Residential College | true |
Status | 已發表Published |
Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway | |
Zhao,Xia1; Liu,Linlin1; Jiang,Yizhou1; Silva,Marta1; Zhen,Xuechu2; Zheng,Wenhua1 | |
2020-07-25 | |
Source Publication | Oxidative Medicine and Cellular Longevity |
ISSN | 1942-0900 |
Volume | 2020Pages:2524174 |
Abstract | Age-related macular degeneration (AMD) is a leading cause of blindness with limited effective treatment. Although the pathogenesis of this disease is complex and not fully understood, the oxidative damage caused by excessive reactive oxygen species (ROS) in retinal pigment epithelium (RPE) has been considered as a major cause. Autophagy is essential for the degradation of cellular components damaged by ROS, and its dysregulation has been implicated in AMD pathogenesis. Therefore, strategies aiming to boost autophagy could be effective in protecting RPE cells from oxidative damage. Metformin is the first-line anti-type 2 diabetes drug and has been reported to stimulate autophagy in many tissues. We therefore hypothesized that metformin may be able to protect RPE cells against H2O2-induced oxidative damage by autophagy activation. In the present study, we found that metformin attenuated H2O2-induced cell viability loss, apoptosis, elevated ROS levels, and the collapse of the mitochondria membrane potential in D407 cells. Autophagy was stimulated by metformin, and inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) or knockdown of Beclin1 and LC3B blocked the protective effects of metformin. In addition, we showed that metformin could activate the AMPK pathway, whereas both pharmacological and genetic inhibitions of AMPK blocked the autophagy-stimulating and protective effects of metformin. Metformin conferred a similar protection against H2O2-induced oxidative damage in primary cultured human RPE cells. Taken together, these results demonstrate that metformin could protect RPE cells from H2O2-induced oxidative damage by stimulating autophagy via the activation of the AMPK pathway, supporting its potential use in the prevention and treatment of AMD. |
DOI | 10.1155/2020/2524174 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Cell Biology |
WOS Subject | Cell Biology |
WOS ID | WOS:000559133200003 |
Scopus ID | 2-s2.0-85089303499 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Centre of Reproduction, Development and Aging Faculty of Health Sciences DEPARTMENT OF PHARMACEUTICAL SCIENCES |
Corresponding Author | Zheng,Wenhua |
Affiliation | 1.Center of Reproduction,Development and Aging and Institute of Translation Medicine,Faculty of Health Sciences,University of Macau,Taipa,Macao 2.Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences,Soochow University,Suzhou, Jiangsu,215123 ,China |
First Author Affilication | Faculty of Health Sciences |
Corresponding Author Affilication | Faculty of Health Sciences |
Recommended Citation GB/T 7714 | Zhao,Xia,Liu,Linlin,Jiang,Yizhou,et al. Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020, 2524174. |
APA | Zhao,Xia., Liu,Linlin., Jiang,Yizhou., Silva,Marta., Zhen,Xuechu., & Zheng,Wenhua (2020). Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2524174. |
MLA | Zhao,Xia,et al."Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway".Oxidative Medicine and Cellular Longevity 2020(2020):2524174. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment