UM  > Faculty of Science and Technology  > DEPARTMENT OF MATHEMATICS
Residential Collegefalse
Status已發表Published
An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows
Liu, Yingzhi; Qi, Fenfen; Cai, Xiao Chuan
2023-12-01
Source PublicationInternational Journal for Numerical Methods in Biomedical Engineering
ISSN2040-7939
Volume39Issue:12Pages:e3771
Abstract

In this paper, we develop an algorithm to simulate blood flows in aneurysmal arteries and focus on the construction of robust and efficient multilevel preconditioners to speed up the convergence of both linear and nonlinear solvers. The work is motivated by the observation that in the local aneurysmal region, the flow is often quite complicated with one or more vortices, but in the healthy section of the artery, the principal component of blood flows along the centerline of the artery. Based on this observation, we introduce a novel two-level additive Schwarz method with a mixed-dimensional coarse preconditioner. The key components of the preconditioner include (1) a three-dimensional coarse preconditioner covering the aneurysm; (2) a one-dimensional coarse preconditioner covering the central line of the healthy section of the artery; (3) a collection of three-dimensional overlapping subdomain preconditioners covering the fine meshes of the entire artery; (4) extension/restriction operators constructed by radial basis functions. The blood flow is modeled by the unsteady incompressible Navier–Stokes equations with resistance outflow boundary conditions discretized by a stabilized finite element method on fully unstructured meshes and the second-order backward differentiation formula in time. The resulting large nonlinear algebraic systems are solved by a Newton-Krylov algorithm accelerated by the new preconditioner in two ways: (1) the initial guess of Newton is obtained by solving a linear system defined by the coarse preconditioner; (2) the Krylov solver of the Jacobian system is preconditioned by the new preconditioner. Numerical experiments indicate that the proposed preconditioner is highly effective and robust for complex flows in a patient-specific artery with aneurysm, and it significantly reduces the numbers of linear and nonlinear iterations.

KeywordBlood Flows In Aneurysmal Artery Fully Implicit Finite Element Mixed-dimensional Coarse Preconditioner Two-level Schwarz Unsteady Incompressible Navier–stokes Problem
DOI10.1002/cnm.3771
URLView the original
Indexed BySCIE
Language英語English
WOS Research AreaEngineering ; Mathematical & Computational Biology ; Mathematics
WOS SubjectEngineering, Biomedical ; Mathematical & Computational Biology ; Mathematics, Interdisciplinary Applications
WOS IDWOS:001064356500001
PublisherWILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ
Scopus ID2-s2.0-85170515075
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionDEPARTMENT OF MATHEMATICS
Faculty of Science and Technology
Corresponding AuthorCai, Xiao Chuan
AffiliationDepartment of Mathematics, University of Macau, Macao
First Author AffilicationUniversity of Macau
Corresponding Author AffilicationUniversity of Macau
Recommended Citation
GB/T 7714
Liu, Yingzhi,Qi, Fenfen,Cai, Xiao Chuan. An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows[J]. International Journal for Numerical Methods in Biomedical Engineering, 2023, 39(12), e3771.
APA Liu, Yingzhi., Qi, Fenfen., & Cai, Xiao Chuan (2023). An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows. International Journal for Numerical Methods in Biomedical Engineering, 39(12), e3771.
MLA Liu, Yingzhi,et al."An aneurysm-specific preconditioning technique for the acceleration of Newton-Krylov method with application in the simulation of blood flows".International Journal for Numerical Methods in Biomedical Engineering 39.12(2023):e3771.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Liu, Yingzhi]'s Articles
[Qi, Fenfen]'s Articles
[Cai, Xiao Chuan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Yingzhi]'s Articles
[Qi, Fenfen]'s Articles
[Cai, Xiao Chuan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Yingzhi]'s Articles
[Qi, Fenfen]'s Articles
[Cai, Xiao Chuan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.