Student Paper Award at the IEEE International Conference on
Multimedia and Expo in 2016. He is also an Associate Editor of the IEEE
TRANSACTIONS ON IMAGE PROCESSING.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 08:56:34 UTC from IEEE Xplore. Restrictions apply.



3102

Xiaokang Yang (Fellow, IEEE) received the B.S.
degree from Xiamen University, Xiamen, China,
in 1994, the M.S. degree from the Chinese Academy
of Sciences, Shanghai, China, in 1997, and the
Ph.D. degree from Shanghai Jiao Tong University,
Shanghai, in 2000.

From 2000 to 2002, he was a Research Fellow
with the Centre for Signal Processing, Nanyang
Technological University, Singapore. From 2002 to
2004, he was a Research Scientist with the Institute
for Infocomm Research, Singapore. From 2007 to
2008, he visited the Institute for Computer Science, University of Freiburg,
Freiburg im Breisgau, Germany, as an Alexander von Humboldt Research
Fellow. He is currently a Distinguished Professor with the School of Electronic
Information and Electrical Engineering and the Deputy Director of the
Institute of Image Communication and Information Processing, Shanghai
Jiao Tong University. He has published over 200 refereed articles and has
filed 60 patents. His current research interests include image processing and
communication, computer vision, and machine learning.

Dr. Yang is a member of the Asia-Pacific Signal and Information Processing
Association, the VSPC Technical Committee of the IEEE Circuits and Systems
Society, and the MMSP Technical Committee of the IEEE Signal Processing
Society. He is also the Chair of the Multimedia Big Data Interest Group of
MMTC Technical Committee, and the IEEE Communication Society. He was
a Series Editor of CCIS and an Editorial Board Member of Digital Signal
Processing. He is also an Associate Editor of the IEEE TRANSACTIONS
ON MULTIMEDIA and a Senior Associate Editor of the IEEE SIGNAL
PROCESSING LETTERS.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 4, APRIL 2022

Wenjun Zhang (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 1984, 1987, and 1989, respectively. After
three years working as an Engineer with Philips,
Nuremberg, Germany, he went back to his Alma
Mater, in 1993, and became a Full Professor in elec-
tronic engineering, in 1995. As the Project Leader,
he successfully developed the first Chinese HDTV
prototype system, in 1998. He was one of the main
contributors of the Chinese DTTB Standard (DTMB)
issued, in 2006. He holds more than 76 patents and authored/coauthored more
than 90 papers in international journals and conferences. He is the Chief
Scientist of the Chinese Digital TV Engineering Research Centre, an indus-
try/government consortium in DTV technology research and standardization,
and the Director of Cooperative MediaNet Innovation Center (CMIC) an
excellence research cluster affirmed by the Chinese Government. His main
research interests include digital video coding and transmission, multimedia
semantic analysis, and broadcast/broadband network convergence.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 08:56:34 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


