Status已發表Published
OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE
Qin, C.; Yan, W.; Ren, W.; Sun, Q.
2020-10-25
Source Publication工程力学
ISSN1000-4750
Pages212-222
Abstract摘要:工程结构参数识别不可避免地受到测试噪声和模型不确定性的影响,因此在模态参数识别过程中引入贝叶斯方法进行不确定性量化,具有较为重要的意义。通过对自功率谱和互功率谱的统计特性进行分析表明,功率谱迹(自功率谱之和)的概率密度函数与振型无关,因此可以实现振型参数与其它参数(频率、阻尼比、模态激励和预测误差等)的分离。以此变量分离原理为依据,可以实现"两阶段贝叶斯参数识别方法"进行模态参数的快速识别。该文基于西宁北川河钢管混凝土拱桥环境激励振动测试数据,对该方法的有效性和准确性进行了验证,通过功率谱迹驱动的贝叶斯方法识别出了频率、阻尼比、模态激励和预测误差等参数的最优值和不确定性,然后基于功率谱矩阵驱动的贝叶斯方法识别出了振型的最优值和不确定性,并将该文方法识别的结果与不同方法进行了对比。实桥模态分析表明,该方法解决了传统贝叶斯功率谱方法进行模态参数不确定性量化存在计算耗时及矩阵病态等问题,且能够有效地量化大型土木工程结构模态参数识别的不确定性。最后,该文对频带宽度进行了分析,揭示了该文方法识别的预测误差受频带影响较为明显。
Keyword贝叶斯推理 模态分析 变量分离 不确定性 桥梁工程
URLView the original
Language其他語言Others
The Source to ArticlePB_Publication
PUB ID50497
Document TypeJournal article
CollectionTHE STATE KEY LABORATORY OF INTERNET OF THINGS FOR SMART CITY (UNIVERSITY OF MACAU)
Recommended Citation
GB/T 7714
Qin, C.,Yan, W.,Ren, W.,et al. OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE[J]. 工程力学, 2020, 212-222.
APA Qin, C.., Yan, W.., Ren, W.., & Sun, Q. (2020). OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE. 工程力学, 212-222.
MLA Qin, C.,et al."OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE".工程力学 (2020):212-222.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Qin, C.]'s Articles
[Yan, W.]'s Articles
[Ren, W.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Qin, C.]'s Articles
[Yan, W.]'s Articles
[Ren, W.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Qin, C.]'s Articles
[Yan, W.]'s Articles
[Ren, W.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.