Residential College | false |
Status | 已發表Published |
Redundancy-Free Message Passing for Graph Neural Networks. | |
Chen, Rongqin1; Zhang, Shenghui1; U, LEONG HOU1; LI, Ye2 | |
2022-11 | |
Conference Name | 2022 Conference on Neural Information Processing Systems |
Conference Date | 2022 Nov 28 - 2022 Dec 09 |
Conference Place | New Orleans Ernest N. Morial Convention Center |
Abstract | Graph Neural Networks (GNNs) resemble the Weisfeiler-Lehman (1-WL) test, which iteratively update the representation of each node by aggregating information from WL-tree. However, despite the computational superiority of the iterative aggregation scheme, it introduces redundant message flows to encode nodes. We found that the redundancy in message passing prevented conventional GNNs from propagating the information of long-length paths and learning graph similarities. In order to address this issue, we proposed Redundancy-Free Graph Neural Network (RFGNN), in which the information of each path (of limited length) in the original graph is propagated along a single message flow. Our rigorous theoretical analysis demonstrates the following advantages of RFGNN: (1) RFGNN is strictly more powerful than 1-WL; (2) RFGNN efficiently propagate structural information in original graphs, avoiding the over-squashing issue; and (3) RFGNN could capture subgraphs at multiple levels of granularity, and are more likely to encode graphs with closer graph edit distances into more similar representations. The experimental evaluation of graph-level prediction benchmarks confirmed our theoretical assertions, and the performance of the RFGNN can achieve the best results in most datasets. |
URL | View the original |
Document Type | Conference paper |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE Faculty of Science and Technology |
Corresponding Author | Chen, Rongqin; Zhang, Shenghui |
Affiliation | 1.University of Macau 2.Shenzhen Institutes of Advanced Technology |
First Author Affilication | University of Macau |
Corresponding Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Chen, Rongqin,Zhang, Shenghui,U, LEONG HOU,et al. Redundancy-Free Message Passing for Graph Neural Networks.[C], 2022. |
APA | Chen, Rongqin., Zhang, Shenghui., U, LEONG HOU., & LI, Ye (2022). Redundancy-Free Message Passing for Graph Neural Networks.. . |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment