Residential College | false |
Status | 已發表Published |
Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation | |
Yu, Wenqian1; Su, Cheng1,2,3; Guo, Houzuo1,4 | |
2024-06-01 | |
Source Publication | Journal of Engineering Mechanics |
ISSN | 0733-9399 |
Volume | 150Issue:6Pages:04024030 |
Abstract | Topology optimization is an appealing technique for optimal layout of active controllers of structures. However, the existing methods are mainly restricted to deterministic excitations, and the optimal control law involved is determined by use of the classical optimal control (COC) method, in which the sensitivities of the gain matrix with respect to the design variables need to be determined by solving the Riccati sensitivity equation numerically. In this study, a reliability-based topology optimization framework is proposed for optimal layout of active controllers of structures under nonstationary random excitations. The optimization problem is formulated as the minimization of the failure probability of the structure subjected to a specified maximum number of controllers. To avoid solving the Riccati equation, an explicit optimal control (EOC) method is first employed to derive the closed-form optimal control law in terms of the position parameters of controllers. The statistical moments of the optimal control forces and structural responses under random excitations are then obtained explicitly by the operation rules of moments, and the first-passage dynamic reliability of the structure can be formulated using the level-crossing theory. On this basis, the sensitivities of the structural failure probability with respect to the position parameters of controllers can be derived analytically by the direct differential method. Finally, the explicit formulations of the response statistics and the relevant sensitivities are incorporated into a gradient-based method of moving asymptotes (MMA) for topology optimization of the layout of controllers in conjunction with the solid isotropic material with penalization (SIMP) technique. Two numerical examples are presented to demonstrate the feasibility of the proposed topology optimization framework. |
Keyword | Explicit Stochastic Optimal Control Sensitivity Analysis Solid Isotropic Material With Penalization Topology Optimization |
DOI | 10.1061/JENMDT.EMENG-7563 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Engineering |
WOS Subject | Engineering, Mechanical |
WOS ID | WOS:001202575400005 |
Publisher | ASCE-AMER SOC CIVIL ENGINEERS1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 |
Scopus ID | 2-s2.0-85190389009 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Faculty of Science and Technology DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING |
Corresponding Author | Su, Cheng |
Affiliation | 1.School of Civil Engineering and Transportation, South China Univ. of Technology, Guangzhou, 381 Wushan Rd., Tianhe, 510640, China 2.School of Civil Engineering, Guangzhou City Univ. of Technology, Guangzhou, 1 Xuefu Rd., Huadu, 510800, China 3.Guangdong Artificial Intelligence and Digital Economy Laboratory, Guangzhou, 70 Yuean Rd., Haizhu, 510335, China 4.Dept. of Civil and Environmental Engineering, Univ. of Macau, Avenida a Universidade, Taipa, Macao, 999078, China |
Recommended Citation GB/T 7714 | Yu, Wenqian,Su, Cheng,Guo, Houzuo. Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation[J]. Journal of Engineering Mechanics, 2024, 150(6), 04024030. |
APA | Yu, Wenqian., Su, Cheng., & Guo, Houzuo (2024). Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation. Journal of Engineering Mechanics, 150(6), 04024030. |
MLA | Yu, Wenqian,et al."Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation".Journal of Engineering Mechanics 150.6(2024):04024030. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment