Residential College | false |
Status | 已發表Published |
Few-Shot Learning in Wi-Fi-Based Indoor Positioning | |
Xie, Feng1; Lam, Soi Hoi2; Xie, Ming3; Wang, Cheng1 | |
2024-09-12 | |
Source Publication | Biomimetics |
ISSN | 2313-7673 |
Volume | 9Issue:9Pages:551 |
Abstract | This paper explores the use of few-shot learning in Wi-Fi-based indoor positioning, utilizing convolutional neural networks (CNNs) combined with meta-learning techniques to enhance the accuracy and efficiency of positioning systems. The focus is on addressing the challenge of limited labeled data, a prevalent issue in extensive indoor environments. The study explores various scenarios, comparing the performance of the base CNN and meta-learning models. The meta-learning approach involves few-shot learning tasks, such as three-way N-shot, five-way N-shot, etc., to enhance the model’s ability to generalize from limited data. The experiments were conducted across various scenarios, evaluating the performance of the models with different numbers of samples per class (K) after filtering by cosine similarity (FCS) during both the stages of data preprocessing and meta-learning. The scenarios included both base classes and novel classes, with and without meta-learning. The results indicated that the base CNN model achieved varying accuracy levels depending on the scenario and the number of samples per class retained after FCS. Meta-learning performed acceptably in scenarios with fewer samples, which are the distinct datasets pertaining to novel classes. With 20 samples per class, the base CNN achieved an accuracy of 0.80 during the pre-training stage, while meta-learning (three-way one-shot) achieved an accuracy of 0.78 on a new small dataset with novel classes. |
Keyword | Cosine Similarity Few-sample Learning Few-shot Learning Indoor Positioning Limited Labeled Data Meta-learning |
DOI | 10.3390/biomimetics9090551 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Engineering ; Materials Science |
WOS Subject | Engineering, Multidisciplinary ; Materials Science, bioMaterials |
WOS ID | WOS:001323025300001 |
Publisher | MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND |
Scopus ID | 2-s2.0-85205088050 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Faculty of Science and Technology |
Corresponding Author | Xie, Feng |
Affiliation | 1.School of Information Science and Technology, Sanda University, Shanghai, 201209, China 2.Faculty of Science and Technology, University of Macau, 999078, Macao 3.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore |
Recommended Citation GB/T 7714 | Xie, Feng,Lam, Soi Hoi,Xie, Ming,et al. Few-Shot Learning in Wi-Fi-Based Indoor Positioning[J]. Biomimetics, 2024, 9(9), 551. |
APA | Xie, Feng., Lam, Soi Hoi., Xie, Ming., & Wang, Cheng (2024). Few-Shot Learning in Wi-Fi-Based Indoor Positioning. Biomimetics, 9(9), 551. |
MLA | Xie, Feng,et al."Few-Shot Learning in Wi-Fi-Based Indoor Positioning".Biomimetics 9.9(2024):551. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment